1
|
Alva A, Sabido-Ramos A, Escalante A, Bolívar F. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl Microbiol Biotechnol 2020; 104:1463-1479. [PMID: 31900563 DOI: 10.1007/s00253-019-10335-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022]
Abstract
The fast-growing capability of Escherichia coli strains used to produce industrially relevant metabolites relies on their capability to transport efficiently glucose or potential industrial feedstocks such as sucrose or xylose as carbon sources. E. coli imports extracellular glucose into the periplasmic space across the outer membrane porins: OmpC, OmpF, and LamB. As the internal membrane is an impermeable barrier for sugars, the cell employs several primary and secondary active transport systems, and the phosphoenolpyruvate (PEP)-sugar phosphotransferase (PTS) system for glucose transport. PTS:glucose is the preferred system by E. coli to transport and phosphorylate the periplasmic glucose; nevertheless, PTS imposes a strict metabolic control mechanism on the preferential consumption of glucose over other carbon sources in sugar mixtures such as glucose and xylose resulting from the hydrolysis of lignocellulosic biomass, by the carbon catabolite repression. In this contribution, we summarize the major sugar transport systems for glucose and disaccharide transport, the exhibited substrate plasticity, and their impact on the growth of E. coli, highlighting the relevance of PTS in the control of the expression of genes for the transport and catabolism of other sugars as xylose. We discuss the strategies developed by evolved mutants of E. coli during adaptive laboratory evolution experiments to overcome the nutritional stress condition imposed by inactivation of PTS as a strategy for the selection of fast-growing derivatives in glucose, xylose, or mixtures of glucose:xylose. This approach results in the recruitment of other primary and secondary active transporters, demonstrating relevant sugar plasticity in derivative-evolved mutants. Elucidation of the molecular and biochemical basis of sugar-transport substrate plasticity represents a consistent approach for sugar-transport system engineering for the design of efficient E. coli derivative strains with improved substrate assimilation for biotechnological purposes.
Collapse
Affiliation(s)
- Alma Alva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Andrea Sabido-Ramos
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México, México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
3
|
|
4
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
5
|
Neumann S, Hansen CH, Wingreen NS, Sourjik V. Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J 2010; 29:3484-95. [PMID: 20834231 DOI: 10.1038/emboj.2010.224] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/16/2010] [Indexed: 11/09/2022] Open
Abstract
In chemotaxis of Escherichia coli and other bacteria, extracellular stimuli are perceived by transmembrane receptors that bind their ligands either directly, or indirectly through periplasmic-binding proteins (BPs). As BPs are also involved in ligand uptake, they provide a link between chemotaxis and nutrient utilization by cells. However, signalling by indirectly binding ligands remains much less understood than signalling by directly binding ligands. Here, we compared intracellular responses mediated by both types of ligands and developed a new mathematical model for signalling by indirectly binding ligands. We show that indirect binding allows cells to better control sensitivity to specific ligands in response to their nutrient environment and to coordinate chemotaxis with ligand transport, but at the cost of the dynamic range being much narrower than for directly binding ligands. We further demonstrate that signal integration by the chemosensory complexes does not depend on the type of ligand. Overall, our data suggest that the distinction between signalling by directly and indirectly binding ligands is more physiologically important than the traditional distinction between high- and low-abundance receptors.
Collapse
Affiliation(s)
- Silke Neumann
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | |
Collapse
|
6
|
Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 2009; 191:5802-13. [PMID: 19633083 DOI: 10.1128/jb.00451-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ChvE is a chromosomally encoded protein in Agrobacterium tumefaciens that mediates a sugar-induced increase in virulence (vir) gene expression through the activities of the VirA/VirG two-component system and has also been suggested to be involved in sugar utilization. The ChvE protein has homology to several bacterial periplasmic sugar-binding proteins, such as the ribose-binding protein and the galactose/glucose-binding protein of Escherichia coli. In this study, we provide direct evidence that ChvE specifically binds the vir gene-inducing sugar d-glucose with high affinity. Furthermore, ChvE mutations resulting in altered vir gene expression phenotypes have been isolated and characterized. Three distinct categories of mutants have been identified. Strains expressing the first class are defective in both virulence and d-glucose utilization as a result of mutations to residues lining the sugar-binding cleft. Strains expressing a second class of mutants are not adversely affected in sugar binding but are defective in virulence, presumably due to impaired interactions with the sensor kinase VirA. A subset of this second class of mutants includes variants of ChvE that also result in defective sugar utilization. We propose that these mutations affect not only interactions with VirA but also interactions with a sugar transport system. Examination of a homology model of ChvE shows that the mutated residues associated with the latter two phenotypes lie in two overlapping solvent-exposed sites adjacent to the sugar-binding cleft where conformational changes associated with the binding of sugar might have a maximal effect on ChvE's interactions with its distinct protein partners.
Collapse
|
7
|
Abstract
The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.
Collapse
Affiliation(s)
- Hendrik Szurmant
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
8
|
Abstract
The chemotactic sensory system of Escherichia coli comprises membrane-embedded chemoreceptors and six soluble chemotaxis (Che) proteins. These components form signaling complexes that mediate sensory excitation and adaptation. Previous determinations of cellular content of individual components provided differing and apparently conflicting values. We used quantitative immunoblotting to perform comprehensive determinations of cellular amounts of all components in two E. coli strains considered wild type for chemotaxis, grown in rich and minimal media. Cellular amounts varied up to 10-fold, but ratios between proteins varied no more than 30%. Thus, cellular stoichiometries were almost constant as amounts varied substantially. Calculations using those cellular stoichiometries and values for in vivo proportions of core components in complexes yielded an in vivo stoichiometry for core complexes of 3.4 receptor dimers and 1.6 CheW monomers for each CheA dimer and 2.4 CheY, 0.5 CheZ dimers, 0.08 CheB, and 0.05 CheR per complex. The values suggest a core unit of a trimer of chemoreceptor dimers, a dimer (or two monomers) of kinase CheA, and two CheW. These components may interact in extended arrays and, thus, stoichiometries could be nonintegral. In any case, cellular stoichiometries indicate that CheY could be bound to all signaling complexes and this binding would recruit essentially the entire cellular complement of unphosphorylated CheY, and also that phosphatase CheZ, methylesterase CheB, and methyltransferase CheR would be present at 1 per 2, per 14, and per 20 core complexes, respectively. These characteristic ratios will be important in quantitative treatments of chemotaxis, both experimental and theoretical.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
9
|
Kristich CJ, Glekas GD, Ordal GW. The conserved cytoplasmic module of the transmembrane chemoreceptor McpC mediates carbohydrate chemotaxis in Bacillus subtilis. Mol Microbiol 2003; 47:1353-66. [PMID: 12603740 DOI: 10.1046/j.1365-2958.2003.03375.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli cells use two distinct sensory circuits during chemotaxis towards carbohydrates. One circuit requires the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and is independent of any specific chemoreceptor, whereas the other uses a chemoreceptor-dependent sensory mechanism analogous to that used during chemotaxis towards amino acids. Work on the carbohydrate chemotaxis sensory circuit of Bacillus subtilis reported in this article indicates that the B. subtilis circuit is different from either of those used by E. coli. Our chemotactic analysis of B. subtilis strains expressing various chimeric chemoreceptors indicates that the cytoplasmic, C-terminal module of the chemoreceptor McpC acts as a sensory-input element during carbohydrate chemotaxis. Our results also indicate that PTS-mediated carbohydrate transport, but not carbohydrate metabolism, is required for production of a chemotactic signal. We propose a model in which PTS-transport-induced chemotactic signals are transmitted to the C-terminal module of McpC for control of chemotaxis towards PTS carbohydrates.
Collapse
Affiliation(s)
- Christopher J Kristich
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
10
|
Campos A, Matsumura P. Extensive alanine scanning reveals protein-protein and protein-DNA interaction surfaces in the global regulator FlhD from Escherichia coli. Mol Microbiol 2001; 39:581-94. [PMID: 11169100 DOI: 10.1046/j.1365-2958.2001.02248.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FlhD and FlhC are the transcriptional activators of the flagellar regulon. The heterotetrameric complex formed by these two proteins activates the transcription of the class II flagellar genes. The flagellar regulon consists not only of flagellar genes, but also of the chemotactic genes and some receptor proteins. Recently, a connection between the flagellar regulon and some virulence genes has been found in some species. Furthermore, FlhD, but not FlhC, regulates another non-flagellar target. As a first attempt to understand the mechanism of the flagellar transcriptional activation by FlhD and FlhC, the structure of FlhD has been solved. In order to understand the mechanism of the action of FlhD when it regulates the flagellar genes, we conducted site-directed mutagenesis based on its three-dimensional structure. Six interaction surfaces in the FlhD dimer were mapped by alanine scanning mutagenesis. Two of them are surface clusters formed by residues His-2, Asp-28, Arg-35, Phe-34 and Asn-61 located at each side of the dimer core. The other four are located in the flexible arms of the dimer. The residues Ser-82, Arg-83, Val-84, His-91, Thr-92, Ile-94 and Leu-96 are located at this region. All these residues are involved in the FlhD/FlhC interaction with the exception of Ser-82, Arg-83 and Val-84. These three residues affect the DNA-binding ability of the complex. The three-dimensional topology of FlhD and the site-directed mutagenesis results support the hypothesis of FlhC as an allosteric effector that activates FlhD for the recognition of the DNA.
Collapse
Affiliation(s)
- A Campos
- Department of Microbiology and Immunology (M/C 790), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., MSB E-603, Chicago, IL 60612-7344, USA.
| | | |
Collapse
|
11
|
Marx RB, Aitken MD. A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000505)68:3<308::aid-bit9>3.0.co;2-n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Björkman A, Binnie R, Cole L, Zhang H, Hermodson M, Mowbray S. Identical mutations at corresponding positions in two homologous proteins with nonidentical effects. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78110-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Abstract
Galactose transport and metabolism in Escherichia coli involves a multicomponent amphibolic pathway. Galactose transport is accomplished by two different galactose-specific transport systems. At least four of the genes and operons involved in galactose transport and metabolism have promoters containing similar regulatory sequences. These sequences are recognized by at least three regulators, Gal repressor (GalR), Gal isorepressor (GalS) and cAMP receptor protein (CRP), which modulate transcription from these promoters. The negative regulators, GalR and GalS, discriminate between utilization of the high-affinity (regulated by GalS) and low-affinity (regulated by GalR) transport systems, and modulate the expression of genes for galactose metabolism in an overlapping fashion. GalS is itself autogenously regulated and CRP dependent, while the gene for GalR is constitutive. The gal operon encoding the enzymes for galactose metabolism has two promoters regulated by CRP in opposite ways; one (P1) is stimulated and the other (P2) inhibited by CRP. Both promoters are strongly repressed by GalR but weakly by GalS. All but one of the constituent promoters of the gal regulon have two operators. The gal regulon has the potential to coordinate galactose metabolism and transport in a highly efficient manner, under a wide variety of conditions of galactose availability.
Collapse
|
14
|
Abstract
The periplasmic ribose and glucose-galactose receptors (binding proteins) of Gram-negative bacteria compete for a common inner membrane receptor in bacterial chemotaxis, as well as being the essential primary receptors for their respective membrane transport systems. The high-resolution structures of the periplasmic receptors for ribose (from Escherichia coli) and glucose or galactose (from both Salmonella typhimurium and E. coli) are compared here to outline some features that may be important in their dual functions. The overall structure of each protein consists of two similar domains, both of which are made up of two non-contiguous segments of amino acid chain. Each domain is composed of a core of beta-sheet flanked on both sides with alpha-helices. The two domains are related to each other by an almost perfect intramolecular axis of symmetry. The ribose receptor is smaller as a result of a number of deletions in its sequence relative to the glucose-galactose receptor, mostly occurring in the loop regions; as a result, this protein is also more symmetrical. Many structural features, including some hydrophobic core interactions, a buried aspartate residue and several unusual turns, are conserved between the two proteins. The binding sites for ligand are in similar locations, and built along similar principles, although none of the specific interactions with the sugars is conserved. A comparison shows further that slightly different rotations relate the domains to each other in the three proteins, with the ribose receptor being the most closed, and the Salmonella glucose-galactose receptor the most open. The primary axis of relative rotation is almost perpendicular to that which describes the intramolecular symmetry in each case. These relative rotations of the domains are accompanied by the sliding of some helices as the structures adjust themselves to relieve strain. The hinges which are responsible for most of these relative domain rotations are very similar in the three proteins, consisting of a symmetrical arrangement of beta-strands and alpha-helices and two conserved water molecules that are critical to the hydrogen bonding in the important interdomain region. A region of high sequence and structural similarity between the ribose and glucose-galactose receptors is also located around the intramolecular symmetry axis, on the opposite side of the proteins from the hinge region. This region is that which is altered most by the relative rotations, and is the location of most of the known mutations which affect chemotaxis and transport in the ribose receptor.
Collapse
Affiliation(s)
- S L Mowbray
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala
| |
Collapse
|
15
|
Abstract
The X-ray structure of the periplasmic ribose receptor (binding protein) of Escherichia coli (RBP) was solved at 3 A resolution by the method of multiple isomorphous replacement. Alternating cycles of refitting and refinement have resulted in a model structure with an R-factor of 18.7% for 27,526 reflections from 7.5 to 1.7 A resolution (96% of the data). The model contains 2228 non-hydrogen atoms, including all 271 residues of the amino acid sequence, 220 solvent atoms and beta-D-ribose. The protein consists of two highly similar structural domains, each of which is composed of a core of parallel beta-sheet flanked on both sides by alpha-helices. The two domains are related to each other by an almost perfect 2-fold axis of rotation, with the C termini of the beta-strands of each sheet pointing toward the center of the molecule. Three short stretches of amino acid chain (from symmetrically related portions of the protein) link these two domains, and presumably act as a hinge to allow relative movement of the domains in functionally important conformational changes. Two water molecules are also an intrinsic part of the hinge, allowing crucial flexibility in the structure. The ligand beta-D-ribose (in the pyranose form) is bound between the domains, held by interactions with side-chains of the interior loops. The binding site is precisely tailored, with a combination of hydrogen bonding, hydrophobic and steric effects giving rise to tight binding (0.1 microM for ribose) and high specificity. Four out of seven binding-site residues are charged (2 each of aspartate and arginine) and contribute two hydrogen bonds each. The remaining hydrogen bonds are contributed by asparagine and glutamine residues. Three phenylalanine residues supply the hydrophobic component, packing against both faces of the sugar molecule. The arrangement of these hydrogen bonding and hydrophobic residues results in an enclosed binding site with the exact shape of the allowed sugar molecules; in the process of binding, the ligand loses all of its surface-accessible area. The sites of two mutations that affect the rate of folding of the ribose receptor are shown to be located near small cavities in the wild-type protein. The cavities thus allow the incorporation of the larger residues in the mutant proteins. Since these alterations would seriously affect the ability of the protein to build the first portion of the hydrophobic core in the first domain, it is proposed that this process is the rate-limiting step in folding of the ribose receptor.
Collapse
Affiliation(s)
- S L Mowbray
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center
| | | |
Collapse
|
16
|
|
17
|
Abstract
The archaebacterium Methanococcus voltae, was shown to be chemotactic. Acetate, isoleucine, and leucine were identified as attractants; whereas histidine was not an attractant. A motile, generally nonchemotactic mutant was isolated.
Collapse
Affiliation(s)
- K A Sment
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
18
|
Abstract
The escape of motile organisms from high concentrations of chemicals was studied in Escherichia coli. We have found all chemicals tested to be osmorepellents. It was shown in both a spatial assay and a temporal assay that the known sensory receptors for chemotaxis are not used for osmotaxis, so a different sensory mechanism appears to be employed. According to the temporal assay, the mechanism between sensory receptors and flagella is also not used for tumbling response (at least in solutions above 0.4 osmolar).
Collapse
Affiliation(s)
- C Li
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
19
|
Benner-Luger D, Boos W. The mglB sequence of Salmonella typhimurium LT2; promoter analysis by gene fusions and evidence for a divergently oriented gene coding for the mgl repressor. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:579-87. [PMID: 3146019 DOI: 10.1007/bf00330498] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mglB gene of Salmonella typhimurium LT2 coding for the galactose-binding protein (GBP) was sequenced. We compared the deduced amino acid sequence with the GBP sequence of Escherichia coli K 12. The mature proteins differ in only 19 of 309 amino acid residues, corresponding to 94% homology. Analysis of the mglB control region by promoter-probe vectors revealed that two promoters, P1 and P2, constitute the mgl control region (Pmgl). P1 and P2 function in a synergistic way. P1 is the main promoter of the operon; its activity is 20 times the activity of P2. Both promoters are activated by the cyclic adenosine monophosphate catabolite activator protein (cAMP/CAP) complex. While P1 is inactive in the absence of the cAMP/CAP complex, there is residual activity of P2 under these conditions. Studies on the inducibility of the mglBAEC operon using multicopy plasmid promoter-probe vectors were hampered by the titration of the mgl repressor resulting in a partially constitutive expression of the mgl operon. The results indicate that only P1 is responding to induction by D-fucose. A weak promoter, PD, within the P1 region but divergent to it was found. PD is neither stimulated by the cAMP/CAP complex nor by D-fucose. We cloned the gene located downstream to PD and found it to strongly repress the expression of the mgl operon. We termed this gene mglD. The presence of D-fucose abolished the repression caused by the plasmid-encoded mglD gene product.
Collapse
Affiliation(s)
- D Benner-Luger
- Department of Biology, University of Konstanz, Federal Republic of Germany
| | | |
Collapse
|
20
|
Kossmann M, Wolff C, Manson MD. Maltose chemoreceptor of Escherichia coli: interaction of maltose-binding protein and the tar signal transducer. J Bacteriol 1988; 170:4516-21. [PMID: 3049536 PMCID: PMC211484 DOI: 10.1128/jb.170.10.4516-4521.1988] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The maltose chemoreceptor in Escherichia coli consists of the periplasmic maltose-binding protein (MBP) and the Tar signal transducer, which is localized in the cytoplasmic membrane. We previously isolated strains containing malE mutations that cause specific defects in the chemotactic function of MBP. Four of these mutations have now been characterized by DNA sequence analysis. Two of them replace threonine at residue 53 of MBP with isoleucine (MBP-TI53), one replaces an aspartate at residue 55 with asparagine (MBP-DN55), and the fourth replaces threonine at residue 345 with isoleucine (MBP-TI345). The chemotactic defects of MBP-TI53 and MBP-DN55, but not of MBP-TI345, are suppressed by mutations in the tar gene. Of the tar mutations, the most effective suppressor (isolated independently three times) replaces Arg-73 of Tar with tryptophan. Two other tar mutations that disrupt the aspartate chemoreceptor function of Tar also suppress the maltose taxis defects associated with MBP-TI53 and MBP-DN55. One of these mutations introduces glutamine at residue 73 of Tar, the other replaces arginine at residue 69 of Tar with cysteine. These results suggest that regions of MBP that include residues 53 to 55 and residue 345 are important for the interaction with Tar. In turn, arginines at residues 69 and 73 of Tar must be involved in the recognition of maltose-bound MBP and/or in the production of the attractant signal generated by Tar in response to maltose-bound MBP.
Collapse
Affiliation(s)
- M Kossmann
- Department of Biology, Texas A&M University, College Station 77843
| | | | | |
Collapse
|
21
|
Scholle A, Vreemann J, Blank V, Nold A, Boos W, Manson MD. Sequence of the mglB gene from Escherichia coli K12: comparison of wild-type and mutant galactose chemoreceptors. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:247-53. [PMID: 3302609 DOI: 10.1007/bf00330450] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mglB gene of Escherichia coli codes for a galactose-binding protein (GBP) that serves both as the galactose chemoreceptor and as the recognition component of the beta-methylgalactoside transport system. The mglB551 mutation eliminates the chemotactic function of GBP without altering its transport or substrate-binding properties. To investigate the interaction between GBP and Trg, the chemotactic signal transducer for galactose, we sequenced the mglB genes from wild-type and mglB551 mutant strains. The mutation causes the replacement of Gly74 of GBP by Asp. This residue is located in alpha-Helix III at the tip of the P domain in the GBP tertiary structure farthest removed from the substrate-binding cleft between the P and Q domains. We conclude that Helix III must be part of, or at least adjacent to, the recognition site for Trg. Our sequence also included part of the mglA gene, which is immediately distal to mglB. The amino acid sequence deduced for the beginning of the MglA protein showed homology with a family of polypeptides that contain an ATP-binding site and are components of binding-protein-dependent transport systems.
Collapse
|
22
|
|
23
|
Park C, Hazelbauer GL. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer. J Bacteriol 1986; 167:101-9. [PMID: 3087946 PMCID: PMC212847 DOI: 10.1128/jb.167.1.101-109.1986] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Trg transducer mediates chemotactic response to galactose and ribose by interacting, respectively, with sugar-occupied galactose- and ribose-binding proteins. Adaptation is linked to methylation of specific glutamyl residues of the Trg protein. This study characterized two trg mutations that affect interaction with binding protein ligands but do not affect methylation or adaptation. The mutant phenotypes indicated that the steady-state activity of methyl-accepting sites is independent of ligand-binding activity. The mutation trg-8 changed arginine 85 to histidine, and trg-19 changed glycine 151 to aspartate. The locations of the mutational changes provided direct evidence for functioning of the amino-terminal domain of Trg in ligand recognition. Cross-inhibition of tactic sensitivity by the two Trg-linked attractants implies competition for a common site on Trg. However, the single amino acid substitution caused by trg-19 greatly reduced the response to galactose but left unperturbed the response to ribose. Thus Trg must recognize the two sugar-binding proteins at nonidentical sites, and the complementary sites on the respective binding proteins should differ. trg-8 mutants were substantially defective in the response to both galactose and ribose. An increase in cellular content of Trg-8 protein improved the response to galactose but not to ribose. It appears that Trg-8 protein is defective in the generation of the putative conformational change induced by ligand interaction. The asymmetry of the mutational defect implies that functional separation of interaction sites could persist beyond the initial stage of ligand binding.
Collapse
|
24
|
|
25
|
Bartlett DH, Matsumura P. Behavioral responses to chemical cues by bacteria. J Chem Ecol 1986; 12:1071-89. [DOI: 10.1007/bf01638997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1985] [Accepted: 10/23/1985] [Indexed: 10/25/2022]
|
26
|
Abstract
Bacterial chemotaxis is a primitive behavioral system that shows great promise for being amenable to a description of its molecular mechanism. In Gram-negatives like Escherichia coli, addition of amino acid attractant begins a series of events, starting with binding to certain intrinsic membrane proteins, the MCPs, and ending with a period of smooth swimming. Immediately, methyl-esterification of these MCPs begins and continues during this period. By contrast in the Gram-positive Bacillus subtilis, demethylation of MCPs occurs during the same period. At least two other mechanisms for mediating chemotaxis toward the attractants oxygen and phosphotransferase sugars exist in E. coli, and in these, changes in methylation of MCPs plays no role. Moreover, chemotaxis away from many repellents by B. subtilis appears to involve different mechanisms. Many of the repellents include drugs and toxicants, many of them man-made, so that chemoreceptors could not have specifically evolved; yet the bacteria are often exquisitely sensitive to them. Indeed, the B. subtilis membrane seems to act like a generalized antenna for noxious membrane-active substances.
Collapse
|
27
|
Eisenbach M, Margolin Y, Ciobotariu A, Rottenberg H. Distinction between changes in membrane potential and surface charge upon chemotactic stimulation of Escherichia coli. Biophys J 1984; 45:463-7. [PMID: 6365190 PMCID: PMC1434852 DOI: 10.1016/s0006-3495(84)84169-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Galactose and other chemotactic attractants have been shown to trigger an apparent hyperpolarization in Escherichia coli (Eisenbach, M., 1982, Biochemistry, 21:6818-6825). The probe used to measure membrane potential in that study, tetraphenylphosphonium (TPP+), may respond also to surface-charge changes in the membrane. The distinction between true changes in membrane potential and changes in the surface charge of the membrane is crucial for the study of this phenomenon in bacterial chemotaxis. To distinguish between these parameters, we compared the response to galactose with different techniques: K+ distribution in the presence of valinomycin (measured with a K+-selective electrode), TPP+ distribution (measured with a TPP+-selective electrode) at different ionic strengths, absorbance changes of bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethineoxonol (oxonol V), and fluorescence changes of three probes with different mechanisms of response. All the techniques revealed stimulation by galactose of transient hyperpolarization, of comparable magnitude. This indicates the involvement of ion currents rather than alterations of local surface properties.
Collapse
|
28
|
Eisenbach M, Zimmerman JR, Ciobotariu A, Fischler H, Korenstein R. Electric field effects on bacterial motility and chemotaxis. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0302-4598(83)80077-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Eisenbach M, Zimmerman JR, Ciobotariu A, Fischler H, Korenstein R. Electric field effects on bacterial motility and chemotaxis. J Electroanal Chem (Lausanne) 1983. [DOI: 10.1016/s0022-0728(83)80517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Hazelbauer GL, Harayama S. Sensory transduction in bacterial chemotaxis. INTERNATIONAL REVIEW OF CYTOLOGY 1983; 81:33-70. [PMID: 6307914 DOI: 10.1016/s0074-7696(08)62334-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Harayama S, Bollinger J, Iino T, Hazelbauer GL. Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning. J Bacteriol 1983; 153:408-15. [PMID: 6294056 PMCID: PMC217387 DOI: 10.1128/jb.153.1.408-415.1983] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We used transposon insertion mutagenesis, molecular cloning, and a novel procedure for in vitro construction of polar and nonpolar insertion mutations to characterize the genetic organization and gene products of the beta-methylgalactoside (Mgl) transport system, which utilizes the galactose-binding protein. The data indicate that the mgl operon contained three genes, which were transcribed in the order mglB, mglA, and mglC. The first gene coded for the 31,000 Mr galactose-binding protein, which was synthesized as a 3,000-dalton-larger precursor form. The mglA product was a 50,000 Mr protein which was tightly associated with the membrane, and the mglC product was a 38,000 Mr protein which was apparently loosely associated with the membrane and was probably located on the internal face of the cytoplasmic membrane. Identification of gene products was facilitated by in vitro insertion of a fragment of Tn5 containing the gene conferring kanamycin resistance into a restriction site in the operon. The fragment proved to have a polar effect on the expression of promoter-distal genes only when inserted in one of the two possible orientations. The three identified gene products were necessary and apparently sufficient for transport activity, but only the binding protein was required for chemotaxis towards galactose. The transport system appeared to contain the minimum number of components for a binding protein-related system: a periplasmic recognition component, a transmembrane protein, and a peripheral membrane protein that may be involved in energy linkage.
Collapse
|
32
|
|
33
|
Mowbray SL, Petsko GA. Preliminary X-ray data for the ribose binding protein from Salmonella typhimurium. J Mol Biol 1982; 160:545-7. [PMID: 6759659 DOI: 10.1016/0022-2836(82)90313-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Higgins CF, Haag PD, Nikaido K, Ardeshir F, Garcia G, Ames GF. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. Nature 1982; 298:723-7. [PMID: 7050725 DOI: 10.1038/298723a0] [Citation(s) in RCA: 289] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleotide sequence of the entire histidine transport operon from Salmonella typhimurium has been determined and is shown to consist of four genes, hisJ, hisQ, hisM and hisP. This operon provides the only example of a binding protein-dependent transport system for which the total number of protein components is known. Determination of the amino acid compositions and sequences of these four transport proteins, together with analysis of various transport mutants, allows us to propose a molecular model for binding protein-dependent transport.
Collapse
|
35
|
Rotman B, Guzman R. Identification of the mglA gene product in the beta-methylgalactoside transport system of Escherichia coli using plasmid DNA deletions generated in vitro. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34236-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Daruwalla KR, Paxton AT, Henderson PJ. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J 1981; 200:611-27. [PMID: 6282256 PMCID: PMC1163584 DOI: 10.1042/bj2000611] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Strains of Escherichia coli were obtained containing either the AraE or the AraF transport system for arabinose. AraE+,AraF- strains effected energized accumulation and displayed an arabinose-evoked alkaline pH change indicative of arabinose-H+ symport. In contrast, AraE-,AraF+ strains accumulated arabinose but did not display H+ symport. 2. The ability of different sugars and their derivatives to elicit sugar-H+ symport in AraE+ strains was examined. Only L-arabinose and D-fucose were good substrates, and arabinose was the only inducer. 3. Membrane vesicles prepared from an AraE+,AraF+ strain accumulated the sugar, energized most efficiently by the respiratory substrates ascorbate + phenazine methosulphate. Addition of arabinose or fucose to an anaerobic suspension of membrane vesicles caused an alkaline pH change indicative or sugar-H+ symport on the membrane-bound transport system. 4. Kinetic studies and the effects of arsenate and uncoupling agents in intact cells and membrane vesicles gave further evidence that AraE is a low-affinity membrane-bound sugar-H+ symport system and that AraF is a binding-protein-dependent high-affinity system that does not require a transmembrane protonmotive force for energization. 5. The interpretation of these results is that arabinose transport into E. coli is energized by an electrochemical gradient of protons (AraE system) or by phosphate bond energy (AraF system). 6. In batch cultures the rates of growth and carbon cell yields on arabinose were lower in AraE-,AraF+ strains than in AraE+,AraF- or AraE+,AraF+ strains. The AraF system was more susceptible to catabolite repression than was the AraE system. 7. The properties of the two transport systems for arabinose are compared with those of the genetically and biochemically distinct transport systems for galactose, GalP and MglP. It appears that AraE is analogous to GalP, and AraF to MglP.
Collapse
|
37
|
Boos W, Steinacher I, Engelhardt-Altendorf D. Mapping of mglB, the structural gene of the galactose-binding protein of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1981; 184:508-18. [PMID: 6278261 DOI: 10.1007/bf00352531] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tetracycline resistance transposon Tn10 was inserted into the E. coli chromosome near mglB550, a structural gene for the galactose-binding protein. P1 transductions established the position of these Tn10 insertions (zee-700, 701, 702::Tn10) close to the genes ptsF, fpk, cdd, mglB550, his, and gatA with 85%-95%, 85%, 36%, 20%-40%, 12%-15%, and 0.5% cotransduction frequency. Three factor crosses revealed the relative sequence of the genes as: mglB550, zee-700::Tn10, ptsF, fpk, cdd, his, gatA was found to be 1.3% cotransducible with mglB550. Two Tn10 insertions near gatA were isolated and characterized. One, zef-704::Tn10, was 3% cotransducible with fpk, 8% with mglB550, and 42% with gatA. The other, zef-703::Tn10, was 98% cotransducible with gatA but not with mglB550 or fpk. Neither of these two Tn10 insertions was cotransducible with cdd. Four factor crosses revealed the sequence gatA, zef-704::Tn10, mglB550, fpk. Neither zee-700::Tn10 nor zef-703::Tn10 showed an (0/300) cotransduction with either glpT or gyrA. The clockwise order of genes is then: his, cdd, fpk, ptsF, zee-700::Tn10, mglB550, zef-704::Tn10, gatA. With a fix-point for his at 44 min, fpk would be placed at 45 min and mglB550 at 45.5 min. During the course of this work we noticed that the cotransduction frequency between Tn10 insertions and nearby markers tended to increase when new P1 lysates were prepared from freshly reisolated strains. This may indicate loss of nonessential genes adjacent to Tn10 insertions. Using insertion zee-703::Tn10, we isolated deletions extending into an mgl gene other than mglB. Crosses between such a deletion mutant and an mglB550 mutant were done. The analysis of the periplasmic proteins of these as well as other transductants or recombinants involving the mglB550 or the mglB551 gene revealed the existence of strains synthesizing both the wild-type as well as the corresponding mutant protein. Strains containing both proteins exhibit either wild-type or mutant phenotype. These strains appeared unstable. Upon reisolation from purified stock cultures kept in glycerol at -20 degrees C, colonies could be isolated that carried only mutant or wild-type protein.
Collapse
|
38
|
Newcomer M, Gilliland G, Quiocho F. L-Arabinose-binding protein-sugar complex at 2.4 A resolution. Stereochemistry and evidence for a structural change. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(18)43029-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
|
40
|
Postma PW, Schuitema A, Kwa C. Regulation of methyl beta-galactoside permease activity in pts and crr mutants of Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1981; 181:448-53. [PMID: 6267419 DOI: 10.1007/bf00428734] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have studied the regulation of the synthesis and activity of a major galactose transport system, that of methyl beta-galactoside (MglP), in mutants of Salmonella typhimurium. Two classes of mutation that result in a (partially) defective phosphoenolpyruvate: sugar phosphotransferase system (PTS) interfere with MglP synthesis. pts mutations, which eliminate the general proteins of the PTS Enzyme I and/or HPr and crr mutations, which result in a defective glucose-specific factor IIIGlc of the PTS, lead to a low MglP activity, as measured by methyl beta-galactoside transport. In both ptsH,I, and crr mutants the amount of galactose binding protein, one of the components of MglP, is only 5%-20% of that in wild-type cells, as measured with a specific antibody. We conclude that synthesis of MGlP is inhibited in pts and crr mutants. Once the transport system is synthesized, its transport activity is not sensitive to PTS sugars (i.e., no inducer exclusion occurs). The defect in pts and crr mutants with respect to MGlP synthesis can be relieved in two ways: by externally added cyclic adenosine 3',5-monophosphate (cAMP) or by a mutation in the cAMP binding protein. The conclusion that MglP synthesis is dependent on cAMP is supported by the finding that its synthesis is also defective in mutants that lack adenylate cyclase. pts and crr mutations do not affect growth of S. typhimurium on galactose, however, since the synthesis and activity of the other major galactose transport system, the galactose permease (GalP), is not sensitive to these mutations. If the galactose permease is eliminated by mutation, growth of pts and crr mutants on low concentrations of galactose becomes very slow due to inhibited MglP synthesis. Residual growth observed at high galactose concentrations is the result of yet another transport system with low affinity for galactose.
Collapse
|
41
|
Dephosphorylation of rabbit skeletal muscle phosphorylase kinase. Evidence against the operation of the “second-site phosphorylation” mechanism of regulation. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69591-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Hedblom ML, Adler J. Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J Bacteriol 1980; 144:1048-60. [PMID: 6777365 PMCID: PMC294770 DOI: 10.1128/jb.144.3.1048-1060.1980] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Escherichia coli, taxis to certain chemoeffectors is mediated through an intrinsic membrane protein called methyl-accepting chemotaxis protein I (MCP I), which is the product of the tsr gene. Mutants were selected that are defective in taxis toward all MCP I-mediated attractants (alpha-aminoisobutyrate, L-alanine, glycine, and L-serine) but are normal to MCP I-mediated repellents and to chemoeffectors mediated by other MCPs. The mutants could be divided into two classes based on their ability to respond to various concentrations of L-serine. Two MCP I-mediated L-serine systems appear to function in the wild type: one of high and one of lower affinity. The mutations responsible for the serine taxis defects map at about 99 min on the E. coli chromosome and are not complemented by episomes carrying mutations in the tsr gene; this suggests that they are defective in tsr function. Low concentrations of L-[14C]serine specifically bound to wild-type membranes with a Km of 5 microM; in contrast, there was greatly decreased binding to vesicles prepared from the new mutants or from the tsr mutant AW518. Binding of labeled serine to wild-type vesicles was inhibited by MCP I-mediated attractants, but not by MCP II-mediated attractants. The data suggest that MCP I may function as the L-serine chemoreceptor in E. coli.
Collapse
|
43
|
The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85915-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Hazelbauer GL, Engström P. Parallel pathways for transduction of chemotactic signals in Escherichia coli. Nature 1980; 283:98-100. [PMID: 6985714 DOI: 10.1038/283098a0] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Zukin RS, Hartig PR, Koshland DE. Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules. Biochemistry 1979; 18:5599-605. [PMID: 391272 DOI: 10.1021/bi00592a012] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The physical properties and conformational dynamics of the Salmonella typhimurium ribose and galactose receptors have been examined. Studies involving circular dichroism, fluorescence, absorption spectroscopy, and sedimentation analysis show that the two receptor proteins have different morphologies and exhibit diverse responses to sugar binding. The ribose receptor lacks both tryptophan and disulfide residues, and the galactose receptor lacks disulfides and has only a single tryptophan residue. By virtue of these fortuitous properties, the conformational changes induced in these proteins by sugar binding can be dissected by utilizing a variety of physical probes. A ligand-induced conformational change in the ribose receptor is shown by circular dichroism and fluorescence spectroscopy, which reveal spectral changes assignable to tyrosine, phenylalanine, and methionine residues. A conformational change in the galactose receptor has been demonstrated by fluorescence spectroscopy involving the distant reporter group method, which shows changes assignable to tryptophan and methionine sites and which is corroborated by sedimentation analysis. It is clear that there are extensive conformational changes in the two receptor proteins and that the different physical methods provide complementary information on the nature of these changes.
Collapse
|
46
|
Taylor BL, Miller JB, Warrick HM, Koshland DE. Electron acceptor taxis and blue light effect on bacterial chemotaxis. J Bacteriol 1979; 140:567-73. [PMID: 387740 PMCID: PMC216683 DOI: 10.1128/jb.140.2.567-573.1979] [Citation(s) in RCA: 86] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.
Collapse
|
47
|
Springer MS, Goy MF, Adler J. Protein methylation in behavioural control mechanisms and in signal transduction. Nature 1979; 280:279-84. [PMID: 379649 DOI: 10.1038/280279a0] [Citation(s) in RCA: 336] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In both prokaryotes and eukaryotes methyl groups can be added to and removed from the carboxyl groups of proteins. Recent work has revealed that these reactions have a role in several behavioural phenomena. The nature of this role has been uncovered in one case--that of bacterial chemotaxis.
Collapse
|
48
|
Koman A, Harayama S, Hazelbauer GL. Relation of chemotactic response to the amount of receptor: evidence for different efficiencies of signal transduction. J Bacteriol 1979; 138:739-47. [PMID: 378935 PMCID: PMC218099 DOI: 10.1128/jb.138.3.739-747.1979] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We determined the content of galactose-glucose-, maltose-, and ribose-binding proteins in cells of Escherichia coli K-12 grown in a variety of media and also measured the respective transport and chemotactic activities that depend on those binding proteins. Correlation of the level of induction of a particular binding protein with the extent of tactic activity mediated by that protein indicates that the magnitude of the tactic response to a particular stimulating compound is a direct function of the number of receptors per cell. In contrast, comparison of the magnitudes of response to substances recognized by independent receptors indicates that some stimulus-receptor complexes are more effective in eliciting tactic responses than are others. Thus, the magnitude of response to any particular stimulating compound is a function both of the number of receptors per cell and of the effectiveness of the stimulus-receptor complex. Considerations of available information about the tactic response to maltose suggest that the effectiveness of a stimulus-receptor complex is related to the transducer with which the receptor interacts. The tar product appears to be a relatively effective transducer of the signals it accepts from receptors for aspartate, alpha-methylaspartate, and maltose, whereas the trg product appears to be a relatively ineffective transducer of signals it accepts from receptors for galactose and ribose.
Collapse
|
49
|
Harayama S, Palva ET, Hazelbauer GL. Transposon-insertion mutants of Escherichia coli K12 defective in a component common to galactose and ribose chemotaxis. MOLECULAR & GENERAL GENETICS : MGG 1979; 171:193-203. [PMID: 375029 DOI: 10.1007/bf00270005] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
From a collection of 8,000 transposon-insertion mutants of Escherichia coli K12 we identified two mutations, trg-1::Tn5 and trg-2::Tn10, that simultaneously eliminate chemotactic response to ribose and galactose, two attractants recognized by independent receptors. We show that these transposon-insertions confer a Trg phenotype, indicating that this specific pattern of tactic defects is a null phenotype. The two mutation sites are cotransductionally linked to an extend consistent with placement in the same gene. The Trg phenotype of a family of deletion mutants produced by curing trg-2::Tn10 implies that trg is a single gene. Experiments with appropriate F-primes and Hfr's locate the trg locus at approximately 31 min on the linkage map, with a marker order: pyrF-rac-(P.O. 43)-trg-man. We also found one trg mutant whose Trg phenotype was not linked to a transposon-insertion but is probably the result of a mutator activity in the parent strain. Selection of transposon-insertions near, but not in trg allowed demonstration of a very close linkage between the spontaneous trg-3 and the transposon-generated trg's, indicating all three mutations are probably in the same gene. In our manipulations of transposon-insertions we found that Tn5 had a tendency to translocate from its initial site of insertion while Tn10 was relatively stable. The trg-product is probably a chemotactic signal transducer, which interacts directly with two independent receptor proteins and transmits information to the central chemotactic machinery.
Collapse
|
50
|
Hazelbauer GL, Harayama S. Mutants in transmission of chemotactic signals from two independent receptors of E. coli. Cell 1979; 16:617-25. [PMID: 378395 DOI: 10.1016/0092-8674(79)90035-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have characterized chemotactic mutants of E. coli that appear to be defective in a common linkage of two independent receptors to the central chemotactic components. The mutants do not respond to gradients of ribose or galactose and thus are called trg (taxis to ribose and galactose), after Ordal and Adler (1974b). These trg mutants are indistinguishable from their parent in tactic response to other attractants, swimming pattern, growth rates, and transport of ribose and galactose. The mutant cells contain the usual amounts of ribose and galactose receptors, and those proteins function normally in their other role, transport of their respective ligands. The mutations, generated by insertion of translocatable drug-resistance elements (transposons)8 are located near 31 min on the map of the E. coli chromosome, a locus far removed from the genes coding for the ribose and galactose receptors. Trg mutants do not resemble either specific receptor mutants or che mutants. The nature of the requirement for the trg product in the response to ribose and galactose is not defined, but evidence for interference of tactic signals from the ribose and galactose receptors (Strange and Koshland, 1976) supports the idea that the product functions directly in the transmission of tactic signals from the two receptors to the flagella.
Collapse
|