1
|
Oggerin M, del Moral C, Rodriguez N, Fernandez-Gonzalez N, Martínez JM, Lorca I, Amils R. Metal tolerance of Río Tinto fungi. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1446674. [PMID: 39479218 PMCID: PMC11521807 DOI: 10.3389/ffunb.2024.1446674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Southwest Spain's Río Tinto is a stressful acidic microbial habitat with a noticeably high concentration of toxic heavy metals. Nevertheless, it has an unexpected degree of eukaryotic diversity in its basin, with a high diversity of fungal saprotrophs. Although some studies on the eukaryotic diversity in Rio Tinto have been published, none of them used molecular methodologies to describe the fungal diversity and taxonomic affiliations that emerge along the river in different seasons. The aim of the present study was to isolate and describe the seasonal diversity of the fungal community in the Río Tinto basin and its correlation with the physicochemical parameters existing along the river's course. The taxonomic affiliation of 359 fungal isolates, based on the complete internal transcribed spacer DNA sequences, revealed a high degree of diversity, identifying species belonging primarily to the phylum Ascomycota, but representatives of the Basidiomycota and Mucoromycota phyla were also present. In total, 40 representative isolates along the river were evaluated for their tolerance to toxic heavy metals. Some of the isolates were able to grow in the presence of 1000 mM of Cu2+, 750 mM of As5+ and Cd2+, and 100 mM of Co2+, Ni2+, and Pb2+.
Collapse
Affiliation(s)
- Monike Oggerin
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Catalina del Moral
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - José Manuel Martínez
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván Lorca
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Astrobiología (CAB, INTA-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Jha A, Barsola B, Pathania D, Sonu, Raizada P, Thakur P, Singh P, Rustagi S, Khosla A, Chaudhary V. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. ENVIRONMENTAL RESEARCH 2024; 252:118926. [PMID: 38657848 DOI: 10.1016/j.envres.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Hazardous heavy metal (HM) pollution constitutes a pervasive global challenge, posing substantial risks to ecosystems and human health. The exigency for expeditious detection, meticulous monitoring, and efficacious remediation of HM within ecosystems is indisputable. Soil contamination, stemming from a myriad of anthropogenic activities, emerges as a principal conduit for HM ingress into the food chain. Traditional soil remediation modalities for HM elimination, while effective are labor-intensive, susceptible to secondary contamination, and exhibit limited efficacy in regions characterized by low metal toxicity. In response to these exigencies, the eco-friendly paradigm of bioremediation has garnered prominence as a financially judicious and sustainable remedial strategy. This approach entails the utilization of hyperaccumulators, Genetically Modified Microorganisms (GMM), and advantageous microbes. The current review offers a comprehensive elucidation of cutting-edge phyto/microbe-based bioremediation techniques, with a specific emphasis on their amalgamation with nanotechnology. Accentuating their pivotal role in advancing sustainable agricultural practices, the review meticulously dissects the synergistic interplay between plants and microbes, underscoring their adeptness in HM remediation sans secondary contamination. Moreover, the review scrutinizes the challenges intrinsic to implementing bioremediation-nanotechnology interface techniques and propounds innovative resolutions. These discernments proffer auspicious trajectories for the future of agriculture. Through the environmentally conscientious marvels of phyto/microbe bioremediation, an optimistic outlook emerges for environmental preservation and the cultivation of a sustainable, salubrious planet via the conduit of cleaner agricultural production.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Bindiya Barsola
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Diksha Pathania
- Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar University, Mullana (Ambala), Haryana,133203, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, PR China.
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
3
|
Khurana P, Pulicharla R, Brar SK. Imipenem-metal complexes: Computational analysis and toxicity studies with wastewater model microorganisms. ENVIRONMENTAL RESEARCH 2023; 239:117275. [PMID: 37827363 DOI: 10.1016/j.envres.2023.117275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The occurrence of antibiotic residues in diverse water sources has long been acknowledged as a potential health concern due to the emergence and spread of antibiotic-resistant bacteria and genes. However, there have been limited studies into the presence of antibiotic-metal complexes (AMCs) in real-time wastewater matrices, and their impact on wastewater microbial communities. The present work, in this regard, investigated the stability of Imipenem-metal complexes (Me = Mg (II), Ca (II), Fe (II), Cu (II), and Al (III)) with computational studies, stoichiometry with potentiometric measurements, and their antibacterial activity towards wastewater model microorganisms- Bacillus subtilis (B. subtilis) and Escherichia coli (E. Coli) by Colony Forming Unit (CFU) method. The lower energy of Imipenem-metal complexes than the parent antibiotic- Imipenem, during energy optimization using density functional (DFT) methods, revealed that metal interactions of Imipenem stabilize the drug by minimizing its energy. Further, CFU studies indicated that these complexes display higher antimicrobial activity than parent antibiotics. The electron delocalization over the entire chelated system (AMCs) reduces polarity and increases the lipophilicity of the complexes, thereby facilitating stronger interaction between AMCs and the bacterial cell membrane. Results indicate increased antibacterial activity of Imipenem-metal complexes for both E. coli and B. subtilis. The antibacterial activity, was however, more pronounced in B. subtilis, with >97% growth inhibition for metal complexes of Imipenem (at a Minimum Inhibitory Concentration of 20 nM or 6 ppb (i.e., MIC90)), for both the stoichiometric ratios (metal to ligand) ratios (M: L 1: 1 and 2: 1). All around, with increased stability and toxicity, AMCs are emerging as contaminants of concern and demand immediate attention to devise methods for their removal.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
4
|
Alberto Alcalá-Orozco E, Grote V, Fiebig T, Klamt S, Reichl U, Rexer T. A Cell-Free Multi-enzyme Cascade Reaction for the Synthesis of CDP-Glycerol. Chembiochem 2023; 24:e202300463. [PMID: 37578628 DOI: 10.1002/cbic.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
CDP-glycerol is a nucleotide-diphosphate-activated version of glycerol. In nature, it is required for the biosynthesis of teichoic acid in Gram-positive bacteria, which is an appealing target epitope for the development of new vaccines. Here, a cell-free multi-enzyme cascade was developed to synthetize nucleotide-activated glycerol from the inexpensive and readily available substrates cytidine and glycerol. The cascade comprises five recombinant enzymes expressed in Escherichia coli that were purified by immobilized metal affinity chromatography. As part of the cascade, ATP is regenerated in situ from polyphosphate to reduce synthesis costs. The enzymatic cascade was characterized at the laboratory scale, and the products were analyzed by high-performance anion-exchange chromatography (HPAEC)-UV and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After the successful synthesis had been confirmed, a design-of-experiments approach was used to screen for optimal operation conditions (temperature, pH value and MgCl2 concentration). Overall, a substrate conversion of 89 % was achieved with respect to the substrate cytidine.
Collapse
Affiliation(s)
- E Alberto Alcalá-Orozco
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Valerian Grote
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Rexer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| |
Collapse
|
5
|
Natsi PD, Koutsoukos PG. Calcium Carbonate Mineralization of Microalgae. Biomimetics (Basel) 2022; 7:biomimetics7040140. [PMID: 36278697 PMCID: PMC9589979 DOI: 10.3390/biomimetics7040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Biological substrates catalyze the nucleation and growth of sparingly soluble salts however, the underlying mechanism is largely unknown. In the present study, the growth of calcium carbonate (CaCO3), on Acutodesmus obliquus (AO) microalgae was investigated. The test microalgae favored the growth of CaCO3 from solutions supersaturated with respect to calcite (7.94 < SRcalcite < 104.71). The precipitation of calcite on AO was not preceded by measurable induction times, and the rates of calcite crystal growth were higher for higher microalgae cell concentrations. The presence of the microalgae cultivation medium and illumination of the supersaturated solutions accelerated the precipitation of CaCO3, increasing the rate by 75% in comparison with the respective value in its absence. AO cultures, air dried at 25 °C yielded higher precipitation rates, in comparison with the respective rates in the presence of active AO cultures. At 70 °C, nucleation and growth were suppressed, due to the destruction of the molecular structure of the microalgae. The CaCO3 precipitation rates on calcite precipitated on air-dried AO culture, were doubled in comparison with the respective rates obtained with the respective quantities of each component of the composite substrate.
Collapse
Affiliation(s)
- Panagiota D. Natsi
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26500 Patras, Greece
- Laboratory of Inorganic & Analytical Chemistry, Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Petros G. Koutsoukos
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26500 Patras, Greece
- Laboratory of Inorganic & Analytical Chemistry, Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
- Correspondence:
| |
Collapse
|
6
|
Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. J Inorg Biochem 2022; 232:111815. [DOI: 10.1016/j.jinorgbio.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
7
|
Liao CW, Yeh YW, El-Shall H, Gower LB. Biotechnology Approach to Mineral Separation via Phage Flotation Collectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9795-9806. [PMID: 35143175 DOI: 10.1021/acsami.1c22595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A long-standing challenge in the mining industry is the separation of mineral particles that have similar surface characteristics for which surfactant-based flotation collectors cannot discriminate. In Florida phosphate mining, this problem occurs in the separation of dolomite [CaMg(CO3)2] contaminants from the desired francolite mineral {a fluorapatite [Ca5(PO4)3(F,OH)]}. In this study, phage display techniques were used to select phage clones with specific binding affinity to francolite, which were then tested in a benchtop bubbler flotation apparatus for their ability to selectively float francolite particles from mixtures containing dolomite. Contact angles measured with the captive bubble technique were used to examine changes in the surface character of the mineral particles upon adsorption of the phage, which showed that the most selective phage led to an increase in the contact angle from 16 to 50°. Although this is below the level considered hydrophobic, the correlation between contact angles and increased flotation recovery suggests that the phage coat proteins are behaving as efficient bioamphiphiles for the attachment of the particles to air bubbles, demonstrating a new and environmentally friendly type of biocollector system. The chemical and physical characteristics of the phage "tail" peptides were evaluated to offer an explanation for the specificity of phage binding. We conclude with a discussion of the potential benefits of this biotechnology approach, even for commodity industries such as mining or other particle separation systems, when costs and sustainability are considered.
Collapse
Affiliation(s)
- Chih-Wei Liao
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ya-Wen Yeh
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Hassan El-Shall
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Particle Engineering Research Center, University of Florida, Gainesville, Florida 32611, United States
| | - Laurie B Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
9
|
Pal A, Bhattacharjee S, Saha J, Sarkar M, Mandal P. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 2021; 48:327-355. [PMID: 34473592 DOI: 10.1080/1040841x.2021.1970512] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heavy metals bring long-term hazardous consequences and pose a serious threat to all life forms. Being non-biodegradable, they can remain in the food webs for a long period of time. Metal ions are essential for life and indispensable for almost all aspects of metabolism but can be toxic beyond threshold level to all living beings including microbes. Heavy metals are generally present in the environment, but many geogenic and anthropogenic activities has led to excess metal ion accumulation in the environment. To survive in harsh metal contaminated environments, bacteria have certain resistance mechanisms to metabolize and transform heavy metals into less hazardous forms. This also gives rise to different species of heavy metal resistant bacteria. Herein, we have tried to incorporate the different aspects of heavy metal toxicity in bacteria and provide an up-to-date and across-the-board review. The various aspects of heavy metal biology of bacteria encompassed in this review includes the biological notion of heavy metals, toxic effect of heavy metals on bacteria, the factors regulating bacterial heavy metal resistance, the diverse mechanisms governing bacterial heavy metal resistance, bacterial responses to heavy metal stress, and a brief overview of gene regulation under heavy metal stress.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Sukanya Bhattacharjee
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Sarkar
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
10
|
Cao H, Qin H, Li Y, Jandt KD. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv Healthc Mater 2021; 10:e2100619. [PMID: 34309242 PMCID: PMC11468843 DOI: 10.1002/adhm.202100619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Indexed: 01/06/2023]
Abstract
The emergence of nanosilver (silver in nanoscale shapes and their assemblies) benefits the landscape of modern healthcare; however, this brings about concerns over its safety issues associated with an ultrasmall size and high mobility. By reviewing previous reporting details about the synthesis and characterization of nanosilver and its biological responses, a gap between materials synthesis and their biomedical uses is characterized by the insufficient understanding of the interacting and interplaying nanoscale actions of silver. To improve reporting quality and advance clinical translations, it is suggested that researchers have a comprehensive recognition of the "Indications for use" before designing innovative nanosilver-based materials and an "Action-network" concept addressing the acting range and strength of those nanoscale actions is implemented. Although this discussion is specific to nanosilver, the idea of "Indications for use" centered design and synthesis is generally applicable to other biomedical nanomaterials.
Collapse
Affiliation(s)
- Huiliang Cao
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Klaus D. Jandt
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJena07743Germany
- Jena School for Microbial Communication (JSMC)Neugasse 23Jena07743Germany
| |
Collapse
|
11
|
Liu X, Zarfel G, van der Weijden R, Loiskandl W, Bitschnau B, Dinkla IJT, Fuchs EC, Paulitsch-Fuchs AH. Density-dependent microbial calcium carbonate precipitation by drinking water bacteria via amino acid metabolism and biosorption. WATER RESEARCH 2021; 202:117444. [PMID: 34314923 DOI: 10.1016/j.watres.2021.117444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Drinking water plumbing systems appear to be a unique environment for microorganisms as they contain few nutrients but a high mineral concentration. Interactions between mineral content and bacteria, such as microbial calcium carbonate precipitation (MCP) however, has not yet attracted too much attention in drinking water sector. This study aims to carefully examine MCP behavior of two drinking water bacteria species, which may potentially link scaling and biofouling processes in drinking water distribution systems. Evidence from cell density evolution, chemical parameters, and microscopy suggest that drinking water isolates can mediate CaCO3 precipitation through previously overlooked MCP mechanisms like ammonification or biosorption. The results also illustrate the active control of bacteria on the MCP process, as the calcium starts to concentrate onto cell surfaces only after reaching a certain cell density, even though the cell surfaces are shown to be the ideal location for the CaCO3 nucleation.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gernot Zarfel
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Renata van der Weijden
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Sub-Department of Environmental Technology, Wageningen University, Wageningen, the Netherlands
| | - Willibald Loiskandl
- Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigitte Bitschnau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Elmar C Fuchs
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Optical Sciences group, Faculty of Science and Technology, University of Twente. Twente. the Netherlands.
| | - Astrid H Paulitsch-Fuchs
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; School of Health Sciences & Social Work, Biomedical Sciences, Carinthia University of Applied Sciences, Klagenfurt, Austria
| |
Collapse
|
12
|
Lyu J, Yu X, Jiang M, Cao W, Saren G, Chang F. The Mechanism of Microbial-Ferromanganese Nodule Interaction and the Contribution of Biomineralization to the Formation of Oceanic Ferromanganese Nodules. Microorganisms 2021; 9:microorganisms9061247. [PMID: 34201233 PMCID: PMC8227974 DOI: 10.3390/microorganisms9061247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
Ferromanganese nodules are an important mineral resource in the seafloor; however, the genetic mechanism is still unknown. The biomineralization of microorganisms appears to promote ferromanganese nodule formation. To investigate the possible mechanism of microbial–ferromanganese nodule interaction, to test the possibility of marine microorganisms as deposition template for ferromanganese nodules minerals, the interactions between Jeotgalibacillus campisalis strain CW126-A03 and ferromanganese nodules were studied. The results showed that strain CW126-A03 increased ion concentrations of Fe, Mn, and other metal elements in solutions at first. Then, metal ions were accumulated on the cells’ surface and formed ultra-micro sized mineral particles, even crystalline minerals. Strain CW126-A03 appeared to release major elements in ferromanganese nodules, and the cell surface may be a nucleation site for mineral precipitation. This finding highlights the potentially important role of biologically induced mineralization (BIM) in ferromanganese nodule formation. This BIM hypothesis provides another perspective for understanding ferromanganese nodules’ genetic mechanism, indicating the potential of microorganisms in nodule formation.
Collapse
Affiliation(s)
- Jing Lyu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Xinke Yu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mingyu Jiang
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Wenrui Cao
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Gaowa Saren
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengming Chang
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
External Carbon Source Facilitates Indirect Cr (VI) Bioreduction Process by Anaerobic Sludge Produced from Kitchen Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13094806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presented the investigation on indirect Cr (VI) bioreduction process by anaerobic sludge produced from kitchen waste (ASKW) using an external source of glucose and sulfate to favor the reducing environment. These compounds were added at the beginning of the experiment along with 500 mg·L−1 Cr (VI). The system containing 1 g of glucose and 2 g of sulfate attained a higher reduction, which was 10% higher than that of the control experiment. This study indicated that a neutral environment (pH ~7), along with a high release of polysaccharides (PS), improved the removal efficiency by Cr (VI) bioreduction process. Desulfovibrio and Sulfurospirillum (genus level), which accounted for 3% and 1% of the whole microorganism, respectively, were responsible for the sulfidogenic reaction. Additionally, Thermovirga (genus level) reduced from 14% to 11% and 10%. These microorganisms contributed to dominating the indirect Cr (VI) bioreduction process. SEM and FTIR analysis of the sludges obtaining from the indirect Cr (VI) bioreduction systems indicated that the external glucose could facilitate the formation of looser porous structures and richer functional groups of sludges, thus adsorbing more Cr (III) to reduce its toxicity. Meanwhile, the intensity of the hydroxyl bond, which possesses strong reducibility, was much higher after adding external glucose. Chromate reductase gene (chrR) and sulfite reductase gene (dsrA) contributed to the indirect Cr (VI) bioreduction process. These might be the main mechanisms of the external glucose acting on indirect Cr (VI) bioreduction by ASKW.
Collapse
|
14
|
Hoffmann TD, Reeksting BJ, Gebhard S. Bacteria-induced mineral precipitation: a mechanistic review. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001049. [PMID: 33881981 PMCID: PMC8289221 DOI: 10.1099/mic.0.001049] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Micro-organisms contribute to Earth's mineral deposits through a process known as bacteria-induced mineral precipitation (BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the supersaturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP induced by bacterial metabolism through the control of metal redox states and enzyme-mediated reactions such as ureolysis. However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacterial activity, where minerals form as a result of metabolic by-products and surface interactions within the surrounding environment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, heavy metal remediation, restoration of historic buildings and even self-healing concrete. However, these applications to date have primarily incorporated BIMP-capable bacteria sampled from the environment, while detailed investigations of the underpinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activities that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic processes involved. Ultimately, detailed insights will facilitate the rational design of application-specific BIMP technologies and deepen our understanding of how bacteria are shaping our world.
Collapse
Affiliation(s)
- Timothy D. Hoffmann
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Bianca J. Reeksting
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Susanne Gebhard
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
15
|
Magnesium ion impregnation in potato slices to improve cell integrity and reduce oil absorption in potato chips during frying. Heliyon 2021; 6:e05834. [PMID: 33426337 PMCID: PMC7776836 DOI: 10.1016/j.heliyon.2020.e05834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
The effect of structural alteration of potato tissues by using divalent ions on oil uptake, texture, and color of deep-fat fried potato chips. The structure modification was achieved by sonication-assisted vacuum impregnation (SVI), with varying sonication times and soaking concentrations of MgCl2. SVI pretreated (sonicated by 50 min in a 15K magnesium solution) potato chips had 20% and 41% less oil content than the NSVI and control samples, respectively; and absorbed 29% more magnesium than the NSVI samples. The SVI pretreatment significantly affected product texture, color, shrinkage, and porosity. Potato chips treated with combined MgCl2 and CaCl2 received a significant higher score than the other two treatments because of the improved sample's texture (crispness). Microscopic analysis of SEM images showed a well-intact cellular structure and thicker middle lamelae after SVI treatment compared to the control samples.
Collapse
|
16
|
Couasnon T, Alloyeau D, Ménez B, Guyot F, Ghigo JM, Gélabert A. In situ monitoring of exopolymer-dependent Mn mineralization on bacterial surfaces. SCIENCE ADVANCES 2020; 6:eaaz3125. [PMID: 32923582 PMCID: PMC7455489 DOI: 10.1126/sciadv.aaz3125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Bacterial biomineralization is a widespread process that affects cycling of metals in the environment. Functionalized bacterial cell surfaces and exopolymers are thought to initiate mineral formation, however, direct evidences are hampered by technical challenges. Here, we present a breakthrough in the use of liquid-cell scanning transmission electron microscopy to observe mineral growth on bacteria and the exopolymers they secrete. Two Escherichia coli mutants producing distinct exopolymers are investigated. We use the incident electron beam to provoke and observe the precipitation of Mn-bearing minerals. Differences in the morphology and distribution of Mn precipitates on the two strains reflect differences in nucleation site density and accessibility. Direct observation under liquid conditions highlights the critical role of bacterial cell surface charges and exopolymer types in metal mineralization. This has strong environmental implications because biofilms structured by exopolymers are widespread in nature and constitute the main form of microbial life on Earth.
Collapse
Affiliation(s)
- Thaïs Couasnon
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75238 Paris Cedex 05, France
| | - Damien Alloyeau
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, 75013 Paris, France
| | - Bénédicte Ménez
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75238 Paris Cedex 05, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, IRD, Muséum National d’Histoire Naturelle, CNRS, Campus Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | - Jean-Marc Ghigo
- Unité de Génétique des Biofilms, Institut Pasteur, 75015 Paris, France
| | - Alexandre Gélabert
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75238 Paris Cedex 05, France
| |
Collapse
|
17
|
Yu Q, Mishra B, Fein JB. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122209. [PMID: 32036314 DOI: 10.1016/j.jhazmat.2020.122209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Understanding bacterial metal detoxification systems is crucial for determining the environmental impacts of metal pollution and for developing advanced bioremediation and water disinfection strategies. Here, we explore the role of cell surface sulfhydryl sites in bacterial detoxification of Cd, using Pseudomonas putida with surface sulfhydryl sites mostly on its EPS molecules as a model organism. Our results show that 5 and 20 ppm Cd in LB growth medium affects the lag phase of P. putida, but not the overall extent of cell growth at stationary phase, indicating that P. putida can detoxify Cd at these concentrations. EXAFS analysis of Cd bound to biomass from the different growth stages indicates that Cd binds to both sulfhydryl and non-sulfhydryl sites, but that the importance of Cd-sulfhydryl binding increases from early exponential to stationary phase. Cell growth is positively correlated to the measured sulfhydryl concentration on different biomass samples, but is independent of the measured non-sulfhydryl binding site concentration on the cell surfaces. Taken together, our results demonstrate that the sulfhydryl binding sites on EPS molecules can play an important role in binding and detoxifying toxic metals, significantly decreasing the bioavailability of the metal by sequestering it away from the bacterial cells.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, United States.
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS29JT, United Kingdom
| | - Jeremy B Fein
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, United States
| |
Collapse
|
18
|
Enyedi NT, Makk J, Kótai L, Berényi B, Klébert S, Sebestyén Z, Molnár Z, Borsodi AK, Leél-Őssy S, Demény A, Németh P. Cave bacteria-induced amorphous calcium carbonate formation. Sci Rep 2020; 10:8696. [PMID: 32457467 PMCID: PMC7251137 DOI: 10.1038/s41598-020-65667-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Amorphous calcium carbonate (ACC) is a precursor of crystalline calcium carbonates that plays a key role in biomineralization and polymorph evolution. Here, we show that several bacterial strains isolated from a Hungarian cave produce ACC and their extracellular polymeric substance (EPS) shields ACC from crystallization. The findings demonstrate that bacteria-produced ACC forms in water-rich environment at room temperature and is stable for at least half year, which is in contrast to laboratory-produced ACC that needs to be stored in a desiccator and kept below 10 °C for avoiding crystallization. The ACC-shielding EPS consists of lipids, proteins, carbohydrates and nucleic acids. In particular, we identified large amount of long-chain fatty acid components. We suggest that ACC could be enclosed in a micella-like formula within the EPS that inhibits water infiltration. As the bacterial cells lyse, the covering protective layer disintegrates, water penetrates and the unprotected ACC grains crystallize to calcite. Our study indicates that bacteria are capable of producing ACC, and we estimate its quantity in comparison to calcite presumably varies up to 20% depending on the age of the colony. Since diverse bacterial communities colonize the surface of cave sediments in temperate zone, we presume that ACC is common in these caves and its occurrence is directly linked to bacterial activity and influences the geochemical signals recorded in speleothems.
Collapse
Affiliation(s)
- Nóra Tünde Enyedi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - László Kótai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Deuton-X Ltd., Selmeci u. 89, H-2030, Érd, Hungary
| | - Bernadett Berényi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Zoltán Sebestyén
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Zsombor Molnár
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, H-8200, Veszprém, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Szabolcs Leél-Őssy
- Department of Physical and Applied Geology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Attila Demény
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112, Budapest, Hungary
| | - Péter Németh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, H-8200, Veszprém, Hungary.
| |
Collapse
|
19
|
Mansor M, Cantando E, Wang Y, Hernandez-Viezcas JA, Gardea-Torresdey JL, Hochella MF, Xu J. Insights into the Biogeochemical Cycling of Cobalt: Precipitation and Transformation of Cobalt Sulfide Nanoparticles under Low-Temperature Aqueous Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5598-5607. [PMID: 32243750 DOI: 10.1021/acs.est.0c01363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cobalt sulfide precipitates, key phases in the natural biogeochemistry of cobalt and in relevant remediation and resource recovery processes, are poorly defined under low-temperature aqueous conditions. Here, we systematically studied Co (Fe) sulfides precipitated and aged in environmentally relevant solutions, defined by different combinations of pH, initial cobalt to iron ratios ([Co]aq/[Fe]aq), with/without S0, and the presence/absence of sulfate-reducing bacteria. The initial abiogenic precipitates were composed exclusively of amorphous Co sulfide nanoparticles (CoS·xH2O) that were stable in anoxic solution for 2 months, with estimated log K* values 1-5 orders of magnitude higher than that previously reported for Co sulfides. The addition of S0, in combination with acidic pH and elevated temperature (60 °C), resulted in recrystallization of the amorphous precipitates into nanocrystalline jaipurite (hexagonal CoS) within 1 month. In the presence of Fe(II)aq, the abiogenic precipitates were composed of more crystalline Co sulfides and/or Co-rich mackinawite, the exact phase being dependent on the [Co]aq/[Fe]aq value. The biogenic precipitates displayed higher crystallinity for Co sulfides (up to the formation of nanocrystalline cobalt pentlandite, Co9S8) and lower crystallinity for Co-rich mackinawite, suggestive of mineral-specific bacterial interaction. The revealed precipitation and transformation pathways of Co (Fe) sulfides in this study allows for a better constraint of Co biogeochemistry in various natural and engineered environments.
Collapse
Affiliation(s)
- Muammar Mansor
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Elizabeth Cantando
- Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, United States
| | - Yi Wang
- Chemistry & Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jose A Hernandez-Viezcas
- Chemistry & Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jorge L Gardea-Torresdey
- Chemistry & Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Michael F Hochella
- Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, United States
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jie Xu
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
20
|
Abstract
A mathematical model able to simulate the physical, chemical and biological interactions prevailing in multispecies biofilms in the presence of a toxic heavy metal is presented. The free boundary value problem related to biofilm growth and evolution is governed by a nonlinear ordinary differential equation. The problem requires the integration of a system of nonlinear hyperbolic partial differential equations describing the biofilm components evolution, and a systems of semilinear parabolic partial differential equations accounting for substrates diffusion and reaction within the biofilm. In addition, a semilinear parabolic partial differential equation is introduced to describe heavy metal diffusion and sorption. The biosoption process modeling is completed by the definition and integration of other two systems of nonlinear hyperbolic partial differential equations describing the free and occupied binding sites evolution, respectively. Numerical simulations of the heterotrophic-autotrophic interaction occurring in biofilm reactors devoted to wastewater treatment are presented. The high biosorption ability of bacteria living in a mature biofilm is highlighted, as well as the toxicity effect of heavy metals on autotrophic bacteria, whose growth directly affects the nitrification performance of bioreactors.
Collapse
|
21
|
Thomas SA, Mishra B, Myneni SCB. High Energy Resolution-X-ray Absorption Near Edge Structure Spectroscopy Reveals Zn Ligation in Whole Cell Bacteria. J Phys Chem Lett 2019; 10:2585-2592. [PMID: 31039606 DOI: 10.1021/acs.jpclett.9b01186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identifying the zinc (Zn) ligation and coordination environment in complex biological and environmental systems is crucial to understand the role of Zn as a biologically essential but sometimes toxic metal. Most studies on Zn coordination in biological or environmental samples rely on the extended X-ray absorption fine structure (EXAFS) region of a Zn K-edge X-ray absorption spectroscopy (XAS) spectrum. However, EXAFS analysis cannot identify unique nearest neighbors with similar atomic number (i.e., O versus N) and provides little information on Zn ligation. Herein, we demonstrate that high energy resolution-X-ray absorption near edge structure (HR-XANES) spectroscopy enables the direct determination of Zn ligation in whole cell bacteria, providing additional insights lost from EXAFS analysis at a fraction of the scan time and Zn concentration. HR-XANES is a relatively new technique that has improved our understanding of trace metals (e.g., Hg, Cu, and Ce) in dilute systems. This study is the first to show that HR-XANES can unambiguously detect Zn coordination to carboxyl, phosphoryl, imidazole, and/or thiol moieties in model microorganisms.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Satish C B Myneni
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| |
Collapse
|
22
|
Testing the component additivity approach to surface complexation modeling using a novel cadmium-specific fluorescent probe technique. J Colloid Interface Sci 2019; 534:683-694. [DOI: 10.1016/j.jcis.2018.09.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/17/2023]
|
23
|
Queiroz PS, Ruas FAD, Barboza NR, de Castro Borges W, Guerra-Sá R. Alterations in the proteomic composition of Serratia marcescens in response to manganese (II). BMC Biotechnol 2018; 18:83. [PMID: 30594179 PMCID: PMC6311052 DOI: 10.1186/s12896-018-0493-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/17/2018] [Indexed: 02/03/2023] Open
Abstract
Background Proteomics is an important tool for the investigation of dynamic physiological responses of microbes under heavy metal stress. To gain insight into how bacteria respond to manganese (II) and identify the proteins involved in Mn (II) oxidation, the shotgun proteomics approach was applied to a potential Mn (II)-oxidizing Serratia marcescens strain cultivated in the absence and presence of Mn (II). Results The LG1 strain, which grew equally well in the two conditions, was found to express a set of proteins related to cellular processes vital for survival, as well as proteins involved in adaptation and tolerance to Mn (II). The multicopper oxidase CueO was identified, indicating its probable participation in the Mn (II) bio-oxidation; however, its expression was not modulated by the presence of Mn (II). A set of proteins related to cell and metabolic processes vital to the cells were downregulated in the presence of Mn (II), while cell membrane-related proteins involved in the maintenance of cell integrity and survival under stress were upregulated under this condition. Conclusions These findings indicate that the LG1 strain may be applied successfully in the bioremediation of Mn (II), and the shotgun approach provides an efficient means for obtaining the total proteome of this species.
Collapse
Affiliation(s)
- Pollyana Santos Queiroz
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - France Anne Dias Ruas
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Natália Rocha Barboza
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - William de Castro Borges
- Laboratório de Enzimologia e Proteômica, Departamento de Ciências Biológicas (DECBI), Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
24
|
Yu Q, Fein JB. Controls on Bacterial Cell Envelope Sulfhydryl Site Concentrations: The Effect of Glucose Concentration During Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7395-7402. [PMID: 28603975 DOI: 10.1021/acs.est.7b01047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacterial sulfhydryl sites can form strong complexes with chalcophilic metals such as Hg and Cd, thereby affecting the fate, transport, and bioavailability of these metals in both natural and engineered systems. In this study, five bacterial species were cultured in M9 minimal media containing a range of glucose concentrations as carbon source and in a high-nutrient TSB medium enriched with 50 g/L of glucose, and the sulfhydryl site concentrations of the obtained biomass samples were determined through selective sulfhydryl site-blocking, potentiometric titrations, and surface complexation modeling. The experimental results show that the glucose concentration in the M9 minimal media strongly affects the concentration of sulfhydryl sites that are present on the bacteria, with higher glucose concentrations yielding higher bacterial sulfhydryl site concentrations for each species studied. In contrast, although adding 50 g/L of glucose to the TSB medium significantly increases the sulfhydryl site concentrations for the three Bacillus species studied, the elevated glucose concentration does not significantly affect sulfhydryl site concentrations for S. oneidensis and P. putida samples when grown in the TSB medium. Our results suggest that bacterial sulfhydryl site concentrations in natural systems are likely affected by the composition of the bacterial community and by the available nutrients, and that these factors must be considered in order to determine and model the effects of bacterial cells on metal cycling and metal bioavailability in the environment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Jeremy B Fein
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Fontmorin JM, Sillanpää M. Dewatering and removal of metals from urban anaerobically digested sludge by Fenton's oxidation. ENVIRONMENTAL TECHNOLOGY 2017; 38:495-505. [PMID: 27341502 DOI: 10.1080/09593330.2016.1199598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study, the relevance of Fenton's reaction for the treatment of urban anaerobically digested sludge was investigated. In a first part, the impact of the oxidation process on the improvement of the sludge dewaterability was studied. In a second part, the removal of heavy metals from the sludge was examined. Fenton's reaction was carried out with increasing concentrations of Fe2+ and H2O2 in 1:10 and 1:1 ratios. Dewaterability of the raw sludge was highly improved: the addition of 36 mM Fe2+ and 360 mM H2O2 led to specific cake resistance (SCR) and capillary suction time (CST) reductions of 99.8% and 98.8%, respectively. Indeed, under these conditions, SCR and CST of respectively 1.04 × 1011 m kg-1 and 18.5 ± 0.2 s were measured, and the treated sludge could be considered as having 'good dewaterability'. A significant impact was also observed on the removal of heavy metals from the sludge. After 1-h oxidation, Cd, Cr, Cu, Pb and Zn could be removed by 81.1 ± 0.1%, 25.1 ± 0.1%, 87.2 ± 1.1%, 77.3 ± 4.8% and 99.6 ± 0.3%, respectively. These results were consistent with the heavy metals' fractions in the sludge. It could be concluded that the addition of Fe2+ and H2O2 in a 1:10 ratio was more effective than in a 1:1 ratio. The results were consistent with the extracellular polymeric substance (EPS) contents in raw and treated sludge, since loosely bound EPS decreased significantly after the treatment.
Collapse
Affiliation(s)
- J-M Fontmorin
- a Laboratory of Green Chemistry, School of Engineering Science , Lappeenranta University of Technology , Mikkeli , Finland
| | - Mika Sillanpää
- a Laboratory of Green Chemistry, School of Engineering Science , Lappeenranta University of Technology , Mikkeli , Finland
| |
Collapse
|
26
|
Heavy Metal Removal from Wastewaters by Biosorption: Mechanisms and Modeling. SUSTAINABLE HEAVY METAL REMEDIATION 2017. [DOI: 10.1007/978-3-319-58622-9_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Karthik C, Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Arulselvi PI. Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Abstract
Nanotechnology has emerged as an important field of modern scientific research due to its diverse range of applications in the area of electronics, material sciences, biomedical engineering, and medicines at nano levels such as healthcare, cosmetics, food and feed, environmental health, optics, biomedical sciences, chemical industries, drug-gene delivery, energy science, optoelectronics, catalysis, reprography, single electron transistors, light emitters, nonlinear optical devices, and photoelectrochemical applications and other applications. Due to these immense applications of nanotechnology in biomedical science, it has became possible to design the pharmaceuticals in such a way that they could directly treat diseased cells like cancer and make microscopic repairs in hard-to-operate-on areas of the body. The nanomachines have been designed to clean up toxins or oil spills, recycle all garbage, eliminate landfills, etc. The chapter summarizes the present and future applications of nanotechnology for human welfare but needs further study in catalysis, optical devices, sensor technology, cancer treatment, and drug delivery systems.
Collapse
|
29
|
Understanding the sorption behavior of tetra- and hexavalent plutonium on fungus Rhizopus arrhizus dead biomass. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5104-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
|
31
|
Lin X, Mou R, Cao Z, Xu P, Wu X, Zhu Z, Chen M. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:97-104. [PMID: 27341110 DOI: 10.1016/j.scitotenv.2016.06.121] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200mg/L), Zn (1800mg/L) and Pb (1200mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains+3mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd accumulation in rice grains and show potential for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Xiaoyan Lin
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Renxiang Mou
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Zhaoyun Cao
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Xiaoliang Wu
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Zhiwei Zhu
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Mingxue Chen
- China National Rice Research Institute, Hangzhou 310006, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China.
| |
Collapse
|
32
|
|
33
|
Gillan DC. Metal resistance systems in cultivated bacteria: are they found in complex communities? Curr Opin Biotechnol 2016; 38:123-30. [DOI: 10.1016/j.copbio.2016.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
|
34
|
The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.tbs-0018-2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents.
Collapse
|
35
|
Zhu T, Dittrich M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front Bioeng Biotechnol 2016; 4:4. [PMID: 26835451 PMCID: PMC4718973 DOI: 10.3389/fbioe.2016.00004] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| |
Collapse
|
36
|
Gharatape A, Davaran S, Salehi R, Hamishehkar H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 2016. [DOI: 10.1039/c6ra18760a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticle mediated photothermal therapy in future medicine.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Soodabeh Davaran
- Drug Applied Research Center and Department of Medicinal Chemistry
- Faculty of Pharmacy
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Roya Salehi
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Science
- Tabriz
- Iran
| |
Collapse
|
37
|
Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C. Bioaccumulation and biosorption of Cd(2+) and Zn(2+) by bacteria isolated from a zinc mine in Thailand. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:322-330. [PMID: 26300116 DOI: 10.1016/j.ecoenv.2015.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75 mg g(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)).
Collapse
Affiliation(s)
- Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Najjapak Sooksawat
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Anchana Sumarnrote
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thiranun Awutpet
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University International College, Nakhonpathom 73170, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand.
| |
Collapse
|
38
|
Kumar BL, Gopal DVRS. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 2015; 5:867-876. [PMID: 28324402 PMCID: PMC4624139 DOI: 10.1007/s13205-015-0293-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/23/2022] Open
Abstract
Environmental protection has the foremost importance in the present day life of mankind. Scientists have been researching for technologies naturally available for enhancement of agriculture, management of agricultural waste, etc. Indigenous Microorganisms (IMO’s)-based technology is one such great technology which is applied in the eastern part of world for the extraction of minerals, enhancement of agriculture and waste management. Indigenous microorganisms are a group of innate microbial consortium that inhabits the soil and the surfaces of all living things inside and outside which have the potentiality in biodegradation, bioleaching, biocomposting, nitrogen fixation, improving soil fertility and as well in the production of plant growth hormones. Without these microbes, the life will be wretched and melancholic on this lively planet for the survival of human race. That is why, environmental restoration and safeguarding target via the indigenous microbes in a native manner to turn out the good-for-nothing and useless waste into productive bioresources is the primary concern of this review. Based on the collection sites, the process of collection and isolation methods are different as they may vary from place to place. Ultimately, in this way to a meaningful and significant extent, we can bridge the gap between the horrifying environmental distress and the hostile activities that have been constantly provoked by human kind—by getting these indigenous microorganisms into action.
Collapse
|
39
|
Pulicharla R, Das RK, Brar SK, Drogui P, Sarma SJ, Verma M, Surampalli RY, Valero JR. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:669-675. [PMID: 26119381 DOI: 10.1016/j.scitotenv.2015.05.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Complexation of antibiotics with metals is a well-known phenomenon. Wastewater treatment plants contain metals and antibiotics, thus it is essential to know the effect of these complexes on toxicity towards microorganisms, typically present in secondary treatment processes. In this study, stability constants and toxicity of chlortetracycline (CTC) and metal (Ca, Mg, Cu and Cr) complexes were investigated. The calculated stability constants of CTC-metal complexes followed the order: Mg-CTC>Ca-CTC>Cu-CTC>Cr-CTC. Gram positive Bacillus thuringiensis (Bt) and Gram negative Enterobacter aerogenes (Ea) bacteria were used as model microorganisms to evaluate the toxicity of CTC and its metal complexes. CTC-metal complexes were more toxic than the CTC itself for Bt whereas for Ea, CTC and its metal complexes showed similar toxicity. In contrast, CTC spiked wastewater sludge (WWS) did not show any toxic effect compared to synthetic sewage. This study provides evidence that CTC and its metal complexes are toxic to bacteria when they are biologically available. As for WWS, CTC was adsorbed to solid part and was not biologically available to show measurable toxic effects.
Collapse
Affiliation(s)
- Rama Pulicharla
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Saurabh Jyoti Sarma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Mausam Verma
- CO2 Solutions Inc., 2300, Rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Jose R Valero
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
40
|
McKeague JA, Cheshire MV, Andreux F, Berthelin J. Organo-Mineral Complexes in Relation to Pedogenesis. SSSA SPECIAL PUBLICATIONS 2015. [DOI: 10.2136/sssaspecpub17.c15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- J. A. McKeague
- Land Resource Research Institute, Central Experimental Farm; Ottawa ON Canada KlA 0C6
| | - M. V. Cheshire
- Macaulay Institute for Soil Research; Craigiebuckler Aberdeen Scotland
| | - F. Andreux
- Macaulay Institute for Soil Research; Craigiebuckler Aberdeen Scotland
| | - J. Berthelin
- Centre de Pédologie Biologique, Centre National de la Recherche Scientifique; 17 rue Notre Dame des Pauvres B.P. 5-54501 Vandoeuvre-les-Nancy Cédex France
| |
Collapse
|
41
|
Bio-template Route for the Facile Fabrication of TiO2@Bacillus subtilis Composite Particles and Their Application for the Degradation of Rhodamine B. Catal Letters 2015. [DOI: 10.1007/s10562-015-1517-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Vignesh V, Sathiyanarayanan G, Sathishkumar G, Parthiban K, Sathish-Kumar K, Thirumurugan R. Formulation of iron oxide nanoparticles using exopolysaccharide: evaluation of their antibacterial and anticancer activities. RSC Adv 2015. [DOI: 10.1039/c5ra03134f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formulation of FeONPs using bacterial exopolysaccharide and their significance.
Collapse
Affiliation(s)
- Venkatasamy Vignesh
- Laboratory of Aquabiotics/Nanoscience
- Department of Animal Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
| | - Ganesan Sathiyanarayanan
- Department of Plant Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Gnanasekar Sathishkumar
- Department of Biotechnology and Genetic Engineering
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Karuppaiah Parthiban
- Laboratory of Aquabiotics/Nanoscience
- Department of Animal Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
| | | | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics/Nanoscience
- Department of Animal Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
| |
Collapse
|
43
|
Ronholm J, Schumann D, Sapers HM, Izawa M, Applin D, Berg B, Mann P, Vali H, Flemming RL, Cloutis EA, Whyte LG. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions. GEOBIOLOGY 2014; 12:542-556. [PMID: 25256888 DOI: 10.1111/gbi.12102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying phylotypes consistent with certain mineralogical features is the first step toward discovering a link between these crystal features and the precise underlying molecular biology of the organism precipitating them.
Collapse
Affiliation(s)
- J Ronholm
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Malaviya P, Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 2014; 42:607-33. [DOI: 10.3109/1040841x.2014.974501] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, India
| | - Asha Singh
- Department of Environmental Sciences, University of Jammu, Jammu, India
| |
Collapse
|
45
|
Ilyas S, Lee JC. Biometallurgical Recovery of Metals from Waste Electrical and Electronic Equipment: a Review. CHEMBIOENG REVIEWS 2014. [DOI: 10.1002/cben.201400001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Rangabhashiyam S, Suganya E, Selvaraju N, Varghese LA. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World J Microbiol Biotechnol 2014; 30:1669-89. [DOI: 10.1007/s11274-014-1599-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
47
|
Nath D, Banerjee P. Green nanotechnology - a new hope for medical biology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:997-1014. [PMID: 24095717 DOI: 10.1016/j.etap.2013.09.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 05/18/2023]
Abstract
The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of green nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by different methods and their applications in many cutting-edge technological areas have been explored. This review highlights the classification of nanoparticles giving special emphasis on biosynthesis of metal nanoparticle by viable organisms. It also focuses on the applications of these biosynthesized nanoparticles in a wide spectrum of potential areas of medical biology including catalysis, targeted drug delivery, cancer treatment, antibacterial agents and as biosensors.
Collapse
Affiliation(s)
- Debjani Nath
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Nadia, West Bengal, India.
| | | |
Collapse
|
48
|
Hoennscheidt C, Kreyenschulte D, Margaritis A, Krull R. Production of stable quinine nanodispersions using esterified γ-polyglutamic acid biopolymer. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Wu Q, Zhou Y, Wang T. Effects of Formic Acid on the Adsorption of Escherichia ColiK 88on Modified Clinoptilolite. ADSORPT SCI TECHNOL 2013. [DOI: 10.1260/0263-6174.31.8.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, P.R. China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
50
|
Çolak F, Olgun A, Atar N, Yazıcıoğlu D. Heavy metal resistances and biosorptive behaviors of Paenibacillus polymyxa: Batch and column studies. J IND ENG CHEM 2013. [DOI: 10.1016/j.jiec.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|