1
|
Manesh MJH, Willard DJ, Lewis AM, Kelly RM. Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us? BIORESOURCE TECHNOLOGY 2024; 391:129988. [PMID: 37949149 DOI: 10.1016/j.biortech.2023.129988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Elevated temperatures favor bioleaching processes through faster kinetics, more favorable mineral chemistry, lower cooling requirements, and less surface passivation. Extremely thermoacidophilic archaea from the order Sulfolobales exhibit novel mechanisms for bioleaching metals from ores and have great potential. Genome sequences of many extreme thermoacidophiles are now available and provide new insights into their biochemistry, metabolism, physiology and ecology as these relate to metal mobilization from ores. Although there are some molecular genetic tools available for extreme thermoacidophiles, further development of these is sorely needed to advance the study and application of these archaea for bioleaching applications. The evolving landscape for bioleaching technologies at high temperatures merits a closer look through a genomic lens at what is currently possible and what lies ahead in terms of new developments and emerging opportunities. The need for critical metals and the diminishing primary deposits for copper should provide incentives for high temperature bioleaching.
Collapse
Affiliation(s)
- Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
2
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
3
|
Liu LJ, Jiang Z, Wang P, Qin YL, Xu W, Wang Y, Liu SJ, Jiang CY. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea. Front Microbiol 2021; 12:768283. [PMID: 34721370 PMCID: PMC8551704 DOI: 10.3389/fmicb.2021.768283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The order Sulfolobales (phylum Crenarchaeota) is a group of thermoacidophilic archaea. The first member of the Sulfolobales was discovered in 1972, and current 23 species are validly named under the International Code of Nomenclature of Prokaryotes. The majority of members of the Sulfolobales is obligately or facultatively chemolithoautotrophic. When they grow autotrophically, elemental sulfur or reduced inorganic sulfur compounds are their energy sources. Therefore, sulfur metabolism is the most important physiological characteristic of the Sulfolobales. The functions of some enzymes and proteins involved in sulfur reduction, sulfur oxidation, sulfide oxidation, thiosulfate oxidation, sulfite oxidation, tetrathionate hydrolysis, and sulfur trafficking have been determined. In this review, we describe current knowledge about the physiology, taxonomy, and sulfur metabolism of the Sulfolobales, and note future challenges in this field.
Collapse
Affiliation(s)
- Li-Jun Liu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Wang
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
5
|
Dong Y, Shan Y, Xia K, Shi L. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation. Front Microbiol 2021; 12:690918. [PMID: 34276623 PMCID: PMC8280799 DOI: 10.3389/fmicb.2021.690918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) is the fourth most abundant element in the Earth's crust where ferrous Fe [Fe(II)] and ferric Fe [Fe(III)] can be used by archaea for energy conservation. In these archaea-Fe interactions, Fe(III) serves as terminal electron acceptor for anaerobic respiration by a variety of archaea, while Fe(II) serves as electron donor and/or energy sources for archaeal growth. As no Fe is incorporated into the archaeal cells, these redox reactions are referred to as dissimilatory Fe(III) reduction and Fe(II) oxidation, respectively. Dissimilatory Fe(III)-reducing archaea (FeRA) and Fe(II)-oxidizing archaea (FeOA) are widespread on Earth where they play crucial roles in biogeochemical cycling of not only Fe, but also carbon and sulfur. To reduce extracellular Fe(III) (oxyhydr)oxides, some FeRA transfer electrons directly to the Fe(III) (oxyhydr)oxides most likely via multiheme c-type cytochromes (c-Cyts). These multiheme c-Cyts may form the pathways similar to those found in bacteria for transferring electrons from the quinone/quinol pool in the cytoplasmic membrane to the Fe(III) (oxyhydr)oxides external to the archaeal cells. Use of multiheme c-Cyts for extracellular Fe(III) reduction by both Domains of Archaea and Bacteria emphasizes an ancient mechanism of extracellular electron transfer, which is well conserved. Other FeRA, however, reduce Fe(III) (oxyhydr)oxides indirectly via electron shuttles. Similarly, it is proposed that FeOA use pathways to oxidize Fe(II) on the surface of the cytoplasmic membrane and then to transfer the released electrons across the cytoplasmic membrane inward to the O2 and NAD+ in the cytoplasm. In this review, we focus on the latest understandings of the molecular mechanisms used by FeRA and FeOA for Fe(III) reduction and Fe(II) oxidation, respectively.
Collapse
Affiliation(s)
- Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Kemin Xia
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
6
|
Wang P, Li LZ, Qin YL, Liang ZL, Li XT, Yin HQ, Liu LJ, Liu SJ, Jiang CY. Comparative Genomic Analysis Reveals the Metabolism and Evolution of the Thermophilic Archaeal Genus Metallosphaera. Front Microbiol 2020; 11:1192. [PMID: 32655516 PMCID: PMC7325606 DOI: 10.3389/fmicb.2020.01192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Members of the genus Metallosphaera are widely found in sulfur-rich and metal-laden environments, but their physiological and ecological roles remain poorly understood. Here, we sequenced Metallosphaera tengchongensis Ric-A, a strain isolated from the Tengchong hot spring in Yunnan Province, China, and performed a comparative genome analysis with other Metallosphaera genomes. The genome of M. tengchongensis had an average nucleotide identity (ANI) of approximately 70% to that of Metallosphaera cuprina. Genes sqr, tth, sir, tqo, hdr, tst, soe, and sdo associated with sulfur oxidation, and gene clusters fox and cbs involved in iron oxidation existed in all Metallosphaera genomes. However, the adenosine-5'-phosphosulfate (APS) pathway was only detected in Metallosphaera sedula and Metallosphaera yellowstonensis, and several subunits of fox cluster were lost in M. cuprina. The complete 3-hydroxypropionate/4-hydroxybutyrate cycle and dicarboxylate/4-hydroxybutyrate cycle involved in carbon fixation were found in all Metallosphaera genomes. A large number of gene family gain events occurred in M. yellowstonensis and M. sedula, whereas gene family loss events occurred frequently in M. cuprina. Pervasive strong purifying selection was found acting on the gene families of Metallosphaera, of which transcription-related genes underwent the strongest purifying selection. In contrast, genes related to prophages, transposons, and defense mechanisms were under weaker purifying pressure. Taken together, this study expands knowledge of the genomic traits of Metallosphaera species and sheds light on their evolution.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ya Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Tong Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hua Qun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Li Jun Liu
- Department of Pathogen Biology, School of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Cabrera MÁ, Blamey JM. Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 2018; 51:37. [PMID: 30290805 PMCID: PMC6172850 DOI: 10.1186/s40659-018-0186-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile.
| |
Collapse
|
8
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
9
|
Insight into the Sulfur Metabolism by Thermoacidophilic Archaeon Metallosphaera cuprina with Genomic, Proteomic and Biochemical Tools. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amr.1130.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract. The thermoacidophilic archaeon Metallosphaeracuprina was isolated from a sulfuric hot spring. M. cuprina is able to oxidize elemental sulfur, tetrathionate (S4O62+) pyrite, and a range of low-grade ores, thus is attractive to biomining industry. Dissimilatory sulfur metabolism with a sulfur oxygenase reductase (SOR) system has been reported for members of Sulfolobus and Acidianus. But SOR system was not identified in the genome of M. cuprina. Recently, we have explored the sulfur metabolism of M. cuprina with genomic, proteomic, and biochemical tools. A hypothetical model of sulfur metabolism in M. cuprina was proposed on proteomic and genomic data, and proteins that involved in sulfur metabolism have been identified in our following studies. Specifically, DsrE/TusA homologs were biochemically characterized, and a novel thiosulfate transfer reaction was found during sulfur oxidation with M. cuprina. More recently, we cloned and identified a CoA-dependent NAD(P)H sulfur oxidoreductase from M.cuprina. The study will cover new understandings of the sulfur metabolism with M. cuprina.
Collapse
|
10
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Dahl C. Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes. IUBMB Life 2015; 67:268-74. [DOI: 10.1002/iub.1371] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn; Bonn Germany
| |
Collapse
|
12
|
Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics. J Proteomics 2014; 109:276-89. [DOI: 10.1016/j.jprot.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 12/16/2022]
|
13
|
Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. J Biol Chem 2014; 289:26949-26959. [PMID: 25122768 PMCID: PMC4175335 DOI: 10.1074/jbc.m114.591669] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S0)- and tetrathionate (S4O62−)-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys18-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys18) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C93S and DsrE3A-C101S retained the ability to transfer the thiosulfonate group to TusA. TusA-C18S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.
Collapse
Affiliation(s)
- Li-Jun Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Yvonne Stockdreher
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Shu-Tao Sun
- Core Facility and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Michaele Josten
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Hans-Georg Sahl
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Qian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Ming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany,.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| |
Collapse
|
14
|
Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J Bacteriol 2014; 196:3562-70. [PMID: 25092032 DOI: 10.1128/jb.01707-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Thermoacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, an M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supranormal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to the upregulation of 55 genes. Genome resequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism, or transport. These mutations included 7 nonsynonymous substitutions, 4 insertions, and 1 deletion. One of the insertion mutations mapped to pseudogene Msed_1517 and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that includes the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula naturally lacked this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low-affinity, high-velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated that spontaneous arsenate-resistant mutants derived from CuR1 all underwent mutation in pitA and nonselectively became copper sensitive. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching.
Collapse
|
15
|
Draft Genome Sequence of the Sulfolobales Archaeon AZ1, Obtained through Metagenomic Analysis of a Mexican Hot Spring. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00164-14. [PMID: 24604657 PMCID: PMC3945513 DOI: 10.1128/genomea.00164-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Sulfolobales archaea have been found inhabiting acidic hot springs all over the world. Here, we report the 1.798-Mbp draft genome sequence of the thermoacidophilic Sulfolobales archaeon AZ1, reconstructed from the metagenome of a Mexican hot spring. Sequence-based comparisons revealed that the Sulfolobales archaeon AZ1 represents a novel candidate genus.
Collapse
|
16
|
Molecular analysis of hyperthermophilic endoglucanase Cel12B from Thermotoga maritima and the properties of its functional residues. BMC STRUCTURAL BIOLOGY 2014; 14:8. [PMID: 24529187 PMCID: PMC3936955 DOI: 10.1186/1472-6807-14-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
Background Although many hyperthermophilic endoglucanases have been reported from archaea and bacteria, a complete survey and classification of all sequences in these species from disparate evolutionary groups, and the relationship between their molecular structures and functions are lacking. The completion of several high-quality gene or genome sequencing projects provided us with the unique opportunity to make a complete assessment and thorough comparative analysis of the hyperthermophilic endoglucanases encoded in archaea and bacteria. Results Structure alignment of the 19 hyperthermophilic endoglucanases from archaea and bacteria which grow above 80°C revealed that Gly30, Pro63, Pro83, Trp115, Glu131, Met133, Trp135, Trp175, Gly227 and Glu229 are conserved amino acid residues. In addition, the average percentage composition of residues cysteine and histidine of 19 endoglucanases is only 0.28 and 0.74 while it is high in thermophilic or mesophilic one. It can be inferred from the nodes that there is a close relationship among the 19 protein from hyperthermophilic bacteria and archaea based on phylogenetic analysis. Among these conserved amino acid residues, as far as Cel12B concerned, two Glu residues might be the catalytic nucleophile and proton donor, Gly30, Pro63, Pro83 and Gly227 residues might be necessary to the thermostability of protein, and Trp115, Met133, Trp135, Trp175 residues is related to the binding of substrate. Site-directed mutagenesis results reveal that Pro63 and Pro83 contribute to the thermostability of Cel12B and Met133 is confirmed to have role in enhancing the binding of substrate. Conclusions The conserved acids have been shown great importance to maintain the structure, thermostability, as well as the similarity of the enzymatic properties of those proteins. We have made clear the function of these conserved amino acid residues in Cel12B protein, which is helpful in analyzing other undetailed molecular structure and transforming them with site directed mutagenesis, as well as providing the theoretical basis for degrading cellulose from woody and herbaceous plants.
Collapse
|
17
|
Killens-Cade R, Turner R, MacInnes C, Grunden A. Characterization of a Thermostable, Recombinant Carboxylesterase from the Hyperthermophilic Archaeon <em>Metallosphaera sedula</em> DSM5348. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aer.2014.21001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Quartet analysis of putative horizontal gene transfer in Crenarchaeota. J Mol Evol 2013; 78:163-70. [PMID: 24346234 DOI: 10.1007/s00239-013-9607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Horizontal gene transfers (HGT) between four Crenarchaeota species (Metallosphaera cuprina Ar-4T, Acidianus hospitalis W1T, Vulcanisaeta moutnovskia 768-28T, and Pyrobaculum islandicum DSM 4184T) were investigated with quartet analysis. Strong support was found for individual genes that disagree with the phylogeny of the majority, implying genomic mosaicism. One such gene, a ferredoxin-related gene, was investigated further and incorporated into a larger phylogeny, which provided evidence for HGT of this gene from the Vulcanisaeta lineage to the Acidianus lineage. This is the first application of quartet analysis of HGT for the phylum Crenarchaeota. The results have shown that quartet analysis is a powerful technique to screen homologous sequences for putative HGTs and is useful in visually describing genomic mosaicism and HGT within four taxa.
Collapse
|
19
|
A thermoacidophile-specific protein family, DUF3211, functions as a fatty acid carrier with novel binding mode. J Bacteriol 2013; 195:4005-12. [PMID: 23836863 DOI: 10.1128/jb.00432-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode.
Collapse
|
20
|
An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease. Biosci Rep 2013; 32:609-18. [PMID: 22950735 PMCID: PMC3497727 DOI: 10.1042/bsr20120074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A putative protease gene (tldD) was previously identified from studying tolerance of letD encoding the CcdB toxin of a toxin–antidote system of the F plasmid in Escherichia coli. While this gene is evolutionarily conserved in archaea and bacteria, the proteolytic activity of encoded proteins remained to be demonstrated experimentally. Here we studied Sso0660, an archaeal TldD homologue encoded in Sulfolobus solfataricus by overexpression of the recombinant protein and characterization of the purified enzyme. We found that the enzyme is active in degrading azocasein and FITC–BSA substrates. Protease inhibitor studies showed that EDTA and o-phenanthroline, two well-known metalloprotease inhibitors, either abolished completely or strongly inhibited the enzyme activity, and flame spectrometric analysis showed that a zinc ion is a cofactor of the protease. Furthermore, the protein forms disulfide bond via the Cys416 residue, yielding protein dimer that is the active form of the enzyme. These results establish for the first time that tidD genes encode zinc-containing proteases, classifying them as a family in the metalloprotease class.
Collapse
|
21
|
Shi H, Zhang Y, Li X, Huang Y, Wang L, Wang Y, Ding H, Wang F. A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:26. [PMID: 23418789 PMCID: PMC3598563 DOI: 10.1186/1754-6834-6-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/13/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Xylanase is an important component of hemicellulase enzyme system. Since it plays an important role in the hydrolysis of hemicellulose into xylooligosaccharides (XOs), high thermostable xylanase has been the focus of much recent attention as powerful enzyme as well as in the field of biomass utilization. RESULTS A xylanase gene (xyn10A) with 3,474 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum that encodes a protein containing 1,158 amino acid residues. Based on amino acid sequence homology, hydrophobic cluster and three dimensional structure analyses, it was attested that the xylanase belongs to the glycoside hydrolase (GH) families 10 with five carbohydrate binding domains. When the xylanase gene was cloned and expressed in Escherichia coli BL21 (DE3), the specific enzyme activity of xylanase produced by the recombinant strain was up to 145.8 U mg-1. The xylanase was optimally active at 95°C, pH 7.0. In addition, it exhibited high thermostability over broad range of pH 4.0-8.5 and temperature 55-90°C upon the addition of 5 mM Ca2+. Confirmed by Ion Chromatography System (ICS) analysis, the end products of the hydrolysis of beechwood xylan were xylose, xylobiose, xylotriose, xylotetraose, xylopentaose and xylohexaose. CONCLUSIONS The xylanase from T. thermarum is one of the hyperthermophilic xylanases that exhibits high thermostability, and thus, is a suitable candidate for generating XOs from cellulosic materials such as agricultural and forestry residues for the uses as prebiotics and precursors for further preparation of furfural and other chemicals.
Collapse
Affiliation(s)
- Hao Shi
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Xun Li
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Yingjuan Huang
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Liangliang Wang
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Ye Wang
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Huaihai Ding
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| | - Fei Wang
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
| |
Collapse
|
22
|
Ikeda Y, Minoshima H, Satoh M, Ishikawa T, Kawashima-Ohya Y, Tomobe K, Omata Y, Kawashima T. Transcriptional factor fur from Thermoplasma volcanium binds its own promoter DNA in a divalent cation-dependent manner. J GEN APPL MICROBIOL 2013; 58:465-73. [PMID: 23337582 DOI: 10.2323/jgam.58.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Because archaea possess many respiratory enzymes or radical scavengers with catalytic domains that contain iron, the expression of the genes encoding these enzymes might be regulated by iron acquisition. The genome of an archaeon, Thermoplasma volcanium contains a gene that encodes Fur (TVN0292). The fur gene of T. volcanium was amplified by PCR, and cloned into plasmid pET28a. TvFur (T. volcanium Fur protein) was expressed in E. coli cells and then purified. EMSA revealed that TvFur binds to its own promoter DNA. The binding to its own promoter was in an Mn(2+)-, Zn(2+)-, and Ni(2+)-dependent manner. DNase I footprinting analysis revealed that the binding sequence of tvfur promoter was 5'-G TTATTAT G TTTATAT A TTAATTA G-3'. An analysis utilizing oligonucleotides in TvFur-binding sequences revealed that TvFur binds to the TATA-box or regions in the vicinity of the TATA-box in the promoter. These results indicated that TvFur regulates transcription depending on the availability of environmental divalent cations.
Collapse
Affiliation(s)
- Yu Ikeda
- Department of Molecular Biology, Faculty of Pharmaceutical Science, Yokohama College of Pharmacy, Yokohama 245-0066, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. J Bacteriol 2012; 194:6856-63. [PMID: 23065978 DOI: 10.1128/jb.01413-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS(2)). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO(3)) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy.
Collapse
|
24
|
Mukherjee A, Wheaton GH, Blum PH, Kelly RM. Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Proc Natl Acad Sci U S A 2012; 109:16702-7. [PMID: 23010932 PMCID: PMC3478614 DOI: 10.1073/pnas.1210904109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermoacidophilic archaea are found in heavy metal-rich environments, and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium (U). Metallosphaera prunae, isolated from a smoldering heap on a uranium mine in Thüringen, Germany, could be viewed as a "spontaneous mutant" of Metallosphaera sedula, an isolate from Pisciarelli Solfatara near Naples. Metallosphaera prunae tolerated triuranium octaoxide (U(3)O(8)) and soluble uranium [U(VI)] to a much greater extent than M. sedula. Within 15 min following exposure to "U(VI) shock," M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 min post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA, suggesting that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 min post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U(3)O(8) to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U(3)O(8) to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905; and
| | - Garrett H. Wheaton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905; and
| | - Paul H. Blum
- Beadle Center for Genetics, University of Nebraska-Lincoln, Lincoln, NE 68588-0666
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905; and
| |
Collapse
|
25
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January – June 2011. Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2044675] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|