1
|
Knight LJ, Martis RM, Donaldson PJ, Acosta ML, Lim JC. Changes in glutamate and glutamine distributions in the retinas of cystine/glutamate antiporter knockout mice. Mol Vis 2023; 29:274-288. [PMID: 38222448 PMCID: PMC10784226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose The cystine/glutamate antiporter is involved in the export of intracellular glutamate in exchange for extracellular cystine. Glutamate is the main neurotransmitter in the retina and plays a key metabolic role as a major anaplerotic substrate in the tricarboxylic acid cycle to generate adenosine triphosphate (ATP). In addition, glutamate is also involved in the outer plexiform glutamate-glutamine cycle, which links photoreceptors and supporting Müller cells and assists in maintaining photoreceptor neurotransmitter supply. In this study, we investigated the role of xCT, the light chain subunit responsible for antiporter function, in glutamate pathways in the mouse retina using an xCT knockout mouse. As xCT is a glutamate exporter, we hypothesized that loss of xCT function may influence the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate. Methods Retinas of C57BL/6J wild-type (WT) and xCT knockout (KO) mice of either sex were analyzed from 6 weeks to 12 months of age. Biochemical assays were used to determine the effect of loss of xCT on glycolysis and energy metabolism by measuring lactate dehydrogenase activity and ATP levels. Next, biochemical assays were used to measure whole-tissue glutamate and glutamine levels, while silver-intensified immunogold labeling was performed on 6-week and 9-month-old retinas to visualize and quantify the distribution of glutamate, glutamine, and related neurochemical substrates gamma-aminobutyric acid (GABA) and glycine in the different layers of the retina. Results Biochemical analysis revealed that loss of xCT function did not alter the lactate dehydrogenase activity, ATP levels, or glutamate and glutamine contents in whole retinas in any age group. However, at 6 weeks of age, the xCT KO retinas revealed altered glutamate distribution compared with the age-matched WT retinas, with accumulation of glutamate in the photoreceptors and outer plexiform layer. In addition, at 6 weeks and 9 months of age, the xCT KO retinas also showed altered glutamine distribution compared with the WT retinas, with glutamine labeling significantly decreased in Müller cell bodies. No significant difference in GABA or glycine distribution were found between the WT and xCT KO retinas at 6 weeks or 9 months of age. Conclusion Loss of xCT function results in glutamate metabolic disruption through the accumulation of glutamate in photoreceptors and a reduced uptake of glutamate by Müller cells, which in turn decreases glutamine production. These findings support the idea that xCT plays a role in the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate and derived neurotransmitters in the retina.
Collapse
Affiliation(s)
- Luis J Knight
- Department of Physiology, School of Medical Sciences, University of Auckland
- New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Renita M Martis
- Department of Physiology, School of Medical Sciences, University of Auckland
- School of Optometry and Vision Science, University of Auckland
- New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland
- New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland
- New Zealand National Eye Centre, University of Auckland, New Zealand
- Centre for Brain Research, University of Auckland, New Zealand
| | - Julie C Lim
- Department of Physiology, School of Medical Sciences, University of Auckland
- New Zealand National Eye Centre, University of Auckland, New Zealand
- Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
2
|
Druseikis M, Ben-Ari J, Covo S. The Goldilocks effect of respiration on canavanine tolerance in Saccharomyces cerevisiae. Curr Genet 2019; 65:1199-1215. [PMID: 31011791 DOI: 10.1007/s00294-019-00974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022]
Abstract
When glucose is available, Saccharomyces cerevisiae prefers fermentation to respiration. In fact, it can live without respiration at all. Here, we study the role of respiration in stress tolerance in yeast. We found that colony growth of respiratory-deficient yeast (petite) is greatly inhibited by canavanine, the toxic analog of arginine that causes proteotoxic stress. We found lower amounts of the amino acids involved in arginine biosynthesis in petites compared with WT. This finding may be explained by the fact that petite cells exposed to canavanine show reduction in the efficiency of targeting of proteins required for arginine biosynthesis. The retrograde (RTG) pathway signals mitochondrial stress. It positively controls production of arginine precursors. We show that canavanine abrogates RTG signaling especially in petite cells, and mutants in the RTG pathway are extremely sensitive to canavanine. We suggest that petite cells are naturally ineffective in production of some amino acids; combination of this fact with the effect of canavanine on the RTG pathway is the simplest explanation why petite cells are inhibited by canavanine. Surprisingly, we found that canavanine greatly inhibits colony formation when WT cells are forced to respire. Our research proposes a novel connection between respiration and proteotoxic stress.
Collapse
Affiliation(s)
- Marina Druseikis
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel
| | - Julius Ben-Ari
- Interdepartmental Equipment Unit, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel.
| |
Collapse
|
3
|
Sasaki Y, Kojima A, Shibata Y, Mitsuzawa H. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe. PLoS One 2017; 12:e0186028. [PMID: 28982178 PMCID: PMC5628922 DOI: 10.1371/journal.pone.0186028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe undergoes a switch from yeast to filamentous invasive growth in response to certain environmental stimuli. Among them is ammonium limitation. Amt1, one of the three ammonium transporters in this yeast, is required for the ammonium limitation-induced morphological transition; however, the underlying molecular mechanism remains to be understood. Cells lacking Amt1 became capable of invasive growth upon increasing concentrations of ammonium in the medium, suggesting that the ammonium taken up into the cell or a metabolic intermediate in ammonium assimilation might serve as a signal for the ammonium limitation-induced morphological transition. To investigate the possible role of ammonium-metabolizing enzymes in the signaling process, deletion mutants were constructed for the gdh1, gdh2, gln1, and glt1 genes, which were demonstrated by enzyme assays to encode NADP-specific glutamate dehydrogenase, NAD-specific glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, respectively. Growth tests on various nitrogen sources revealed that a gln1Δ mutant was a glutamine auxotroph and that a gdh1Δ mutant had a defect in growth on ammonium, particularly at high concentrations. The latter observation indicates that the NADP-specific glutamate dehydrogenase of S. pombe plays a major role in ammonium assimilation under high ammonium concentrations. Invasive growth assays showed that gdh1Δ and glt1Δ mutants underwent invasive growth to a lesser extent than did wild-type strains. Increasing the ammonium concentration in the medium suppressed the invasive growth defect of the glt1Δ mutant, but not the gdh1Δ mutant. These results suggest that the nitrogen status of the cell is important in the induction of filamentous invasive growth in S. pombe.
Collapse
Affiliation(s)
- Yoshie Sasaki
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ayumi Kojima
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yuriko Shibata
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroshi Mitsuzawa
- Department of Bioscience in Daily Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
4
|
Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 2015; 99:360-79. [DOI: 10.1111/mmi.13236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. Feller
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Bodo
- Unité de Biotechnologie; 1070 Brussels Belgium
| | - M. Boeckstaens
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. M. Marini
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - I. Georis
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
| |
Collapse
|
5
|
Anasontzis GE, Kourtoglou E, Mamma D, Villas-Boâs SG, Hatzinikolaou DG, Christakopoulos P. Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum. Microb Cell Fact 2014; 13:43. [PMID: 24649884 PMCID: PMC3999909 DOI: 10.1186/1475-2859-13-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fusarium oxysporum is among the few filamentous fungi that have been reported of being able to directly ferment biomass to ethanol in a consolidated bioprocess. Understanding its metabolic pathways and their limitations can provide some insights on the genetic modifications required to enhance its growth and subsequent fermentation capability. In this study, we investigated the hypothesis reported previously that phosphoglucomutase and transaldolase are metabolic bottlenecks in the glycolysis and pentose phosphate pathway of the F. oxysporum metabolism. RESULTS Both enzymes were homologously overexpressed in F. oxysporum F3 using the gpdA promoter of Aspergillus nidulans for constitutive expression. Transformants were screened for their phosphoglucomutase and transaldolase genes expression levels with northern blot. The selected transformant exhibited high mRNA levels for both genes, as well as higher specific activities of the corresponding enzymes, compared to the wild type. It also displayed more than 20 and 15% higher specific growth rate upon aerobic growth on glucose and xylose, respectively, as carbon sources and 30% higher biomass to xylose yield. The determination of the relative intracellular amino and non-amino organic acid concentrations at the end of growth on glucose revealed higher abundance of most determined metabolites between 1.5- and 3-times in the recombinant strain compared to the wild type. Lower abundance of the determined metabolites of the Krebs cycle and an 68-fold more glutamate were observed at the end of the cultivation, when xylose was used as carbon source. CONCLUSIONS Homologous overexpression of phosphoglucomutase and transaldolase in F. oxysporum was shown to enhance the growth characteristics of the strain in both xylose and glucose in aerobic conditions. The intracellular metabolites profile indicated how the changes in the metabolome could have resulted in the observed growth characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden.
| |
Collapse
|
6
|
Sieg AG, Trotter PJ. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase. Microbiol Res 2014; 169:709-16. [PMID: 24629525 DOI: 10.1016/j.micres.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 11/16/2022]
Abstract
In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.
Collapse
Affiliation(s)
- Alex G Sieg
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, United States
| | - Pamela J Trotter
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, United States.
| |
Collapse
|
7
|
Quezada H, Marín-Hernández A, Arreguín-Espinosa R, Rumjanek FD, Moreno-Sánchez R, Saavedra E. The 2-oxoglutarate supply exerts significant control on the lysine synthesis flux in Saccharomyces cerevisiae. FEBS J 2013; 280:5737-49. [PMID: 24034837 DOI: 10.1111/febs.12490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 11/28/2022]
Abstract
To determine the extent to which the supply of the precursor 2-oxoglutarate (2-OG) controls the synthesis of lysine in Saccharomyces cerevisiae growing exponentially in high glucose, top-down elasticity analysis was used. Three groups of reactions linked by 2-OG were defined. The 2-OG supply group comprised all metabolic steps leading to its formation, and the two 2-OG consumer groups comprised the enzymes and transporters involved in 2-OG transformation into lysine and glutamate and their further utilization for protein synthesis and storage. Various 2-OG steady-state concentrations that produced different fluxes to lysine and glutamate were attained using yeast mutants with increasing activities of Krebs cycle enzymes and decreased activities of Lys synthesis enzymes. The elasticity coefficients of the three enzyme groups were determined from the dependence of the amino acid fluxes on the 2-OG concentration. The respective degrees of control on the flux towards lysine (flux control coefficients) were determined from their elasticities, and were 1.1, 0.41 and -0.52 for the 2-OG producer group and the Lys and Glu branches, respectively. Thus, the predominant control exerted by the 2-OG supply on the rate of lysine synthesis suggests that over-expression of 2-OG producer enzymes may be a highly effective strategy to enhance Lys production.
Collapse
Affiliation(s)
- Héctor Quezada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob Agents Chemother 2011; 55:5753-60. [PMID: 21947398 DOI: 10.1128/aac.00724-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal.
Collapse
|
9
|
Barnett JA. A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 2008; 25:689-731. [PMID: 18951365 DOI: 10.1002/yea.1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
10
|
Gonzàlez A, Membrillo-Hernández J, Olivera H, Aranda C, Macino G, Ballario P. Cloning of a yeast gene coding for the glutamate synthase small subunit (GUS2) by complementation ofSaccharomyces cerevisiaeandEscherichia coliglutamate auxotrophs. Mol Microbiol 2006; 6:301-308. [DOI: 10.1111/j.1365-2958.1992.tb01472.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Avendaño A, Riego L, DeLuna A, Aranda C, Romero G, Ishida C, Vázquez-Acevedo M, Rodarte B, Recillas-Targa F, Valenzuela L, Zonszein S, González A. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Mol Microbiol 2005; 57:291-305. [PMID: 15948967 DOI: 10.1111/j.1365-2958.2005.04689.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is accepted that Saccharomyces cerevisiae genome arose from complete duplication of eight ancestral chromosomes; functionally normal ploidy was recovered because of the massive loss of 90% of duplicated genes. There is evidence that indicates that part of this selective conservation of gene pairs is compelling to yeast facultative metabolism. As an example, the duplicated NADP-glutamate dehydrogenase pathway has been maintained because of the differential expression of the paralogous GDH1 and GDH3 genes, and the biochemical specialization of the enzymes they encode. The present work has been aimed to the understanding of the regulatory mechanisms that modulate GDH3 transcriptional activation. Our results show that GDH3 expression is repressed in glucose-grown cultures, as opposed to what has been observed for GDH1, and induced under respiratory conditions, or under stationary phase. Although GDH3 pertains to the nitrogen metabolic network, and its expression is Gln3p-regulated, complete derepression is ultimately determined by the carbon source through the action of the SAGA and SWI/SNF chromatin remodelling complexes. GDH3 carbon-mediated regulation is over-imposed to that exerted by the nitrogen source, highlighting the fact that operation of facultative metabolism requires strict control of enzymes, like Gdh3p, involved in biosynthetic pathways that use tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- Amaranta Avendaño
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Boris Magasanik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
13
|
Shakoury-Elizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J, Garcia E, Rolfes R, Brown PO, Botstein D, Philpott CC. Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 2004; 15:1233-43. [PMID: 14668481 PMCID: PMC363115 DOI: 10.1091/mbc.e03-09-0642] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae responds to depletion of iron in the environment by activating Aft1p, the major iron-dependent transcription factor, and by transcribing systems involved in the uptake of iron. Here, we have studied the transcriptional response to iron deprivation and have identified new Aft1p target genes. We find that other metabolic pathways are regulated by iron: biotin uptake and biosynthesis, nitrogen assimilation, and purine biosynthesis. Two enzymes active in these pathways, biotin synthase and glutamate synthase, require an iron-sulfur cluster for activity. Iron deprivation activates transcription of the biotin importer and simultaneously represses transcription of the entire biotin biosynthetic pathway. Multiple genes involved in nitrogen assimilation and amino acid metabolism are induced by iron deprivation, whereas glutamate synthase, a key enzyme in nitrogen assimilation, is repressed. A CGG palindrome within the promoter of glutamate synthase confers iron-regulated expression, suggesting control by a transcription factor of the binuclear zinc cluster family. We provide evidence that yeast subjected to iron deprivation undergo a transcriptional remodeling, resulting in a shift from iron-dependent to parallel, but iron-independent, metabolic pathways.
Collapse
Affiliation(s)
- Minoo Shakoury-Elizeh
- Liver Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bryan BA, McGrew E, Lu Y, Polymenis M. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 271:72-81. [PMID: 14648201 DOI: 10.1007/s00438-003-0957-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
It is generally thought that cell growth and metabolism regulate cell division and not vice versa. Here, we examined Saccharomyces cerevisiae cells growing under conditions of continuous culture in a chemostat. We found that loss of G1 cyclins, or inactivation of the cyclin-dependent kinase Cdc28p, reduced the activity of glutamate synthase (Glt1p), a key enzyme in nitrogen assimilation. We also present evidence indicating that the G1 cyclin-dependent control of Glt1p may involve Jem1p, a DnaJ-type chaperone. Our results suggest that completion of START may be linked to nitrogen metabolism.
Collapse
Affiliation(s)
- B A Bryan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
15
|
DeLuna A, Avendano A, Riego L, Gonzalez A. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 2001; 276:43775-83. [PMID: 11562373 DOI: 10.1074/jbc.m107986200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenases (NADP-GDHs) encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. The GDH2-encoded NAD(+)-dependent glutamate dehydrogenase degrades glutamate producing ammonium and alpha-ketoglutarate. Until very recently, it was considered that only one biosynthetic NADP-GDH was present in S. cerevisiae. This fact hindered understanding the physiological role of each isoenzyme and the mechanisms involved in alpha-ketoglutarate channeling for glutamate biosynthesis. In this study, we purified and characterized the GDH1- and GDH3-encoded NADP-GDHs; they showed different allosteric properties and rates of alpha-ketoglutarate utilization. Analysis of the relative levels of these proteins revealed that the expression of GDH1 and GDH3 is differentially regulated and depends on the nature of the carbon source. Moreover, the physiological study of mutants lacking or overexpressing GDH1 or GDH3 suggested that these genes play nonredundant physiological roles. Our results indicate that the coordinated regulation of GDH1-, GDH3-, and GDH2-encoded enzymes results in glutamate biosynthesis and balanced utilization of alpha-ketoglutarate under fermentative and respiratory conditions. The possible relevance of the duplicated NADP-GDH pathway in the adaptation to facultative metabolism is discussed.
Collapse
Affiliation(s)
- A DeLuna
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México D.F. 04510, México
| | | | | | | |
Collapse
|
16
|
van Riel NA, Giuseppin ML, Verrips CT. Dynamic optimal control of homeostasis: an integrative system approach for modeling of the central nitrogen metabolism in Saccharomyces cerevisiae. Metab Eng 2000; 2:49-68. [PMID: 10935935 DOI: 10.1006/mben.1999.0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the source of the cellular amino acids and proteins, including flavors and potentially valuable biomolecules; therefore, it is also of industrial interest. In the DOMC approach the cell is regarded as an optimally controlled system. Given the metabolic genotype, the cell faces a control problem to maintain an optimal flux distribution in a changing environment. The regulation is based on strategies and balances feedback control of homeostasis and feedforward regulation for adaptation. The DOMC approach is an integrative, holistic approach, not based on mechanistic descriptions and (therefore) not biased by the variation present in biochemical and molecular biological data. It is an effective tool to structure the rapidly increasing amount of data on the function of genes and pathways. The DOMC model is used successfully to predict the responses of pulses of ammonia and glutamine to nitrogen-limited continuous cultures of a wild-type strain and a glutamine synthetase-negative mutant. The simulation results are validated with experimental data.
Collapse
Affiliation(s)
- N A van Riel
- Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
17
|
Romero M, Guzmán-León S, Aranda C, González-Halphen D, Valenzuela L, González A. Pathways for glutamate biosynthesis in the yeast Kluyveromyces lactis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):239-245. [PMID: 10658670 DOI: 10.1099/00221287-146-1-239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purified glutamate synthase (GOGAT) from Kluyveromyces lactis was characterized as a high-molecular-mass polypeptide, a distinction shared with previously described GOGATs from other eukaryotic micro-organisms. Using degenerate deoxyoligonucleotides, designed from conserved regions of the alfalfa, maize and Escherichia coli GOGAT genes, a 300 bp PCR fragment from the K. lactis GOGAT gene KIGLT1 was obtained. This fragment was used to construct null GOGAT mutants of K. lactis by gene replacement. These mutants showed no growth defect phenotype and were able to grow on ammonium as sole nitrogen source. Double mutants obtained from a cross between a previously described KIGDH1 mutant and the K. lactis null GOGAT strain were full glutamate auxotrophs. These results indicate that glutamate biosynthesis in K. lactis is afforded through the combined action of KIGDH1 and KIGLT1 products.
Collapse
Affiliation(s)
- Mauricio Romero
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Simón Guzmán-León
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Cristina Aranda
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Lourdes Valenzuela
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Alicia González
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| |
Collapse
|
18
|
ter Schure EG, van Riel NA, Verrips CT. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 2000; 24:67-83. [PMID: 10640599 DOI: 10.1111/j.1574-6976.2000.tb00533.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. Not all nitrogen sources support growth equally well. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. These mechanisms consist of a sensing mechanism and a regulatory mechanism which includes induction of needed systems, and repression of systems that are not beneficial. The first step in use of most nitrogen sources is its uptake via more or less specific permeases. Hence the first level of regulation is encountered at this level. The next step is the degradation of the nitrogen source to useful building blocks via the nitrogen metabolic pathways. These pathways can be divided into routes that lead to the degradation of the nitrogen source to ammonia and glutamate, and routes that lead to the synthesis of nitrogen containing compounds in which glutamate and glutamine are used as nitrogen donor. Glutamine is synthesized out of ammonia and glutamate. The expression of the specific degradation routes is also regulated depending on the availability of a particular nitrogen source. Ammonia plays a central role as intermediate between degradative and biosynthetic pathways. It not only functions as a metabolite in metabolic reactions but is also involved in regulation of metabolic pathways at several levels. This review describes the central role of ammonia in nitrogen metabolism. This role is illustrated at the level of enzyme activity, translation and transcription.
Collapse
Affiliation(s)
- E G ter Schure
- Unilever Research, Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
19
|
Ter Schure EG, Silljé HHW, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J, Verrips CT. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1451-1462. [PMID: 9611819 DOI: 10.1099/00221287-144-5-1451] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia into glutamine. Glutamine-limited continuous cultures were used to completely derepress the expression of GAP1, PUT4, GDH1 and GLN1. Following an ammonia pulse, the expression of GAP1, PUT4 and GDH1 decreased while the intracellular glutamine concentration remained constant, both in the cytoplasm and in the vacuole. Therefore, it was concluded that ammonia causes gene repression independent of the intracellular glutamine concentration. The expression of GLN1 was not decreased by an ammonia pulse but solely by a glutamine pulse. Analysis of the mRNA levels of ILV5 and HIS4 showed that the response of the two biosynthetic genes, GDH1 and GLN1, to ammonia and glutamine in the wild-type and gln1-37 was not due to changes in general transcription of biosynthetic genes. Ure2p has been shown to be an essential element for nitrogen-regulated gene expression. Deletion of URE2 in the gln1-37 background prevented repression of gene expression by ammonia, showing that the ammonia-induced repression is not caused by a general stress response but represents a specific signal for nitrogen catabolite regulation.
Collapse
Affiliation(s)
- Eelko G Ter Schure
- Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan120, 3133 AT Viaardingen, The Netherlands
| | - Herman H W Silljé
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Edgar E Vermeulen
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan-Willem Kalhorn
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arie J Verkleij
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - C Theo Verrips
- Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan120, 3133 AT Viaardingen, The Netherlands
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Schulze U, Lidén G, Villadsen J. Dynamics of ammonia uptake in nitrogen limited anaerobic cultures of Saccharomyces cerevisiae. J Biotechnol 1996; 46:33-42. [PMID: 8672283 DOI: 10.1016/0168-1656(95)00176-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamics of the ammonia uptake by Saccharomyces cerevisiae under anaerobic conditions was studied in ammonia limited continuous cultures. A large number of pulse additions of ammonia (25-100 mg 1(-1)) were made at different dilution rates (0.05-0.20 h-1). The response was followed by on-line monitoring of the carbon dioxide evolution rate (CER), optical density, and by frequent analysis of extra- and intracellular metabolites. The uptake of a pulse of ammonia proceeded in a qualitatively highly reproducible pattern. Initially, a rapid and growth rate dependent uptake of ammonia was observed (lasting for about 10-15 min). Next followed a phase with little uptake (approx. 5 min). Finally, the rest of the ammonia pulse was taken up at a somewhat smaller rate which also depended on the growth rate. The first phase coincided with an increase in CER caused by mobilization of the intracellular carbohydrate trehalose and subsequently of glycogen. Regardless of dilution rate and the amount of ammonia added, the initial high uptake rate of ammonia was maintained until approximately the same amount of ammonia had been taken up. Transition from the first to the second uptake phase was associated with an increased glycerol production, indicating an elevated anabolic activity.
Collapse
Affiliation(s)
- U Schulze
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
21
|
Dang VD, Bohn C, Bolotin-Fukuhara M, Daignan-Fornier B. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 1996; 178:1842-9. [PMID: 8606156 PMCID: PMC177877 DOI: 10.1128/jb.178.7.1842-1849.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Saccharomyces cerevisiae, carbon and nitrogen metabolisms are connected via the incorporation of ammonia into glutamate; this reaction is catalyzed by the NADP-dependent glutamate dehydrogenase (NADP-GDH) encoded by the GDH1 gene. In this report, we show that the GDH1 gene requires the CCAAT box-binding activator (HAP complex) for optimal expression. This conclusion is based on several lines of evidence: (1) overexpression of GDH1 can correct the growth defect of hap2 and hap3 mutants on ammonium sulfate as a nitrogen source, (ii) Northern (RNA) blot analysis shows that the steady-state level of GDH1 mRNA is strongly lowered in a hap2 mutant, (iii) expression of a GDH1-lacZ fusion is drastically reduced in hap mutants, (iv) NADP-GDH activity is several times lower in the hap mutants compared with that in the isogenic wild-type strain, and finally, (v) site-directed mutagenesis of two consensual HAP binding sites in the GDH1 promoter strongly reduces expression of GDH1 and makes it HAP independent. Expression of GDH1 is also regulated by the carbon source, i.e., expression is higher on lactate than on ethanol, glycerol, or galactose, with the lowest expression being found on glucose. Finally, we show that a hap2 mutation does not affect expression of other genes involved in nitrogen metabolism (GDH2, GLN1, and GLN3 encoding, respectively, the NAD-GDH, glutamine synthetase, and a general activator of several nitrogen catabolic genes). The HAP complex is known to regulate expression of several genes involved in carbon metabolism; its role in the control of GDH1 gene expression, therefore, provides evidence for a cross-pathway regulation between carbon and nitrogen metabolisms.
Collapse
Affiliation(s)
- V D Dang
- Laboratoire de Génétique Moléculaire, Université de Paris-Sud, Orsay cedex, France
| | | | | | | |
Collapse
|
22
|
Cogoni C, Valenzuela L, González-Halphen D, Olivera H, Macino G, Ballario P, González A. Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J Bacteriol 1995; 177:792-8. [PMID: 7836314 PMCID: PMC176658 DOI: 10.1128/jb.177.3.792-798.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purification of the glutamate synthase (GOGAT) enzyme from Saccharomyces cerevisiae showed that it is an oligomeric enzyme composed of three identical 199-kDa subunits. The GOGAT structural gene was isolated by screening a yeast genomic library with a yeast PCR probe. This probe was obtained by amplification with degenerate oligonucleotides designed from conserved regions of known GOGAT genes. The derived amino-terminal sequence of the GOGAT gene was confirmed by direct amino-terminal sequence analysis of the purified protein of 199 kDa. Northern (RNA) analysis allowed the identification of an mRNA of about 7 or 8 kb. An internal fragment of the GOGAT gene was used to obtain null GOGAT mutants completely devoid of GOGAT activity. The results show that S. cerevisiae has a single NADH-GOGAT enzyme, consisting of three 199-kDa monomers, that differs from the one found in prokaryotic microorganisms but is similar to those found in other eukaryotic organisms such as alfalfa.
Collapse
Affiliation(s)
- C Cogoni
- Dipartimento di Biopatologia Umana Policlinico Umberto I. Universitá di Roma La Sapienza, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Boles E, Lehnert W, Zimmermann FK. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:469-77. [PMID: 7901008 DOI: 10.1111/j.1432-1033.1993.tb18266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.
Collapse
Affiliation(s)
- E Boles
- Institut für Mikrobiologie, Technische Hochschule Darmstadt, Germany
| | | | | |
Collapse
|
24
|
Cliquet JB, Stewart GR. Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum. PLANT PHYSIOLOGY 1993; 101:865-871. [PMID: 12231737 PMCID: PMC158701 DOI: 10.1104/pp.101.3.865] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.
Collapse
Affiliation(s)
- J. B. Cliquet
- Biology Department, University College London, Gower Street, London WC1, United Kingdom
| | | |
Collapse
|
25
|
Smith DG, Russell WC, Thirkell D. Urea-hydrolysis-dependent citrulline synthesis byUreaplasma urealyticum. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05501.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Khale A, Srinivasan MC, Deshpande MV. Significance of NADP/NAD glutamate dehydrogenase ratio in the dimorphic behavior of Benjaminiella poitrasii and its morphological mutants. J Bacteriol 1992; 174:3723-8. [PMID: 1592824 PMCID: PMC206062 DOI: 10.1128/jb.174.11.3723-3728.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Studies on the levels of glutamate dehydrogenase (GDH), glutamine synthetase, and glutamate synthase were carried out as a function of temperature, nutritional conditions, and the morphological (yeast or mycelium) form of Benjaminiella poitrasii. Since both NAD- and NADP-dependent GDH activities were found in B. poitrasii, the quantitative relation between these two enzymes expressed as the NADP-GDH/NAD-GDH activity ratio (GDH ratio) was studied to evaluate its possible role in the morphogenesis. In the yeast-to-mycelium transition, a decrease in the GDH ratio occurred (between 1 and 2 h) and germ tube formation could be observed only at 3 h. Under similar sets of experimental conditions, exogenous addition 1.0 mM of alpha-ketoglutarate delayed germ tube emergence (4 h) compared with the control. On the other hand, in the presence of 1.0 mM glutamate an earlier onset of the germ tube formation was noted. The morphological (monomorphic) mutants, Y-2 and Y-5, showed a high GDH ratio and maintained the yeast morphology.
Collapse
Affiliation(s)
- A Khale
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
27
|
Lacerda V, Marsden A, Ledingham WM. Ammonia assimilation in S. cerevisiae under chemostatic growth. Appl Biochem Biotechnol 1992; 32:15-21. [PMID: 1329653 DOI: 10.1007/bf02922145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutamate, glutamine, and ammonia pool size have been determined in two S. cerevisiae strains (GOGAT+ and GOGAT-) growing under ammonia excess and limitation at a dilution rate of 0.10/h. The biomass levels and glutamate dehydrogenase NADPH-dependent (NADPH-GDH) activities were also measured for both strains. The strain that lacks GOGAT activity showed lower levels of metabolites under both media and lower levels of biomass under carbon limitation (ammonia excess) compared to the GOGAT+ strain. Under nitrogen limitation, the biomass level was the same for both strains, but GOGAT- changed from rounded to ellipsoidal cells.
Collapse
Affiliation(s)
- V Lacerda
- Departamento de Biofisica, CCB UFPE, Cid. Universitaria, Recife, PE-Brazil
| | | | | |
Collapse
|
28
|
Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 1991. [PMID: 1682801 DOI: 10.1128/mcb.11.12.6229] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to the GDH2 gene to be regulated in the same manner as the NAD-linked glutamate dehydrogenase. Two sites behaved as upstream activation sites (UASs). The remaining four sites were found to block the effects of the two UASs in such a way that the GDH2-CYC1-lacZ fusion was not expressed unless the cells containing it were grown under conditions favorable for the activity of both UASs. This complex regulatory system appears to account for the fact that GDH2 expression is exquisitely sensitive to glutamine, whereas the expression of GLN1, coding for glutamine synthetase, is not nearly as sensitive.
Collapse
|
29
|
Miller SM, Magasanik B. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 1991; 11:6229-47. [PMID: 1682801 PMCID: PMC361811 DOI: 10.1128/mcb.11.12.6229-6247.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to the GDH2 gene to be regulated in the same manner as the NAD-linked glutamate dehydrogenase. Two sites behaved as upstream activation sites (UASs). The remaining four sites were found to block the effects of the two UASs in such a way that the GDH2-CYC1-lacZ fusion was not expressed unless the cells containing it were grown under conditions favorable for the activity of both UASs. This complex regulatory system appears to account for the fact that GDH2 expression is exquisitely sensitive to glutamine, whereas the expression of GLN1, coding for glutamine synthetase, is not nearly as sensitive.
Collapse
Affiliation(s)
- S M Miller
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
30
|
De Zoysa PA, Connerton IF, Watson DC, Johnston JR. Cloning, sequencing and expression of the Schwanniomyces occidentalis NADP-dependent glutamate dehydrogenase gene. Curr Genet 1991; 20:219-24. [PMID: 1934128 DOI: 10.1007/bf00326236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cloned NADP-specific glutamate dehydrogenase (GDH) genes of Aspergillus nidulans (gdhA) and Neurospora crassa (am) have been shown to hybridize under reduced stringency conditions to genomic sequences of the yeast Schwanniomyces occidentalis. Using 5' and 3' gene-specific probes, a unique 5.1 kb BclI restriction fragment that encompasses the entire Schwanniomyces sequence has been identified. A recombinant clone bearing the unique BclI fragment has been isolated from a pool of enriched clones in the yeast/E. coli shuttle vector pWH5 by colony hybridization. The identity of the plasmid clone was confirmed by functional complementation of the Saccharomyces cerevisiae gdh-1 mutation. The nucleotide sequence of the Schw. occidentalis GDH gene, which consists of 1380 nucleotides in a continuous reading frame of 459 amino acids, has been determined. The predicted amino acid sequence shows considerable homology with GDH proteins from other fungi and significant homology with all other available GDH sequences.
Collapse
Affiliation(s)
- P A De Zoysa
- Department of Microbiology, University of Reading, England, UK
| | | | | | | |
Collapse
|
31
|
Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 1990; 172:4927-35. [PMID: 1975578 PMCID: PMC213147 DOI: 10.1128/jb.172.9.4927-4935.1990] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We cloned GDH2, the gene that encodes the NAD-linked glutamate dehydrogenase in the yeast Saccharomyces cerevisiae, by purifying the enzyme, making polyclonal antibodies to it, and using the antibodies to screen a lambda gt11 yeast genomic library. A yeast strain with a deletion-disruption allele of GDH2 which replaced the wild-type gene grew very poorly with glutamate as a nitrogen source, but growth improved significantly when the strain was also provided with adenine or other nitrogenous compounds whose biosynthesis requires glutamine. Our results indicate that the NAD-linked glutamate dehydrogenase catalyzes the major, but not sole, pathway for generation of ammonia from glutamate. We also isolated yeast mutants that lacked glutamate synthase activity and present evidence which shows that normally NAD-linked glutamate dehydrogenase is not involved in glutamate biosynthesis, but that if the enzyme is overexpressed, it may function reversibly in intact cells.
Collapse
|
32
|
Hipkin CR, Flynn KJ, Marjot E, Hamoudi ZS, Cannons AC. Ammonium assimilation by the nitrate-utilizing yeast, Candida nitratophila. THE NEW PHYTOLOGIST 1990; 114:429-434. [PMID: 33873966 DOI: 10.1111/j.1469-8137.1990.tb00410.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonium-nitrogen was assimilated rapidly by nitrogen-replete cultures of the nitrate-utilizing yeast, Candida nitratophila as long as a suitable source of carbon was available. These cultures contained high activities of an NADPH-dependent glutamate dehydrogenase with a relatively high affinity for ammonium (Km = 0.27 mM) and high glutamine synthetase activity. Both enzyme activities were apparently derepressed when glutamine-grown cultures were starved of nitrogen or transferred to nitrate medium. Nitrogen-deficient cultures also contained NADH-dependent glutamate synthase activity that was inhibited by azaserine in vitro. Ammonium assimilation in vivo, was inhibited by methionine sulphoximine whilst addition of azaserine resulted in an accumulation of intracellular glutamine and an inhibition of glutamate production. Our results suggest that, in C. nitratophila, there is a potential for ammonium assimilation via both the glutamate dehydrogenase pathway and the glutamine synthetase/glutamate synthase pathway with the latter pathway predominating in nitrogen-deficient cells.
Collapse
Affiliation(s)
- C R Hipkin
- Biochemistry Research Group, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | - K J Flynn
- Biochemistry Research Group, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | - E Marjot
- Biochemistry Research Group, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | - Z S Hamoudi
- Biochemistry Research Group, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | - A C Cannons
- Biochemistry Research Group, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
33
|
Folch JL, Antaramián A, Rodríguez L, Bravo A, Brunner A, González A. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity. J Bacteriol 1989; 171:6776-81. [PMID: 2687252 PMCID: PMC210576 DOI: 10.1128/jb.171.12.6776-6781.1989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.
Collapse
Affiliation(s)
- J L Folch
- Departamento de Biología Molecular de Plantas, UNAM, Cuernavaca, Morelos
| | | | | | | | | | | |
Collapse
|
34
|
Glutamate synthase levels in Neurospora crassa mutants altered with respect to nitrogen metabolism. Mol Cell Biol 1988. [PMID: 6152851 DOI: 10.1128/mcb.1.2.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate synthase catalyzes glutamate formation from 2-oxoglutarate plus glutamine and plays an essential role when glutamate biosynthesis by glutamate dehydrogenase is not possible. Glutamate synthase activity has been determined in a number of Neurospora crassa mutant strains with various defects in nitrogen metabolism. Of particular interest were two mutants phenotypically mute except in an am (biosynthetic nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase deficient, glutamate requiring) background. These mutants, i and en-am, are so-called enhancers of am; they have been redesignated herein as en(am)-1 and en(am)-2, respectively. Although glutamate synthase levels in en(am)-1 were essentially wild type, the en(am)-2 strain was devoid of glutamate synthase activity under all conditions examined, suggesting that en(am)-2 may be the structural locus for glutamate synthase. Regulation of glutamate synthase occurred to some extent, presumably in response to glutamate requirements. Glutamate starvation, as in am mutants, led to enhanced activity. In contrast, glutamine limitation, as in gln-1 mutants, depressed glutamate synthase levels.
Collapse
|
35
|
|
36
|
Moye WS, Amuro N, Rao JK, Zalkin H. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39500-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol Cell Biol 1985. [PMID: 6152012 DOI: 10.1128/mcb.4.12.2758] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of the yeast Saccharomyces cerevisiae have been isolated which fail to derepress glutamine synthetase upon glutamine limitation. The mutations define a single nuclear gene, GLN3, which is located on chromosome 5 near HOM3 and HIS1 and is unlinked to the structural gene for glutamine synthetase, GLN1. The three gln3 mutations are recessive, and one is amber suppressible, indicating that the GLN3 product is a positive regulator of glutamine synthetase expression. Four polypeptides, in addition to the glutamine synthetase subunit are synthesized at elevated rates when GLN3+ cultures are shifted from glutamine to glutamate media as determined by pulse-labeling and one- and two-dimensional gel electrophoresis. The response of all four proteins is blocked by gln3 mutations. In addition, the elevated NAD-dependent glutamate dehydrogenase activity normally found in glutamate-grown cells is not found in gln3 mutants. Glutamine limitation of gln1 structural mutants has the opposite effect, causing elevated levels of NAD-dependent glutamate dehydrogenase even in the presence of ammonia. We suggest that there is a regulatory circuit that responds to glutamine availability through the GLN3 product.
Collapse
|
38
|
Meister A. Glutamate synthase from Escherichia coli, Klebsiella aerogenes, and Saccharomyces cerevisiae. Methods Enzymol 1985; 113:327-37. [PMID: 3911003 DOI: 10.1016/s0076-6879(85)13045-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Casper P, Bode R, Birnbaum D. Untersuchungen zur Regulation der Ammoniumassimilation vonCandida maltosa. J Basic Microbiol 1985. [DOI: 10.1002/jobm.3620250203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Casper P, Bode R, Samsonova IA, Birnbaum D. Untersuchungen zum Glutamat/Aspartat-Metabolismus vonCandida maltosa. J Basic Microbiol 1985. [DOI: 10.1002/jobm.3620251006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Wiame JM, Grenson M, Arst HN. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 1985; 26:1-88. [PMID: 2869649 DOI: 10.1016/s0065-2911(08)60394-x] [Citation(s) in RCA: 244] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Mitchell AP, Magasanik B. Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:2758-66. [PMID: 6152012 PMCID: PMC369286 DOI: 10.1128/mcb.4.12.2758-2766.1984] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutants of the yeast Saccharomyces cerevisiae have been isolated which fail to derepress glutamine synthetase upon glutamine limitation. The mutations define a single nuclear gene, GLN3, which is located on chromosome 5 near HOM3 and HIS1 and is unlinked to the structural gene for glutamine synthetase, GLN1. The three gln3 mutations are recessive, and one is amber suppressible, indicating that the GLN3 product is a positive regulator of glutamine synthetase expression. Four polypeptides, in addition to the glutamine synthetase subunit are synthesized at elevated rates when GLN3+ cultures are shifted from glutamine to glutamate media as determined by pulse-labeling and one- and two-dimensional gel electrophoresis. The response of all four proteins is blocked by gln3 mutations. In addition, the elevated NAD-dependent glutamate dehydrogenase activity normally found in glutamate-grown cells is not found in gln3 mutants. Glutamine limitation of gln1 structural mutants has the opposite effect, causing elevated levels of NAD-dependent glutamate dehydrogenase even in the presence of ammonia. We suggest that there is a regulatory circuit that responds to glutamine availability through the GLN3 product.
Collapse
|
43
|
Schreier HJ, Bernlohr RW. Purification and properties of glutamate synthase from Bacillus licheniformis. J Bacteriol 1984; 160:591-9. [PMID: 6501215 PMCID: PMC214775 DOI: 10.1128/jb.160.2.591-599.1984] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glutamate synthase [L-glutamate:NADP+ oxidoreductase (transaminating); EC 1.4.1.13](GltS) was purified to homogeneity from Bacillus licheniformis A5. The native enzyme had a molecular weight of approximately 220,000 and was composed of two nonidentical subunits (molecular weights, approximately 158,000 and approximately 54,000). The enzyme was found to contain 8.1 +/- 1 iron atoms and 8.1 +/- 1 acid-labile sulfur atoms per 220,000-dalton dimer. Two flavin moieties were found per 220,000-dalton dimer, with a ratio of flavin adenine dinucleotide to flavin mononucleotide of 1.2. The UV-visible spectrum of the enzyme exhibited maxima at 263,380 and 450 nm. The GltS from B. licheniformis had a requirement for NADPH, alpha-ketoglutarate, and glutamine. Classical hyperbolic kinetics were seen for NADPH affinity, which resulted in an apparent Km value of 13 microM. Nonhyperbolic kinetics were obtained for alpha-ketoglutarate and glutamine affinities, and the reciprocal plots obtained for these substrates were biphasic. The apparent Km values obtained for glutamine were 8 and 100 microM, and the apparent Km values obtained for alpha-ketoglutarate were 6 and 50 microM. GltS activity was found to be relatively insensitive to inhibition by amino acids, keto acids, or various nucleotides. L-Methionine-DL-sulfoximine, L-methionine sulfone, and DL-methionine sulfoxide were found to be potent inhibitors of GltS activity, yielding I0.5 values of 150, 11, and 250 microM, respectively. GltSs were purified from cells grown in the presence of ammonia and nitrate as sole nitrogen sources and were compared. Both yielded identical final specific activities and identical physical (UV-visible spectra, flavin, and iron-sulfur composition) and kinetic characteristics.
Collapse
|
44
|
Grenson M. Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 133:135-9. [PMID: 6343083 DOI: 10.1111/j.1432-1033.1983.tb07438.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two distinct regulatory mechanisms are responsible for the absence of general amino-acid permease activity in cells of the wild-type strain sigma 1278b of Saccharomyces cerevisiae grown in the presence of ammonium ions. One is a reversible inactivation process which progressively develops upon addition of ammonium ions to a proline-grown culture, and completely suppresses the permease activity within one hour. This inactivation process is absent in mutants altered at the MUT2, MUT4, or PGR genetic loci. In these mutants, a repression of the formation of active permease may clearly be observed in the presence of ammonium ions. This second regulatory mechanism is absent in mutants affected at the GDHCR locus, which might code for a repressor molecule. It is also relieved in the presence of a glnts mutation (which makes the glutamine synthetase thermosensitive) suggesting glutamine as an effector. Two other ammonia-sensitive permeases, namely the proline permease and the ureidosuccinic-acid permease, seem to be subject to the same double regulation. Mutations affecting the structural gene of the anabolic NADP-linked glutamate dehydrogenase (gdhA) seem to completely prevent repression of the general amino-acid permease, while they partially suppress its inactivation in the presence of ammonium ions.
Collapse
|
45
|
Grenson M. Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 133:141-4. [PMID: 6343084 DOI: 10.1111/j.1432-1033.1983.tb07439.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mutations at the NPR1 genetic locus are known to inactivate (totally or partially) at least five distinct ammonia-sensitive permeases. Mutants with thermosensitive NPR1 gene product (nprts) have been used to discriminate between three possible roles of this protein, namely (a) a common constituent of a set of ammonia-sensitive permeases; (b) a common activator of these permeases; (c) a common positive factor necessary for their synthesis. Inactivation of the general amino-acid permease was observed upon transfer of nprts mutant cells to a non-permissive temperature. Under the same conditions, the general amino-acid permease of the wild-type cells remained active for several hours even when protein synthesis was inhibited by nitrogen starvation or by cycloheximide. Mutations at three unlinked loci, namely the PGR site (located in the GAP1 structural gene of the permease), and the unlinked MUT2 and MUT4 loci restore the general amino-acid permease activity in npr1 mutants. The results are interpreted as indicating that the NPR1 product is necessary for the reactivation of the general amino-acid permease which seems to be continuously inactivated by a regulatory process mediated by the MUT2 and the MUT4 gene products acting at the level of the PGR site of the general amino-acid permease molecule. The proline permease and the ureidosuccinic-acid permease seem to be subject to the same double regulation by inactivation-reactivation of the permeases and by repression of their synthesis. A tentative scheme of the regulation of the general amino-acid permease is presented.
Collapse
|
46
|
Masters DS, Meister A. Inhibition of homocysteine sulfonamide of glutamate synthase purified from Saccharomyces cerevisiae. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34186-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Lara M, Blanco L, Campomanes M, Calva E, Palacios R, Mora J. Physiology of ammonium assimilation in Neurospora crassa. J Bacteriol 1982; 150:105-12. [PMID: 6120927 PMCID: PMC220087 DOI: 10.1128/jb.150.1.105-112.1982] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In Neurospora crassa the assimilation of high and low concentrations of ammonium occurs by two different pathways. When the fungi are growing exponentially on ammonium excess, this compound is fixed by a glutamic dehydrogenase and an octameric glutamine synthetase (GS). The synthesis of this GS polypeptide (beta) is regulated by the nitrogen source present in excess; being higher on glutamate, intermediate on ammonium, and lower on glutamine. When N. crassa is growing in fed-batch ammonium-limited cultures a different polypeptide of GS (alpha), arranged as a tetramer, is synthesized. In both conditions synthesis in vivo correlates with the data obtained with an in vitro translation system primed with N. crassa RNA. This different expression of alpha and beta GS polypeptides was also observed when the cultures were shifted from excess to low nitrogen, and vice versa. By agarose gel electrophoresis in the presence of methylmercury hydroxide, some separation of different mRNAs that direct the in vitro synthesis of alpha and beta GS polypeptides has been accomplished. Data are presented that establish the operation of the tetrameric alpha GS and of glutamate synthase in the assimilation of ammonium in low concentration.
Collapse
|
48
|
Dunn-Coleman NS, Robey EA, Tomsett AB, Garrett RH. Glutamate synthase levels in Neurospora crassa mutants altered with respect to nitrogen metabolism. Mol Cell Biol 1981; 1:158-64. [PMID: 6152851 PMCID: PMC369655 DOI: 10.1128/mcb.1.2.158-164.1981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Glutamate synthase catalyzes glutamate formation from 2-oxoglutarate plus glutamine and plays an essential role when glutamate biosynthesis by glutamate dehydrogenase is not possible. Glutamate synthase activity has been determined in a number of Neurospora crassa mutant strains with various defects in nitrogen metabolism. Of particular interest were two mutants phenotypically mute except in an am (biosynthetic nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase deficient, glutamate requiring) background. These mutants, i and en-am, are so-called enhancers of am; they have been redesignated herein as en(am)-1 and en(am)-2, respectively. Although glutamate synthase levels in en(am)-1 were essentially wild type, the en(am)-2 strain was devoid of glutamate synthase activity under all conditions examined, suggesting that en(am)-2 may be the structural locus for glutamate synthase. Regulation of glutamate synthase occurred to some extent, presumably in response to glutamate requirements. Glutamate starvation, as in am mutants, led to enhanced activity. In contrast, glutamine limitation, as in gln-1 mutants, depressed glutamate synthase levels.
Collapse
Affiliation(s)
- N S Dunn-Coleman
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | | | |
Collapse
|
49
|
The regulation of some enzymes involved in ammonia assimilation byRhizobium meliloti. Cell Mol Life Sci 1981. [DOI: 10.1007/bf01963181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Miflin BJ, Wallsgrove RM, Lea PJ. Glutamine metabolism in higher plants. CURRENT TOPICS IN CELLULAR REGULATION 1981; 20:1-43. [PMID: 6120060 DOI: 10.1016/b978-0-12-152820-1.50005-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|