1
|
Shin WS, Lee D, Lee SJ, Chun GT, Choi SS, Kim ES, Kim S. Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum. Biochem Biophys Res Commun 2018; 499:279-284. [DOI: 10.1016/j.bbrc.2018.03.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/19/2023]
|
2
|
Sutrina SL, Griffith MSJ, Lafeuillee C. 2-Deoxy-d-glucose is a potent inhibitor of biofilm growth in Escherichia coli. MICROBIOLOGY-SGM 2016; 162:1037-1046. [PMID: 27045200 DOI: 10.1099/mic.0.000290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Escherichia coli strain 15 (ATCC 9723), which forms robust biofilms, was grown under optimal biofilm conditions in NaCl-free Luria-Bertani broth (LB*) or in LB* supplemented with one of the non-metabolizable analogues 2-deoxy-d-glucose (2DG), methyl α-d-mannopyranoside (αMM), or methyl α-d-glucopyranoside (αMG). Biofilm growth was inhibited by mannose analogue 2DG even at very low concentration in unbuffered medium, and the maximal inhibition was enhanced in the presence of either 100 mM KPO4 or 100 mM MOPS, pH 7.5; in buffered medium, concentrations of 0.02 % (1.2 mM) or more inhibited growth nearly completely. In contrast, mannose analogue αMM, which should not be able to enter the cells but has been reported to inhibit biofilm growth by binding to FimH, did not exhibit strong inhibition even at concentrations up to 1.8 % (108 mM). The glucose analogue αMG inhibited biofilm growth, but much less strongly than did 2DG. None of the analogues inhibited planktonic growth or caused a change in pH of the unbuffered medium. Similar inhibitory effects of the analogues were observed in minimal medium. The effects were not strain-specific, as 2DG and αMG also inhibited the weak biofilm growth of E. coli K12.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Barbados
| | - Melanie S J Griffith
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Barbados
| | - Chad Lafeuillee
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Barbados
| |
Collapse
|
3
|
Aboulwafa M, Saier MH. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system. MICROBIOLOGY-SGM 2013; 159:2213-2224. [PMID: 23985145 DOI: 10.1099/mic.0.070953-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Permeases of the prokaryotic phosphoenolpyruvate-sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt.,Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
4
|
Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 2008; 32:891-907. [PMID: 18647176 DOI: 10.1111/j.1574-6976.2008.00125.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.
Collapse
Affiliation(s)
- Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
5
|
Scholte BJ, Postma PW. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2005; 114:51-8. [PMID: 7011803 DOI: 10.1111/j.1432-1033.1981.tb06171.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The interaction between the two pathways for glucose entry via the phosphoenolpyruvate:sugar phosphotransferase system, i.e. via enzyme II-A/II-B and enzymes II-BGlc/IIIGlc, was studied in Salmonella typhimurium. Thio-beta-D-glucoside and 5-thio-D-glucose were shown to be substrates of P-pyruvate:sugar phosphotransferase specific for enzyme II-BGlc both in intact cells and in toluene-treated cells of S. typhimurium. The activity of the II-A/II-B pathway was strongly inhibited by the presence of II-BGlc substrates. It is concluded that the two pathways compete for phosphoryl groups provided by P-pyruvate, and that under the conditions tested the flow of phosphoryl groups through enzyme I/HPr is the rate-limiting step in vivo of activity of the pathways studied. The results corroborate the proposed mechanism of the regulatory function of the P-pyruvate:sugar phosphotransferase system which predicts a net dephosphorylation of components of the P-pyruvate:sugar phosphotransferase in the presence of a substrate of P-pyruvate:sugar phosphotransferase.
Collapse
|
6
|
Aboulwafa M, Chung YJ, Wai HH, Saier MH. Studies on the Escherichia coli glucose-specific permease, PtsG, with a point mutation in its N-terminal amphipathic leader sequence. MICROBIOLOGY (READING, ENGLAND) 2003; 149:763-771. [PMID: 12634344 DOI: 10.1099/mic.0.25731-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous work has resulted in the isolation of several mutant glucose permeases (II(Glc) or PtsG) of the Escherichia coli phosphotransferase system (PTS) with altered N-terminal amphipathic leader sequences. The mutations were reported to (1). broaden permease substrate specificity, (2). promote facilitated diffusion of some sugars and (3). increase ptsG gene transcription. Detailed biochemical analyses were conducted, showing that one such mutant (V12F-II(Glc)) (1). contains dramatically increased amounts of II(Glc), (2). displays correspondingly increased in vitro phosphorylation and in vivo transport activities, (3). shows increased utilization of several metabolizable sugars and (4). shows decreased susceptibility to detergent activation. These results are interpreted as suggesting that the V12F substitution in the N-terminal amphipathic leader sequence of II(Glc) alters the facility with which the permease is integrated into the membrane. Consequent changes in conformation alter its catalytic properties and increase its affinity for the pleiotropic transcriptional repressor, Mlc. These changes together are proposed to promote transcription of the ptsG gene and account for the observed phenotypic changes.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St, Abbassia, Cairo, Egypt
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Yong Joon Chung
- Department of Life Science, Jeonju University, Chonju, South Korea
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Homan Henry Wai
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
7
|
Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW. Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980420)58:2/3%3c204::aid-bit13%3e3.0.co;2-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW. Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 1998; 58:204-14. [PMID: 10191391 DOI: 10.1002/(sici)1097-0290(19980420)58:2/3<204::aid-bit13>3.0.co;2-c] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- LO Ingram
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Flores N, Xiao J, Berry A, Bolivar F, Valle F. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 1996; 14:620-3. [PMID: 9630954 DOI: 10.1038/nbt0596-620] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAHP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAHP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.
Collapse
Affiliation(s)
- N Flores
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
10
|
Reizer J, Saier MH, Deutscher J, Grenier F, Thompson J, Hengstenberg W. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. Crit Rev Microbiol 1988; 15:297-338. [PMID: 3060316 DOI: 10.3109/10408418809104461] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review consists of three major sections. The first and largest section reviews the protein constituents and known properties of the phosphotransferase systems present in well-studied Gram-positive bacteria. These bacteria include species of the following genera: (1) Staphylococcus, (2) Streptococcus, (3) Bacillus, (4) Lactobacillus, (5) Clostridium, (6) Arthrobacter, and (7) Brochothrix. The properties of the different systems are compared. The second major section deals with the regulation of carbohydrate uptake. There are four parts: (1) inhibition by intracellular sugar phosphates in Staphylococcus aureus, (2) PTS-mediated regulation of glycerol uptake in Bacillus subtilis, (3) competition for phospho-HPr in Streptococcus mutans, and (4) the possible involvement of protein kinases in the regulation of sugar uptake via the phosphotransferase system. The third section deals with the phenomenon of inducer expulsion. The first part is concerned with the physiological characterization of the phenomenon; then the consequences of unregulated uptake and expulsion, a futile cycle of energy expenditure, are considered. Finally, the biochemistry of the protein kinase and the protein phosphate phosphatase system, which appears to regulate sugar transport via the phosphotransferase system, is defined. The review, therefore, concentrates on the phosphotransferase system, its functions in carbohydrate transport and phosphorylation, the mechanisms of its regulation, and the mechanism by which it participates in the regulation of other physiological processes in the bacterial cell.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla
| | | | | | | | | | | |
Collapse
|
11
|
Driessen M, Postma PW, van Dam K. Energetics of glucose uptake in Salmonella typhimurium. Arch Microbiol 1987; 146:358-61. [PMID: 3555379 DOI: 10.1007/bf00410936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied the energetics of glucose uptake in Salmonella typhimurium. Strain PP418 transports glucose via the phosphoenolpyruvate: glucose phosphotransferase system, while strain PP1705 lacks this system and can only use the galactose permease for glucose uptake. These two strains were cultured anaerobically in glucose-limited chemostats. Both strains produced ethanol and acetate in equimolar amounts but a significant difference was observed in the molar growth yield on glucose (YGlc). It is suggested that this difference is due to a difference in the energetics of the glucose uptake systems in the two strains. Assuming an equal YATP for both strains, we could calculate that uptake of 1 mole of glucose via the galactose permease consumes the equivalent of 0.5 mole of ATP. With the additional assumption that one proton is transported in symport with one glucose molecule, these results imply a stoichiometry of two protons per ATP hydrolysed.
Collapse
|
12
|
Abstract
We have studied trehalose uptake in Salmonella typhimurium and the possible involvement of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in this process. Two transport systems could recognize and transport trehalose, the mannose PTS and the galactose permease. Uptake of trehalose via the latter system required that it be expressed constitutively (due to a galR or galC mutation). Introduction of a ptsM mutation, resulting in a defective IIMan/IIIMan system, in S. typhimurium strains that grew on trehalose abolished growth on trehalose. A ptsG mutation, eliminating IIGlc of the glucose PTS, had no effect. In contrast, a crr mutation that resulted in the absence of IIIGlc of the glucose PTS prevented growth on trehalose. The inability of crr and also cya mutants to grow on trehalose was due to lowered intracellular cyclic AMP synthesis, since addition of extracellular cyclic AMP restored growth. Subsequent trehalose metabolism could be via a trehalose phosphate hydrolase, if trehalose phosphate was formed via the PTS, or trehalase. Trehalose-grown cells contained trehalase activity, but we could not detect phosphoenolpyruvate-dependent phosphorylation of trehalose in toluenized cells.
Collapse
|
13
|
|
14
|
Thompson J, Chassy BM. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis. J Bacteriol 1985; 162:224-34. [PMID: 3920204 PMCID: PMC218978 DOI: 10.1128/jb.162.1.224-234.1985] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The bacterial phosphoenolpyruvate:sugar-phosphotransferase system (PTS) mediates the vectorial translocation and concomitant phosphorylation of sugars. The question arises of whether the PTS can also mediate the phosphorylation of intracellular sugars. To investigate this possibility in Streptococcus lactis 133, lactose derivatives have been prepared containing 14C-labeled 2-deoxy-glucose (2DG), 2-deoxy-2-fluoro-D-glucose (2FG), or alpha-methylglucoside as the aglycon substituent of the disaccharide. Two of the compounds, beta-O-D-galactopyranosyl-(1,4')-2'-deoxy-D-glucopyranose (2'D-lactose) and beta-O-D-galactopyranosyl-(1,4')-2'-deoxy-2'-fluoro-D-glucopyranose (2'F-lactose), were high-affinity substrates of the lactose-PTS. After translocation, the radiolabeled 2'F-lactose 6-phosphate (2'F-lactose-6P) and 2'D-lactose-6P derivatives were hydrolyzed by P-beta-galactoside-galactohydrolase to galactose-6P and either [14C]2FG or [14C]2DG, respectively. Thereafter, the glucose analogs appeared in the medium, but the rates of sugar exit from mannose-PTS-defective mutants were greater than those determined in the parent strain. Unexpectedly, the results of kinetic studies and quantitative analyses of intracellular products in S. lactis 133 showed that initially (and before exit) the glucose analogs existed primarily in phosphorylated form. Furthermore, the production of intracellular [14C]2FG-6P and [14C]2DG-6P (during uptake of the lactose analogs) continued when the possibility for reentry of [14C]2FG and 2DG was precluded by addition of mannose-PTS inhibitors (N-acetylglucosamine or N-acetylmannosamine) to the medium. By contrast, (i) only [14C]2DG, [14C]2FG, and trace amounts of [14C]2FG-6P were found in cells of a mannose-PTS-defective mutant, and (ii) only [14C]2FG and [14C]2DG were present in cells of a double mutant lacking both mannose-PTS and glucokinase activities. We conclude from these data that the mannose-PTS can effect the intracellular phosphorylation of glucose and its analogs in S. lactis 133.
Collapse
|
15
|
Reizer J, Saier MH. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes. J Bacteriol 1983; 156:236-42. [PMID: 6413489 PMCID: PMC215075 DOI: 10.1128/jb.156.1.236-242.1983] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pyogenes accumulated thiomethyl-beta-galactoside as the 6-phosphate ester due to the action of the phosphoenolpyruvate:lactose phosphotransferase system. Subsequent addition of glucose resulted in rapid efflux of the free galactoside after intracellular dephosphorylation (inducer expulsion). Efflux was shown to occur in the apparent absence of the galactose permease, but was inhibited by substrate analogs of the lactose enzyme II and could not be demonstrated in a mutant of S. lactis ML3 which lacked this enzyme. The results suggest that the enzymes II of the phosphotransferase system can catalyze the rapid efflux of free sugar under appropriate physiological conditions.
Collapse
|
16
|
|
17
|
Postma PW, Neyssel OM, van Ree R. Glucose transport in Salmonella typhimurium and Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 123:113-9. [PMID: 7040073 DOI: 10.1111/j.1432-1033.1982.tb06506.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have investigated the claim by Schweiger and coworkers [Eur. J. Biochem. 102(1979)231-236] that glucose transport in Escherichia coli is catalyzed mainly by an ATP-dependent transport system instead of the phosphoenolpyruvate:sugar phosphotransferase system. A major argument was the differential effect of 2,4-dinitrophenol on glucose uptake and the transport of its non-metabolizable analogue, methyl alpha-glucoside. Whereas the first was inhibited, the second was stimulated. When subsequent glucose metabolism is prevented by introducing mutations that eliminate glucose 6-phosphate metabolism, 2,4-dinitrophenol does not inhibit glucose transport. Although dinitrophenol inhibited in wild-type cells of E. coli and Salmonella typhimurium the uptake of 14C label in cells using [U-14C]glucose as a substrate, disappearance of glucose from the medium was not affected or only slightly affected. Since uptake represents a combination of transport and subsequent metabolism, retention of labelled material depends on the balance of incorporation of label in cellular material and efflux of labelled compounds. Our experiments show that inhibition of the uptake of labelled glucose by 2,4-dinitrophenol is not due to inhibition of transport as suggested by Schweiger and coworkers, but to increased efflux of labelled compounds such as acetate and pyruvate. In addition, incorporation of label in cellular material is lowered by dinitrophenol. Inhibition of uptake by dinitrophenol is found with many labelled sugars, including mannitol, galactose and glycerol, the transport of which is energized in quite different ways. We conclude that there is no need to postulate a novel ATP-driven system for glucose transport. All results can be explained with the phosphoenolpyruvate:glucose phosphotransferase system as the main if not sole glucose transport system.
Collapse
|
18
|
Postma PW. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J Bacteriol 1981; 147:382-9. [PMID: 6267008 PMCID: PMC216056 DOI: 10.1128/jb.147.2.382-389.1981] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.
Collapse
|
19
|
Rephaeli A, Saier M. Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(18)43538-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Postma PW, Stock JB. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. J Bacteriol 1980; 141:476-84. [PMID: 6988384 PMCID: PMC293650 DOI: 10.1128/jb.141.2.476-484.1980] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.
Collapse
|
21
|
|
22
|
Nagelkerke F, Postma PW. 2-deoxygalactose, a specific substrate of the Salmonella typhiimurium galactose permease: its use for the isolation of galP mutants. J Bacteriol 1978; 133:607-13. [PMID: 342498 PMCID: PMC222065 DOI: 10.1128/jb.133.2.607-613.1978] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
2-Deoxygalactose is a specific substrate of the galactose permease. The apparent Km is about 500 micron, compared to 45 micron for galactose, whereas the maximal rate of uptake is one-half to one-third of that of galactose. None of the other galactose transport systems, including methyl beta-D-thiogalactosides I and II, the beta-methyl-galactoside permease, and both arabinose systems, is able to catalyze transport of 2-deoxygalactose to a significant extent. 2-Deoxygalactose can also be used to isolate mutants defective in galactose permease, since it is bacteriostatic. Colonies that grow with lactate, malate, or succinate as a carbon source in the presence of 0.5 to 2 mM 2-doexygalactose were found to be mostly galP mutants, lacking galactose permease. Spontaneous 2-deoxygalactose-resistant strains arose with a frequency of about 2 X 10(-6). galP mutants have also been derived from pts deletion mutants that require galactose permease for growth on glucose. Revertants have been obtained that have acquired the parental phenotype.
Collapse
|
23
|
Abstract
We have studied the various systems by which galactose can be transported in Salmonella typhimurium, in particular the specific galactose permease (GP). Mutants that contain GP as the sole galactose transport system have been isolated, and starting from these mutants we have been able to select point mutants that lack GP. The galP mutation maps close to another mutation, which results in the constitutive synthesis of GP, but is not linked to galR. Growth of wild-type strains on glaactose induces GP but not the beta-methylgalactoside permease (MGP). Strains lacking GP are able to grow slowly on galactose, and MGP is induced; however, D-fucose is a much better inducer of MGP. Induction of GP or MGP is not prevented by a pts mutation, although this mutation changes the apparent Km of MGP for galactose. pts mutations have no effect on GP. GP has a rather broad specificity: galactose, glucose, mannose, fucose, 2-deoxygalactose, and 2-deoxyglucose are substrates, but only galactose and fucose can induce this transport system.
Collapse
|
24
|
Postma PW, Roseman S. The bacterial phosphoenolpyruvate: sugar phosphotransferase system. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 457:213-57. [PMID: 187249 DOI: 10.1016/0304-4157(76)90001-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Simoni RD, Roseman S, Saier MH. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)32987-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Roehl RA, Vinopal RT. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli. J Bacteriol 1976; 126:852-60. [PMID: 177406 PMCID: PMC233222 DOI: 10.1128/jb.126.2.852-860.1976] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphofructokinase (pfkA) mutants of Escherichia coli are impaired in growth on all carbon sources entering glycolysis at or above the level of fructose 6-phosphate (nonpermissive carbon sources), but growth is particularly slow on sugars, such as glucose, which are normally transported and phosphorylated by the phosphoenolpyruvate, (PEP)-dependent phosphotransferase system (PTS).
Collapse
|
27
|
Wilson DB. The Regulation and Properties of the Galactose Transport System in Escherichia coli K12. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)43065-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Boos W. Pro and Contra Carrier Proteins; Sugar Transport via the Periplasmic Galactose-Binding Protein. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 1974. [DOI: 10.1016/s0070-2161(08)60184-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
|