1
|
Han W, Wei D, Sun Z, Qu D. Investigating the mechanism of rough phenotype in a naturally attenuated Brucella strain: insights from whole genome sequencing. Front Med (Lausanne) 2024; 11:1363785. [PMID: 38711779 PMCID: PMC11073494 DOI: 10.3389/fmed.2024.1363785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Brucellosis, a significant zoonotic disease, not only impacts animal health but also profoundly influences the host immune responses through gut microbiome. Our research focuses on whole genome sequencing and comparative genomic analysis of these Brucella strains to understand the mechanisms of their virulence changes that may deepen our comprehension of the host immune dysregulation. Methods The Brucella melitensis strain CMCC55210 and its naturally attenuated variant CMCC55210a were used as models. Biochemical identification tests and in vivo experiments in mice verified the characteristics of the strain. To understand the mechanism of attenuation, we then performed de novo sequencing of these two strains. Results We discovered notable genomic differences between the two strains, with a key single nucleotide polymorphism (SNP) mutation in the manB gene potentially altering lipopolysaccharide (LPS) structure and influencing host immunity to the pathogen. This mutation might contribute to the attenuated strain's altered impact on the host's macrophage immune response, overing insights into the mechanisms of immune dysregulation linked to intracellular survival. Furthermore, we explore that manipulating the Type I restriction-modification system in Brucella can significantly impact its genome stability with the DNA damage response, consequently affecting the host's immune system. Conclusion This study not only contributes to understanding the complex relationship between pathogens, and the immune system but also opens avenues for innovative therapeutic interventions in inflammatory diseases driven by microbial and immune dysregulation.
Collapse
Affiliation(s)
- Wendong Han
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong Wei
- Division of Tuberculosis Vaccines and Allergen, National Institute for Food and Drug Control, Beijing, China
| | - Zhiping Sun
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Qu
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Simpson M, Harding CJ, Czekster RM, Remmel L, Bode BE, Czekster CM. Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase. Biochemistry 2023; 62:3188-3205. [PMID: 37924287 PMCID: PMC10666288 DOI: 10.1021/acs.biochem.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Intracellular leucine aminopeptidases (PepA) are metalloproteases from the family M17. These enzymes catalyze peptide bond cleavage, removing N-terminal residues from peptide and protein substrates, with consequences for protein homeostasis and quality control. While general mechanistic studies using model substrates have been conducted on PepA enzymes from various organisms, specific information about their substrate preferences and promiscuity, choice of metal, activation mechanisms, and the steps that limit steady-state turnover remain unexplored. Here, we dissected the catalytic and chemical mechanisms of PaPepA: a leucine aminopeptidase from Pseudomonas aeruginosa. Cleavage assays using peptides and small-molecule substrate mimics allowed us to propose a mechanism for catalysis. Steady-state and pre-steady-state kinetics, pH rate profiles, solvent kinetic isotope effects, and biophysical techniques were used to evaluate metal binding and activation. This revealed that metal binding to a tight affinity site is insufficient for enzyme activity; binding to a weaker affinity site is essential for catalysis. Progress curves for peptide hydrolysis and crystal structures of free and inhibitor-bound PaPepA revealed that PaPepA cleaves peptide substrates in a processive manner. We propose three distinct modes for activity regulation: tight packing of PaPepA in a hexameric assembly controls substrate length and reaction processivity; the product leucine acts as an inhibitor, and the high concentration of metal ions required for activation limits catalytic turnover. Our work uncovers catalysis by a metalloaminopeptidase, revealing the intricacies of metal activation and substrate selection. This will pave the way for a deeper understanding of metalloenzymes and processive peptidases/proteases.
Collapse
Affiliation(s)
- Martha
Clementine Simpson
- School
of Biology, University of St Andrews, North Haugh, Biomolecular Sciences
Building, KY16 9ST, Saint Andrews, United Kingdom
| | - Christopher John Harding
- School
of Biology, University of St Andrews, North Haugh, Biomolecular Sciences
Building, KY16 9ST, Saint Andrews, United Kingdom
| | - Ricardo Melo Czekster
- School
of Computer Science and Digital Technologies, Department of Software
Engineering and Cybersecurity, Aston University, B4 7ET, Birmingham,United Kingdom
| | - Laura Remmel
- School
of Chemistry, University of St Andrews, North Haugh, Purdie Building, KY16 9ST, Saint Andrews , United Kingdom
| | - Bela E. Bode
- School
of Chemistry, University of St Andrews, North Haugh, Purdie Building, KY16 9ST, Saint Andrews , United Kingdom
| | - Clarissa Melo Czekster
- School
of Biology, University of St Andrews, North Haugh, Biomolecular Sciences
Building, KY16 9ST, Saint Andrews, United Kingdom
| |
Collapse
|
3
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Huang M, Zhao Y, Li R, Huang W, Chen X. Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering. 3 Biotech 2020; 10:126. [PMID: 32140378 DOI: 10.1007/s13205-020-2114-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-scale metabolic network model (GSMM) is an important in silico tool that can efficiently predict the target genes to be modulated. A Corynebacterium crenatum argB-M4 Cc_iKK446_arginine model was constructed on the basis of the GSMM of Corynebacterium glutamicum ATCC 13032 Cg_iKK446. Sixty-four gene deletion sites, twenty-four gene enhancement sites, and seven gene attenuation sites were determined for the improvement of l-arginine production in engineered C. crenatum. Among these sites, the effects of disrupting putP, cgl2310, pta, and Ncgl1221 and overexpressing lysE on l-arginine production were investigated. Moreover, the strain CCM007 with deleted putP, cgl2310, pta, and Ncgl1221 and overexpressed lysE produced 24.85 g/L l-arginine. This finding indicated a 106.8% improvement in l-arginine production compared with that in CCM01. GSMM is an excellent tool for identifying target genes to promote l-arginine accumulation in engineered C. crenatum.
Collapse
Affiliation(s)
- Mingzhu Huang
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
- 2School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096 People's Republic of China
| | - Yue Zhao
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Rong Li
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Weihua Huang
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Xuelan Chen
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
- 2School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096 People's Republic of China
| |
Collapse
|
5
|
Wong-Ng J, Celani A, Vergassola M. Exploring the function of bacterial chemotaxis. Curr Opin Microbiol 2018; 45:16-21. [DOI: 10.1016/j.mib.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
6
|
Pan S, Nikolakakis K, Adamczyk PA, Pan M, Ruby EG, Reed JL. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J Biol Chem 2017; 292:10250-10261. [PMID: 28446608 DOI: 10.1074/jbc.m116.763193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/23/2017] [Indexed: 12/23/2022] Open
Abstract
Whereas genomes can be rapidly sequenced, the functions of many genes are incompletely or erroneously annotated because of a lack of experimental evidence or prior functional knowledge in sequence databases. To address this weakness, we describe here a model-enabled gene search (MEGS) approach that (i) identifies metabolic functions either missing from an organism's genome annotation or incorrectly assigned to an ORF by using discrepancies between metabolic model predictions and experimental culturing data; (ii) designs functional selection experiments for these specific metabolic functions; and (iii) selects a candidate gene(s) responsible for these functions from a genomic library and directly interrogates this gene's function experimentally. To discover gene functions, MEGS uses genomic functional selections instead of relying on correlations across large experimental datasets or sequence similarity as do other approaches. When applied to the bioluminescent marine bacterium Vibrio fischeri, MEGS successfully identified five genes that are responsible for four metabolic and transport reactions whose absence from a draft metabolic model of V. fischeri caused inaccurate modeling of high-throughput experimental data. This work demonstrates that MEGS provides a rapid and efficient integrated computational and experimental approach for annotating metabolic genes, including those that have previously been uncharacterized or misannotated.
Collapse
Affiliation(s)
- Shu Pan
- From the Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kiel Nikolakakis
- From the Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Paul A Adamczyk
- From the Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Min Pan
- the School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, and
| | - Edward G Ruby
- the Pacific Biosciences Research Center, University of Hawaii, Manoa, Hawaii 96813
| | - Jennifer L Reed
- From the Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
7
|
Luo JB, Feng L, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) Fillets Fed Dietary Valine. PLoS One 2017; 12:e0169270. [PMID: 28118364 PMCID: PMC5261571 DOI: 10.1371/journal.pone.0169270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/14/2016] [Indexed: 01/24/2023] Open
Abstract
This study was conducted to examine the effects of dietary valine on the physical and flavor characteristics, fatty acid (FA) profile, antioxidant status and Nrf2-dependent antioxidant enzyme gene expression in the muscle of young grass carp (Ctenopharyngodon idella) fed increasing levels of valine (4.3, 8.0, 10.6, 13.1, 16.9 and 19.1 g/kg) for 8 weeks. Compared with the control group, the group fed valine showed improved physical characteristics of fish fillets (increased relative shear force, hydroxyproline, protein and lipid levels and decreased cathepsin B and L activities, as well as cooking loss, were observed). Moreover, valine improved the flavor of young grass carp fillets by increasing the amino acid (AA) concentration in fish muscle (increased aspartic acid, threonine, glutamine, cystine, methionine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine and valine concentrations were observed). Additionally, optimal valine supplementation increased the potential health benefits to humans by decreasing the saturated FA (C15:0 and C16:0) concentration and increasing the unsaturated FA (monounsaturated FAs (MUFAs), such as C16:1, C18:1c+t and C20:1, and polyunsaturated FAs (PUFAs), such as C18:3n-3, C20:2 and C22:6) concentration. In addition, the reduced glutathione (GSH) content and the activities of Cu/Zn superoxide dismutase (SOD1), catalase (CAT) and Selenium-dependent glutathione peroxydase (Se-GPx) increased under valine supplementation (P < 0.05). Furthermore, the SOD1, CAT and Se-GPx mRNA levels increased with dietary valine levels, possibly due to the up-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the down-regulation of Kelch-like-ECH-associated protein 1 (Keap1) in muscle (P < 0.05). In conclusion, valine improved the physical and flavor characteristics, FA profile, and antioxidant status and regulated the expression of the antioxidant enzyme genes Nrf2, Keap1, TOR and S6K1 in fish fillets.
Collapse
Affiliation(s)
- Jian-Bo Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
9
|
Yang Y, M Pollard A, Höfler C, Poschet G, Wirtz M, Hell R, Sourjik V. Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 2015; 96:1272-82. [PMID: 25807888 PMCID: PMC5008178 DOI: 10.1111/mmi.13006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 11/28/2022]
Abstract
Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, Escherichia coli and Bacillus subtilis. We demonstrate that in E. coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B. subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues.
Collapse
Affiliation(s)
- Yiling Yang
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Abiola M Pollard
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carolin Höfler
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
10
|
Wang JC, Zhang WY, Zhong Z, Wei AB, Bao QH, Zhang Y, Sun TS, Postnikoff A, Meng H, Zhang HP. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. ACTA ACUST UNITED AC 2012; 39:191-206. [DOI: 10.1007/s10295-011-1015-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/25/2011] [Indexed: 12/01/2022]
Abstract
Abstract
Lactobacillus casei Zhang is a widely recognized probiotic bacterium, which is being commercially used in China. To study the gene expression dynamics of L. casei Zhang during fermentation in soymilk, a whole genome microarray was used to screen for differentially expressed genes when grown to the lag phase, the late logarithmic phase, and the stationary phase. Comparisons of different transcripts next to each other revealed 162 and 63 significantly induced genes in the late logarithmic phase and stationary phase, of which the expression was at least threefold up-regulated and down-regulated, respectively. Approximately 38.4% of the up-regulated genes were associated with amino acid transport and metabolism notably for histidine and lysine biosynthesis, followed by genes/gene clusters involved in carbohydrate transport and metabolism, lipid transport and metabolism, and inorganic ion transport and metabolism. The analysis results suggest a complex stimulatory effect of soymilk-based ecosystem on the L. casei Zhang growth. On the other hand, it provides the very first insight into the molecular mechanism of L. casei strain for how it will adapt to the protein-rich environment.
Collapse
Affiliation(s)
- Ji-Cheng Wang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Wen-Yi Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Zhi Zhong
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Ai-Bin Wei
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Qiu-Hua Bao
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Yong Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Tian-Song Sun
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Andrew Postnikoff
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - He Meng
- grid.16821.3c 0000000403688293 School of Agriculture and Biology Shanghai Jiao Tong University 200240 Shanghai China
| | - He-Ping Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| |
Collapse
|
11
|
Najdi TS, Yang CR, Shapiro BE, Hatfield GW, Mjolsness ED. APPLICATION OF A GENERALIZED MWC MODEL FOR THE MATHEMATICAL SIMULATION OF METABOLIC PATHWAYS REGULATED BY ALLOSTERIC ENZYMES. J Bioinform Comput Biol 2011; 4:335-55. [PMID: 16819787 DOI: 10.1142/s0219720006001862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/31/2006] [Indexed: 11/18/2022]
Abstract
In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have developed a mathematical model that simulates the allosteric regulation for threonine biosynthesis pathway starting from aspartate. To achieve this goal, we used kMech, a Cellerator language extension that describes enzyme mechanisms for the mathematical modeling of metabolic pathways. These mechanisms are converted by Cellerator into ordinary differential equations (ODEs) solvable by Mathematica™. In this paper, we describe a more flexible model in Cellerator, which generalizes the Monod, Wyman, Changeux (MWC) model for enzyme allosteric regulation to allow for multiple substrate, activator and inhibitor binding sites. Furthermore, we have developed a model that describes the behavior of the bifunctional allosteric enzyme aspartate kinase I-homoserine dehydrogenase I (AKI-HDHI). This model predicts the partition of enzyme activities in the steady state which paves the way for a more generalized prediction of the behavior of bifunctional enzymes.
Collapse
Affiliation(s)
- Tarek S Najdi
- Institute for Genomics and Bioinformatics, Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
12
|
Hsu-Ming W, Naito K, Kinoshita Y, Kobayashi H, Honjoh KI, Tashiro K, Miyamoto T. Changes in transcription during recovery from heat injury in Salmonella typhimurium and effects of BCAA on recovery. Amino Acids 2011; 42:2059-66. [DOI: 10.1007/s00726-011-0934-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/03/2011] [Indexed: 11/28/2022]
|
13
|
Ruiz J, Haneburger I, Jung K. Identification of ArgP and Lrp as transcriptional regulators of lysP, the gene encoding the specific lysine permease of Escherichia coli. J Bacteriol 2011; 193:2536-48. [PMID: 21441513 PMCID: PMC3133163 DOI: 10.1128/jb.00815-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/14/2011] [Indexed: 11/20/2022] Open
Abstract
Expression of lysP, which encodes the lysine-specific transporter LysP in Escherichia coli, is regulated by the concentration of exogenous available lysine. In this study, the LysR-type transcriptional regulator ArgP was identified as the activator of lysP expression. At lysine concentrations higher than 25 μM, lysP expression was shut off and phenocopied an argP deletion mutant. Purified ArgP-His(6) bound to the lysP promoter/control region at a sequence containing a conserved T-N(11)-A motif. Its affinity increased in the presence of lysine but not in the presence of the other known coeffector, arginine. In vivo data suggest that lysine-loaded ArgP and arginine-loaded ArgP compete at the lysP promoter. We propose that lysine-loaded ArgP prevents lysP transcription at the promoter clearance step, as described for the lysine-dependent regulation of argO (R. S. Laishram and J. Gowrishankar, Genes Dev. 21:1258-1272, 2007). The global regulator Lrp also bound to the lysP promoter/control region. An lrp mutant exhibited reduced lysP expression in the absence of external lysine. These results indicate that ArgP is a major regulator of lysP expression but that Lrp modulates lysP transcription under lysine-limiting conditions.
Collapse
Affiliation(s)
| | - Ina Haneburger
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| |
Collapse
|
14
|
Giuliani M, Parrilli E, Ferrer P, Baumann K, Marino G, Tutino ML. Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Kim SH, Schneider BL, Reitzer L. Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. J Bacteriol 2010; 192:5304-11. [PMID: 20729367 PMCID: PMC2950514 DOI: 10.1128/jb.00738-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/06/2010] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of alanine synthesis in the model genetic organism Escherichia coli has implicated avtA, the still uncharacterized alaA and alaB genes, and probably other genes. We identified alaA as yfbQ. We then transferred mutations in several transaminase genes into a yfbQ mutant and isolated a mutant that required alanine for optimal growth. For cells grown with carbon sources other than pyruvate, the major alanine-synthesizing transaminases are AvtA, YfbQ (AlaA), and YfdZ (which we designate AlaC). Growth with pyruvate as the carbon source and multicopy suppression suggest that several other transaminases can contribute to alanine synthesis. Expression studies showed that alanine modestly repressed avtA and yfbQ but had no effect on yfdZ. The leucine-responsive regulatory protein (Lrp) mediated control by alanine. We purified YfbQ and YfdZ and showed that both are dimers with K(m)s for pyruvate within the intracellular range of pyruvate concentration.
Collapse
Affiliation(s)
- Sok Ho Kim
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| | - Barbara L. Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| | - Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
16
|
Kirchman D, Hodson R. Inhibition by peptides of amino Acid uptake by bacterial populations in natural waters: implications for the regulation of amino Acid transport and incorporation. Appl Environ Microbiol 2010; 47:624-31. [PMID: 16346504 PMCID: PMC239738 DOI: 10.1128/aem.47.4.624-631.1984] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the regulatory interactions of amino acid transport and incorporation, we determined the effects of dipeptides on amino acid uptake by bacteria in an estuary and a freshwater lake. Dipeptides noncompetitively inhibited net transport and incorporation of amino acids into macromolecules but had no effect on the ratio of respiration to incorporation. Nearly maximum inhibition occurred at peptide concentrations of <10 nM. In contrast, the initial uptake rate of glycyl-[C]phenylalanine was not affected by glycine or phenylalanine. Net amino acid transport appeared to be inhibited by the increased flux into the intracellular pools, whereas the incorporation of labeled monomers into macromolecules was isotopically diluted by the unlabeled amino acids resulting from intracellular hydrolysis of the dipeptide. Chloramphenicol, sodium azide, and dinitrophenol all inhibited the initial uptake rate of leucine and phenylalanine. These results suggest that in aquatic environments amino acids are taken up by active transport which is coupled closely to protein synthesis.
Collapse
Affiliation(s)
- D Kirchman
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
17
|
Peeters E, Nguyen Le Minh P, Foulquié-Moreno M, Charlier D. Competitive activation of the Escherichia coli argO gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP. Mol Microbiol 2009; 74:1513-26. [DOI: 10.1111/j.1365-2958.2009.06950.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Increased fitness of Pseudomonas fluorescens Pf0-1 leucine auxotrophs in soil. Appl Environ Microbiol 2008; 74:3644-51. [PMID: 18441116 DOI: 10.1128/aem.00429-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The annotation process of a newly sequenced bacterial genome is largely based on algorithms derived from databases of previously defined RNA and protein-encoding gene structures. This process generally excludes the possibility that the two strands of a given stretch of DNA can each harbor a gene in an overlapping manner. While the presence of such structures in eukaryotic genomes is considered to be relatively common, their counterparts in prokaryotic genomes are just beginning to be recognized. Application of an in vivo expression technology has previously identified 22 discrete genetic loci in Pseudomonas fluorescens Pf0-1 that were specifically activated in the soil environment, of which 10 were present in an antisense orientation relative to previously annotated genes. This observation led to the hypothesis that the physiological role of overlapping genetic structures may be relevant to growth conditions outside artificial laboratory media. Here, we examined the role of one of the overlapping gene pairs, iiv19 and leuA2, in soil. Although iiv19 was previously demonstrated to be preferentially activated in the soil environment, its absence did not alter the ability of P. fluorescens to colonize or survive in soil. Surprisingly, the absence of the leuA2 gene conferred a fitness advantage in the soil environment when leucine was supplied exogenously. This effect was determined to be independent of the iiv19 gene, and further analyses revealed that amino acid antagonism was the underlying mechanism behind the observed fitness advantage of the bacterium in soil. Our findings provide a potential mechanism for the frequent occurrence of auxotrophic mutants of Pseudomonas spp. in the lungs of cystic fibrosis patients.
Collapse
|
19
|
Lintner RE, Mishra PK, Srivastava P, Martinez-Vaz BM, Khodursky AB, Blumenthal RM. Limited functional conservation of a global regulator among related bacterial genera: Lrp in Escherichia, Proteus and Vibrio. BMC Microbiol 2008; 8:60. [PMID: 18405378 PMCID: PMC2374795 DOI: 10.1186/1471-2180-8-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/11/2008] [Indexed: 02/03/2023] Open
Abstract
Background Bacterial genome sequences are being determined rapidly, but few species are physiologically well characterized. Predicting regulation from genome sequences usually involves extrapolation from better-studied bacteria, using the hypothesis that a conserved regulator, conserved target gene, and predicted regulator-binding site in the target promoter imply conserved regulation between the two species. However many compared organisms are ecologically and physiologically diverse, and the limits of extrapolation have not been well tested. In E. coli K-12 the leucine-responsive regulatory protein (Lrp) affects expression of ~400 genes. Proteus mirabilis and Vibrio cholerae have highly-conserved lrp orthologs (98% and 92% identity to E. coli lrp). The functional equivalence of Lrp from these related species was assessed. Results Heterologous Lrp regulated gltB, livK and lrp transcriptional fusions in an E. coli background in the same general way as the native Lrp, though with significant differences in extent. Microarray analysis of these strains revealed that the heterologous Lrp proteins significantly influence only about half of the genes affected by native Lrp. In P. mirabilis, heterologous Lrp restored swarming, though with some pattern differences. P. mirabilis produced substantially more Lrp than E. coli or V. cholerae under some conditions. Lrp regulation of target gene orthologs differed among the three native hosts. Strikingly, while Lrp negatively regulates its own gene in E. coli, and was shown to do so even more strongly in P. mirabilis, Lrp appears to activate its own gene in V. cholerae. Conclusion The overall similarity of regulatory effects of the Lrp orthologs supports the use of extrapolation between related strains for general purposes. However this study also revealed intrinsic differences even between orthologous regulators sharing >90% overall identity, and 100% identity for the DNA-binding helix-turn-helix motif, as well as differences in the amounts of those regulators. These results suggest that predicting regulation of specific target genes based on genome sequence comparisons alone should be done on a conservative basis.
Collapse
Affiliation(s)
- Robert E Lintner
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Center, Toledo, OH 43614-2598, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lee CR, Koo BM, Cho SH, Kim YJ, Yoon MJ, Peterkofsky A, Seok YJ. Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol 2005; 58:334-44. [PMID: 16164569 DOI: 10.1111/j.1365-2958.2005.04834.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system (carbohydrate PTS) have been shown to regulate numerous targets, little such information is available for the nitrogen-metabolic phosphotransferase system (nitrogen-metabolic PTS). To elucidate the physiological role of the nitrogen-metabolic PTS, we carried out phenotype microarray (PM) analysis with Escherichia coli K-12 strain MG1655 deleted for the ptsP gene encoding the first enzyme of the nitrogen-metabolic PTS. Together with the PM data, growth studies revealed that a ptsN (encoding enzyme IIA(Ntr)) mutant became extremely sensitive to leucine-containing peptides (LCPs), while both ptsP (encoding enzyme I(Ntr)) and ptsO (encoding NPr) mutants were more resistant than wild type. The toxicity of LCPs was found to be due to leucine and the dephospho-form of enzyme IIA(Ntr) was found to be necessary to neutralize leucine toxicity. Further studies showed that the dephospho-form of enzyme IIA(Ntr) is required for derepression of the ilvBN operon encoding acetohydroxy acid synthase I catalysing the first step common to the biosynthesis of the branched-chain amino acids.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Laboratory of Macromolecular Interactions, Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang CR, Shapiro BE, Hung SP, Mjolsness ED, Hatfield GW. A Mathematical Model for the Branched Chain Amino Acid Biosynthetic Pathways of Escherichia coli K12. J Biol Chem 2005; 280:11224-32. [PMID: 15657047 DOI: 10.1074/jbc.m411471200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a first step toward the elucidation of the systems biology of the model organism Escherichia coli, it was our goal to mathematically model a metabolic system of intermediate complexity, namely the well studied end product-regulated pathways for the biosynthesis of the branched chain amino acids L-isoleucine, L-valine, and L-leucine. This has been accomplished with the use of kMech (Yang, C.-R., Shapiro, B. E., Mjolsness, E. D., and Hatfield, G. W. (2005) Bioinformatics 21, in press), a Cellerator (Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003) Bioinformatics 19, 677-678) language extension that describes a suite of enzyme reaction mechanisms. Each enzyme mechanism is parsed by kMech into a set of fundamental association-dissociation reactions that are translated by Cellerator into ordinary differential equations. These ordinary differential equations are numerically solved by Mathematica. Any metabolic pathway can be simulated by stringing together appropriate kMech models and providing the physical and kinetic parameters for each enzyme in the pathway. Writing differential equations is not required. The mathematical model of branched chain amino acid biosynthesis in E. coli K12 presented here incorporates all of the forward and reverse enzyme reactions and regulatory circuits of the branched chain amino acid biosynthetic pathways, including single and multiple substrate (Ping Pong and Bi Bi) enzyme kinetic reactions, feedback inhibition (allosteric, competitive, and non-competitive) mechanisms, the channeling of metabolic flow through isozymes, the channeling of metabolic flow via transamination reactions, and active transport mechanisms. This model simulates the results of experimental measurements.
Collapse
Affiliation(s)
- Chin-Rang Yang
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
22
|
Chen S, Iannolo M, Calvo JM. Cooperative binding of the leucine-responsive regulatory protein (Lrp) to DNA. J Mol Biol 2005; 345:251-64. [PMID: 15571719 DOI: 10.1016/j.jmb.2004.10.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 10/11/2004] [Accepted: 10/18/2004] [Indexed: 11/24/2022]
Abstract
The leucine-responsive regulatory protein (Lrp) of Escherichia coli activates expression of a number of operons and represses expression of others. For some members of the Lrp regulon, exogenous leucine mitigates the effect of Lrp, for some it potentiates the effect of Lrp, and for others it has no effect on Lrp action. For the ilvIH operon that we study, Lrp activates expression in vivo and mediates the repression of the operon by exogenous leucine. We studied Lrp-1, a leucine-insensitive variant, to investigate mechanisms by which leucine alters Lrp action as an activator of ilvIH expression. The Asp114Glu change did not have much effect on the amount of total Lrp-1 in cells but decreased the amount of free Lrp-1 two- to threefold. Lrp monomers associate to form octamers and hexadecamers (hexadecamer form predominates at micromolar concentrations; Kd=5.27x10(-8) M), and leucine promotes the dissociation of Lrp hexadecamer to a leucine-bound octamer. By contrast, Lrp-1 exists primarily as an octamer in solution (equilibrium dissociation constant 6.5x10(-5) M) and leucine had little effect on the equilibrium. Thus, the hexadecameric form that Lrp assumes in the absence of DNA is not required for activation of the ilvIH operon. Both leucine and the lrp-1 mutation reduced the apparent affinity of Lrp binding to ilvIH DNA (contains two groups of binding sites separated by 136 bp) but they have different effects on intrinsic binding affinity and binding cooperativity. Whereas leucine reduced intrinsic binding affinities and interactions of Lrps bound at upstream and downstream regions of ilvIH DNA, it increased cooperative dimer-dimer interactions of Lrps bound to two adjacent sites. By contrast, the lrp-1 mutation did not have much effect on intrinsic binding affinities but it decreased cooperative adjacent dimer-dimer interactions and enhanced interactions of Lrps bound at upstream and downstream regions of ilvIH DNA. Our analysis is consistent with the idea that leucine enhances dimer-dimer interactions that contribute to octamer formation, concomitantly reducing dimer-dimer interactions that contribute to the longer range interactions of Lrps that are required for activation of the ilvIH promoter.
Collapse
Affiliation(s)
- Shaolin Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
23
|
Najdi TS, Yang CR, Shapiro BE, Hatfield GW, Mjolsness ED. Application of a generalized MWC model for the mathematical simulation of metabolic pathways regulated by allosteric enzymes. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2005:279-88. [PMID: 16447985 DOI: 10.1109/csb.2005.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have developed a mathematical model that simulates the allosteric regulation for threonine biosynthesis pathway starting from aspartate. To achieve this goal, we used kMech, a Cellerator language extension that describes enzyme mechanisms for the mathematical modeling of metabolic pathways. These mechanisms are converted by Cellerator into ordinary differential equations (ODEs) solvable by Mathematica. In this paper, we describe a more flexible model in Cellerator, which generalizes the Monod, Wyman, Changeux (MWC) model for enzyme allosteric regulation to allow for multiple substrate, activator and inhibitor binding sites. Furthermore, we have developed a model that describes the behavior of the bifunctional allosteric enzyme aspartate Kinase I-Homoserine Dehydrogenase I (AKI-HDHI). This model predicts the partition of enzyme activities in the steady state which paves a way for a more generalized prediction of the behavior of bifunctional enzymes.
Collapse
Affiliation(s)
- Tarek S Najdi
- Institute for Genomics and Bioinformatics, University of California at Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
24
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 2004; 186:343-50. [PMID: 14702302 PMCID: PMC305776 DOI: 10.1128/jb.186.2.343-350.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the active transport of phenylalanine is considered to be performed by two different systems, AroP and PheP. However, a low level of accumulation of phenylalanine was observed in an aromatic amino acid transporter-deficient E. coli strain (DeltaaroP DeltapheP Deltamtr Deltatna DeltatyrP). The uptake of phenylalanine by this strain was significantly inhibited in the presence of branched-chain amino acids. Genetic analysis and transport studies revealed that the LIV-I/LS system, which is a branched-chain amino acid transporter consisting of two periplasmic binding proteins, the LIV-binding protein (LIV-I system) and LS-binding protein (LS system), and membrane components, LivHMGF, is involved in phenylalanine accumulation in E. coli cells. The K(m) values for phenylalanine in the LIV-I and LS systems were determined to be 19 and 30 micro M, respectively. Competitive inhibition of phenylalanine uptake by isoleucine, leucine, and valine was observed for the LIV-I system and, surprisingly, also for the LS system, which has been assumed to be leucine specific on the basis of the results of binding studies with the purified LS-binding protein. We found that the LS system is capable of transporting isoleucine and valine with affinity comparable to that for leucine and that the LIV-I system is able to transport tyrosine with affinity lower than that seen with other substrates. The physiological importance of the LIV-I/LS system for phenylalanine accumulation was revealed in the growth of phenylalanine-auxotrophic E. coli strains under various conditions.
Collapse
Affiliation(s)
- Takashi Koyanagi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Lrp is a global regulator of metabolism in Escherichia coli that helps cells respond to changes in environmental conditions. The action of Lrp as a transcriptional activator or repressor is sometimes affected when the medium contains exogenous leucine. In this study, we examined the thermodynamics of leucine binding to Lrp and to a leucine response mutant, Lrp-1, and leucine-induced dissociation of Lrp hexadecamer to leucine-bound octamer. The results of dynamic light-scattering and fluorescence measurements suggest that Lrp has two leucine-binding sites, one a high-affinity site and the other a low-affinity site that is coupled to the dissociation reaction. The Gibbs free energy change for leucine binding to the high-affinity site is about -7.0 kcal/mol. Binding of two leucine molecules to low-affinity sites on the hexadecamer or one leucine molecule to one octamer induces the dissociation of hexadecamer to leucine-bound octamer. The Gibbs free energy change for leucine binding to the low-affinity site was estimated to be in the range -4.66 to -5.03 kcal/mol for leucine binding to an octamer or -6.01 to -6.75 kcal/mol for leucine binding to a hexadecamer. The thermodynamic parameters derived from this study were used together with other data to estimate the distribution of free Lrp hexadecamer, octamer, leucine-bound hexadecamer, and leucine-bound octamer in cells. Mathematical modeling, employed to simulate modulation of Lrp action in response to growth conditions, gave results that are consistent with known patterns of Lrp action on different operons.
Collapse
Affiliation(s)
- Shaolin Chen
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
26
|
Epelbaum S, LaRossa RA, VanDyk TK, Elkayam T, Chipman DM, Barak Z. Branched-chain amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis. J Bacteriol 1998; 180:4056-67. [PMID: 9696751 PMCID: PMC107399 DOI: 10.1128/jb.180.16.4056-4067.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 05/30/1998] [Indexed: 11/20/2022] Open
Abstract
We report here the first quantitative study of the branched-chain amino acid biosynthetic pathway in Salmonella typhimurium LT2. The intracellular levels of the enzymes of the pathway and of the 2-keto acid intermediates were determined under various physiological conditions and used for estimation of several of the fluxes in the cells. The results led to a revision of previous ideas concerning the way in which multiple acetohydroxy acid synthase (AHAS) isozymes contribute to the fitness of enterobacteria. In wild-type LT2, AHAS isozyme I provides most of the flux to valine, leucine, and pantothenate, while isozyme II provides most of the flux to isoleucine. With acetate as a carbon source, a strain expressing AHAS II only is limited in growth because of the low enzyme activity in the presence of elevated levels of the inhibitor glyoxylate. A strain with AHAS I only is limited during growth on glucose by the low tendency of this enzyme to utilize 2-ketobutyrate as a substrate; isoleucine limitation then leads to elevated threonine deaminase activity and an increased 2-ketobutyrate/2-ketoisovalerate ratio, which in turn interferes with the synthesis of coenzyme A and methionine. The regulation of threonine deaminase is also crucial in this regard. It is conceivable that, because of fundamental limitations on the specificity of enzymes, no single AHAS could possibly be adequate for the varied conditions that enterobacteria successfully encounter.
Collapse
Affiliation(s)
- S Epelbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Janes BK, Bender RA. Alanine catabolism in Klebsiella aerogenes: molecular characterization of the dadAB operon and its regulation by the nitrogen assimilation control protein. J Bacteriol 1998; 180:563-70. [PMID: 9457858 PMCID: PMC106922 DOI: 10.1128/jb.180.3.563-570.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1997] [Accepted: 11/20/1997] [Indexed: 02/06/2023] Open
Abstract
Klebsiella aerogenes strains with reduced levels of D-amino acid dehydrogenase not only fail to use alanine as a growth substrate but also become sensitive to alanine in minimal media supplemented with glucose and ammonium. The inability of these mutant strains to catabolize the alanine provided in the medium interferes with both pathways of glutamate production. Alanine derepresses the nitrogen regulatory system (Ntr), which in turn represses glutamate dehydrogenase, one pathway of glutamate production. Alanine also inhibits the enzyme glutamine synthetase, the first enzyme in the other pathway of glutamate production. Therefore, in the presence of alanine, strains with mutations in dadA (the gene that codes for a subunit of the dehydrogenase) exhibit a glutamate auxotrophy when ammonium is the sole source of nitrogen. The alanine catabolic operon of Klebsiella aerogenes, dadAB, was cloned, and its DNA sequence was determined. The clone complemented the alanine defects of dadA strains. The operon has a high similarity to the dadAB operon of Salmonella typhimurium and the dadAX operon of Escherichia coli, each of which codes for the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. Unlike the cases for E. coli and S. typhimurium, the dad operon of K. aerogenes is activated by the Ntr system, mediated in this case by the nitrogen assimilation control protein (NAC). A sequence matching the DNA consensus for NAC-binding sites is located centered at position -44 with respect to the start of transcription. The promoter of this operon also contains consensus binding sites for the catabolite activator protein and the leucine-responsive regulatory protein.
Collapse
Affiliation(s)
- B K Janes
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
28
|
Roesch PL, Blomfield IC. Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli. Mol Microbiol 1998; 27:751-61. [PMID: 9515701 DOI: 10.1046/j.1365-2958.1998.00720.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The leucine-responsive regulatory protein (Lrp) is a global regulator that controls the expression of numerous operons in Escherichia coli. Lrp can act as a repressor or as an activator of transcription with its effects being potentiated, repressed or unaffected by the presence of exogenous leucine. The phase variation of type 1 fimbria in E. coli provides a unique system in which to investigate the effects of leucine on Lrp, as it is the only known example in which Lrp is a positive regulator and leucine potentiates this effect. Previous studies determined that Lrp binds with high affinity to two sites within the fim switch (fim sites 1 and 2), and binding to these sites stimulates recombination. Here, it is shown that, even though leucine stimulates the fim switch in vivo, it nevertheless causes a slight decrease in Lrp binding to the fim switch in vitro. These contradictory results are explicable by the finding that Lrp binding to a third region adjacent to fim sites 1 and 2 inhibits recombination. According to this model, leucine stimulates recombination by selectively disrupting Lrp binding to this newly characterized region, while having little or no effect on Lrp binding to fim sites 1 and 2.
Collapse
Affiliation(s)
- P L Roesch
- Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, NC 27157-1064, USA
| | | |
Collapse
|
29
|
Bhagwat SP, Rice MR, Matthews RG, Blumenthal RM. Use of an inducible regulatory protein to identify members of a regulon: application to the regulon controlled by the leucine-responsive regulatory protein (Lrp) in Escherichia coli. J Bacteriol 1997; 179:6254-63. [PMID: 9335270 PMCID: PMC179537 DOI: 10.1128/jb.179.20.6254-6263.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Procedures were developed to facilitate the identification of genes that belong to a given regulon and characterization of their responses to the regulator. The regulon controlled by the Escherichia coli leucine-responsive regulatory protein (Lrp) was studied by isolating random transcriptional fusions to lacZ, using lambda placMu53 and a strain in which lrp is under isopropylthio-beta-D-galactopyranoside (IPTG)-inducible control. Fusions exhibiting IPTG-responsive beta-galactosidase activity were cloned by integrating the suicide vector pIVET1 via homologous recombination at lacZ, followed by self-ligating digested chromosomal DNA. We verified the patterns of lacZ expression after using the plasmid clones to generate merodiploid strains with interrupted and uninterrupted copies of the same sequence. If the merodiploid expression pattern was unchanged from that shown by the original fusion strain, then the cloned fusion was responsible for the regulatory pattern of interest; a difference in the expression pattern could indicate that the original strain carried multiple fusions or that there were autogenous effects of having interrupted the fused gene. Using these procedures, we generated a fusion library of approximately 5 x 10(6) strains; approximately 3,000 of these strains were screened, yielding 84 Lrp-responsive fusions, and 10 of the 84 were phenotypically stable and were characterized. The responses of different fusions in a given operon to in vivo Lrp titrations revealed variations in expression with the position of insertion. Among the newly identified members of the regulon is an open reading frame (orf3) between rpiA and serA. Also, expression of a fusion just downstream of dinF was found to be Lrp dependent only in stationary phase.
Collapse
Affiliation(s)
- S P Bhagwat
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo 43614-5806, USA
| | | | | | | |
Collapse
|
30
|
Borst DW, Blumenthal RM, Matthews RG. Use of an in vivo titration method to study a global regulator: effect of varying Lrp levels on expression of gltBDF in Escherichia coli. J Bacteriol 1996; 178:6904-12. [PMID: 8955313 PMCID: PMC178592 DOI: 10.1128/jb.178.23.6904-6912.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
Collapse
Affiliation(s)
- D W Borst
- Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
31
|
Blumenthal RM, Borst DW, Matthews RG. Experimental analysis of global gene regulation in Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:1-86. [PMID: 8787606 DOI: 10.1016/s0079-6603(08)60189-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R M Blumenthal
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
32
|
Ferrario M, Ernsting BR, Borst DW, Wiese DE, Blumenthal RM, Matthews RG. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF. J Bacteriol 1995; 177:103-13. [PMID: 8002608 PMCID: PMC176562 DOI: 10.1128/jb.177.1.103-113.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The two major porins of Escherichia coli K-12 strains, OmpC and OmpF, are inversely regulated with respect to one another. The expression of OmpC and OmpF has been shown to be influenced by the leucine-responsive regulatory protein (Lrp): two-dimensional gel electrophoresis of proteins from strains with and strains without a functional Lrp protein revealed that OmpC expression is increased in an lrp strain, while OmpF expression is decreased. In agreement with these findings, we now present evidence that transcriptional (operon) fusions of lacZ+ to ompC and micF are negatively regulated by Lrp. Lrp binds specifically to the intergenic region between micF and ompC, as indicated by mobility shift assays and by DNase I footprinting. The expression of an ompF'-lacZ+ gene (translational) fusion is increased 3.7-fold in an lrp+ background compared with an lrp background, but expression of an ompF-lacZ+ operon fusion is not. Studies of in vivo expression of the outer membrane porins during growth on glucose minimal medium showed that the OmpF/OmpC ratio is higher in lrp+ strains than it is in isogenic lrp strains. The effect of Lrp was not seen in a strain containing a deletion of micF. Our studies suggest that the positive effect of Lrp on OmpF expression stems from a negative effect of Lrp on the expression of micF, an antisense RNA that inhibits ompF translation.
Collapse
Affiliation(s)
- M Ferrario
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055
| | | | | | | | | | | |
Collapse
|
33
|
Calvo JM, Matthews RG. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 1994; 58:466-90. [PMID: 7968922 PMCID: PMC372976 DOI: 10.1128/mr.58.3.466-490.1994] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The leucine-responsive regulatory protein (Lrp) regulates the expression of more than 40 genes and proteins in Escherichia coli. Among the operons that are positively regulated by Lrp are operons involved in amino acid biosynthesis (ilvIH, serA)), in the biosynthesis of pili (pap, fan, fim), and in the assimilation of ammonia (glnA, gltBD). Negatively regulated operons include operons involved in amino acid catabolism (sdaA, tdh) and peptide transport (opp) and the operon coding for Lrp itself (lrp). Detailed studies of a few members of the regulon have shown that Lrp can act directly to activate or repress transcription of target operons. A substantial fraction of operons regulated by Lrp are also regulated by leucine, and the effect of leucine on expression of these operons requires a functional Lrp protein. The patterns of regulation are surprising and interesting: in some cases activation or repression mediated by Lrp is antagonized by leucine, in other cases Lrp-mediated activation or repression is potentiated by leucine, and in still other cases leucine has no effect on Lrp-mediated regulation. Current research is just beginning to elucidate the detailed mechanisms by which Lrp can mediate such a broad spectrum of regulatory effects. Our view of the role of Lrp in metabolism may change as more members of the regulon are identified and their regulation characterized, but at this point Lrp seems to be important in regulating nitrogen metabolism and one-carbon metabolism, permitting adaptations to feast and to famine.
Collapse
Affiliation(s)
- J M Calvo
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
34
|
Ernsting BR, Atkinson MR, Ninfa AJ, Matthews RG. Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli. J Bacteriol 1992; 174:1109-18. [PMID: 1346534 PMCID: PMC206403 DOI: 10.1128/jb.174.4.1109-1118.1992] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leucine-responsive regulatory protein (Lrp) has been shown to regulate, either positively or negatively, the transcription of several Escherichia coli genes in response to leucine. We have used two-dimensional gel electrophoresis to analyze the patterns of polypeptide expression in isogenic lrp+ and lrp mutant strains in the presence or absence of leucine. The absence of a functional Lrp protein alters the expression of at least 30 polypeptides. The expression of the majority of these polypeptides is not affected by the presence or absence of 10 mM exogenous leucine. Outer membrane porins OmpC and OmpF, glutamine synthetase (GlnA), the small subunit of glutamate synthase (GltD), lysyl-tRNA synthetase form II (LysU), a high-affinity periplasmic binding protein specific for branched-chain amino acids (LivJ), W protein, and the enzymes of the pathway converting threonine to glycine, namely, threonine dehydrogenase (Tdh) and 2-amino-3-ketobutyrate coenzyme A ligase (Kbl), were identified as members of the Lrp regulon by electrophoretic analysis. We have shown that Lrp is a positive regulator of glutamate synthase and glutamine synthetase and that exogenous leucine has little or no effect on the expression of these proteins. In strains carrying a glnL deletion and in strains carrying the glnL2302 allele, which directs the synthesis of a GlnL protein that is constitutively active, expression of glutamine synthetase is no longer regulated by Lrp, demonstrating that the effect of Lrp on glutamine synthetase levels is indirect and requires an intact glnL gene. lrp::Tn10 strains grow poorly when arginine or ornithine is present as the sole nitrogen source in the medium. On the bases of present studies and previous research, we propose that Lrp is involved in the adaptation of E. coli cells to major shifts in environment, such as those which occur when E. coli leaves the intestinal tract of its animal host. Several genes required for amino acid and peptide transport and catabolism are negatively regulated by Lrp, and other genes required for amino acid biosynthesis and ammonia assimilation in a nitrogen-poor environment are positively regulated by Lrp.
Collapse
Affiliation(s)
- B R Ernsting
- Biophysics Research Division, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
35
|
Lin R, D'Ari R, Newman EB. Lambda placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 1992; 174:1948-55. [PMID: 1532173 PMCID: PMC205801 DOI: 10.1128/jb.174.6.1948-1955.1992] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The leucine regulon coordinates the expression of several Escherichia coli genes according to the presence of exogenous leucine, which interacts with the lrp gene product, Lrp. We isolated and characterized 22 strains with lambda placMu insertions in Lrp-regulated genes. Lrp and leucine influenced gene expression in a surprising variety of ways. We identified two genes that are regulated by Lrp and not affected by L-leucine. We therefore rename this the leucine-lrp regulon. Genes coding for glycine cleavage and leucine biosynthesis enzymes have been identified as members of the leucine-lrp regulon. We suggest that the lrp gene product activates genes needed for growth in minimal medium, and we show that the gene is repressed by its own product and is highly repressed during growth in rich medium.
Collapse
Affiliation(s)
- R Lin
- Department of Biological Sciences, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
36
|
Affiliation(s)
- S A Haney
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
37
|
Rex JH, Aronson BD, Somerville RL. The tdh and serA operons of Escherichia coli: mutational analysis of the regulatory elements of leucine-responsive genes. J Bacteriol 1991; 173:5944-53. [PMID: 1917830 PMCID: PMC208338 DOI: 10.1128/jb.173.19.5944-5953.1991] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tdh promoter of Escherichia coli is induced seven- to eightfold when cells are grown in the presence of exogenous leucine. A scheme was devised to select mutants that exhibited high constitutive expression of the tdh promoter. The mutations in these strains were shown to lie within a previously identified gene (lrp) that encodes Lrp (leucine-responsive regulatory protein). By deletion analysis, the site of action of Lrp was localized to a 25-bp region between coordinates -69 and -44 of the tdh promoter. Disruption of a 12-bp presumptive target sequence found in this region of tdh resulted in constitutively derepressed expression from the tdh promoter. Similar DNA segments (consensus, TTTATTCtNaAT) were also identified in a number of other promoters, including each of the Lrp-regulated promoters whose nucleotide sequence is known. The sequence of the promoter region of serA, an Lrp-regulated gene, was determined. No Lrp consensus target sequence was present upstream of serA, suggesting that Lrp acts indirectly on the serA promoter. A previously described mutation in a leucine-responsive trans-acting factor, LivR (J. J. Anderson, S. C. Quay, and D. L. Oxender, J. Bacteriol. 126:80-90, 1976), resulted in constitutively repressed expression from the tdh promoter and constitutively induced expression from the serA promoter. The possibility that LivR and Lrp are allelic is discussed.
Collapse
Affiliation(s)
- J H Rex
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
38
|
Abouhamad WN, Manson M, Gibson MM, Higgins CF. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol 1991; 5:1035-47. [PMID: 1956284 DOI: 10.1111/j.1365-2958.1991.tb01876.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dipeptide permease (Dpp) is one of three genetically distinct peptide-transport systems in enteric bacteria. Dpp also plays a role in chemotaxis towards peptides. We have devised three selections for dpp mutations based on resistance to toxic peptides (bacilysin, valine-containing peptides, and bialaphos). All dpp mutations mapped to a single chromosomal locus between 77 and 78 min in Salmonella typhimurium and at 79.2 min in Escherichia coli. Expression of dpp was constitutive in both species but the absolute level of expression varied widely between strains. At least in part this difference in expression levels is determined by cis-acting sequences. The dpp locus of E. coli was cloned. The first gene in the operon, dppA, encodes a periplasmic dipeptide-binding protein (DBP) required for dipeptide transport and chemotaxis. Downstream of dppA are other genes required for transport but not for chemotaxis. The dipeptide-binding protein was found to share 26.5% sequence identity with the periplasmic oligopeptide-binding protein OppA.
Collapse
Affiliation(s)
- W N Abouhamad
- Department of Biology, Texas A & M University, College Station 77843
| | | | | | | |
Collapse
|
39
|
Shu J, Shuler ML. Prediction of effects of amino acid supplementation on growth ofE. coli B/r. Biotechnol Bioeng 1991; 37:708-15. [DOI: 10.1002/bit.260370804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Tuan LR, D'Ari R, Newman EB. The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J Bacteriol 1990; 172:4529-35. [PMID: 2165479 PMCID: PMC213284 DOI: 10.1128/jb.172.8.4529-4535.1990] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have isolated and characterized a highly pleiotropic Escherichia coli mutant affected in the activity of a number of enzymes involved in different metabolic pathways, all of which are regulated by leucine. Selected for its ability to grow with L-serine as sole carbon source, the rbl-1::Tn10 mutant had high levels of L-serine deaminase activity (due to increased transcription of the structural gene) and of another amino acid-degrading enzyme, L-threonine dehydrogenase, and decreased transcription of the operons serA and ilvIH, coding for biosynthetic enzymes. The rbl mutation suppressed the slow growth of a metK mutant, deficient in S-adenosylmethionine synthetase. Furthermore, metK mutants spontaneously accumulated faster-growing rbl-like derivatives, and a commonly used metK strain, RG62, carries such a mutation. The rbl gene is located near 20 min on the E. coli genetic map. All phenotypes of the rbl mutant could be observed in rbl+ strains cultivated in the presence of L-leucine, and exogenous L-leucine had little further effect on the rbl strains. We propose that the rbl gene product is the regulator of a global response to leucine.
Collapse
Affiliation(s)
- L R Tuan
- Department of Biological Sciences, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
41
|
|
42
|
Antonucci TK, Wagner LM, Oxender DL. Cloning, expression, and nucleotide sequence of livR, the repressor for high-affinity branched-chain amino acid transport in Escherichia coli. Proteins 1986; 1:125-33. [PMID: 3329726 DOI: 10.1002/prot.340010204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The livR gene encoding the repressor for high-affinity branched-chain amino acid transport in Escherichia coli has been cloned from a library prepared from the episome F106. The inserted DNA fragment from the initial cloned plasmid, pANT1, complemented two independent, spontaneously derived, regulatory mutations. Subcloning as well as the creation of deletions with Bal31 exonuclease revealed that the entire regulatory region is contained within a 1.1-kb RsaI-SalI fragment. Expression of the pANT plasmids in E. coli minicells showed that the regulatory region encodes one detectable protein with an apparent molecular weight of 21,000. DNA sequencing revealed one open reading frame of 501 bp encoding a protein with a calculated MW of 19,155. The potential secondary structure of the regulatory protein has been predicted and it suggests that the carboxy terminus may fold into three consecutive alpha helices. These results suggest that the livR gene encodes a repressor which plays a role in the regulation of expression of the livJ and the livK transport genes.
Collapse
Affiliation(s)
- T K Antonucci
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | |
Collapse
|
43
|
Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob Agents Chemother 1986; 29:639-44. [PMID: 3010850 PMCID: PMC180458 DOI: 10.1128/aac.29.4.639] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Escherichia coli the frequency of spontaneous single-step mutation to high levels of resistance to the newer 4-quinolone agent norfloxacin was confirmed to be over 300-fold lower than that to the older agent nalidixic acid. Serial passage on incremental concentrations of drug was necessary to produce mutants highly resistant to norfloxacin. Genetic analysis of one such highly resistant strain identified two mutations conferring drug resistance. One mutation, nfxA, mapped around 48 min on the E. coli genetic map and was shown to be an allele of gyrA by studies demonstrating an increased drug resistance of DNA gyrase reconstituted with the gyrase A subunit isolated from the mutant strain. These findings also identified the DNA gyrase A subunit as a target of norfloxacin. The second mutation, nfxB, mapped between 20 and 22 min was associated with additional resistances to tetracycline, chloramphenicol, and cefoxitin and with decreases in outer membrane porin protein OmpF. The nfxA and nfxB mutations together accounted for most, but not all, of the norfloxacin resistance phenotype of this strain.
Collapse
|
44
|
McKenney D, Melton T. Isolation and characterization of ack and pta mutations in Azotobacter vinelandii affecting acetate-glucose diauxie. J Bacteriol 1986; 165:6-12. [PMID: 3001033 PMCID: PMC214362 DOI: 10.1128/jb.165.1.6-12.1986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Azotobacter vinelandii mutants defective for acetate utilization that were resistant to fluoroacetate (FA) were isolated. FA-resistant mutant AM6 failed to transport [14C]acetate and lacked enzymatic activity for both acetate kinase and phosphotransacetylase. Growth of wild-type A. vinelandii was sensitive to 10 mM glycine; however, all FA-resistant strains were resistant to glycine toxicity. Isolated mutants that were spontaneously resistant to glycine were also resistant to FA and lacked both acetate kinase and phosphotransacetylase activity. The glycine-resistant mutant AM3, unlike mutant AM6, was capable of growth on acetate. The mutant strain AM6 was unable to growth under acetate-glucose diauxie conditions. Glucose utilization in this mutant, unlike that in wild-type A. vinelandii, was permanently arrested in the presence of acetate. Revertants of strain AM6 were selected on plates with acetate or acetate-glucose. Two classes of revertants were isolated. Class I revertant mutants AM31 and AM35 were positive for both acetate kinase and phosphotransacetylase activities. These revertants were also sensitive to both FA and glycine. Class II revertant strains AM32 and AM34 still lacked acetate kinase and phophotransacetylase activity. Both of these revertants remained resistant to FA and glycine.
Collapse
|
45
|
Gollop N, Chipman DM, Barak Z. Inhibition of acetohydroxy acid synthase by leucine. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 748:34-9. [PMID: 6351926 DOI: 10.1016/0167-4838(83)90024-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The enzymatic reaction of acetohydroxy acid synthase in crude extracts of Escherichia coli K-12 is inhibited by leucine. Inhibition is most pronounced at low pH values and is low at pH values higher than 8.0. Both isoenzymes of acetohydroxy acid synthase present in E. coli K-12 (isoenzyme I and isoenzyme III) are inhibited by leucine. Isoenzyme I, which is responsible for the majority of acetohydroxy acid synthase activity in E. coli K-12 at physiological pH, is inhibited almost completely by 30 mM leucine at pH 6.25-7.0 and is not affected at all at pH values higher than 8.4. Inhibition of isoenzyme I by leucine is a mixed noncompetitive process. Leucine inhibition of isoenzyme III is pH-independent and reaches only 40% at 30 mM leucine. The inhibition of acetohydroxy acid synthase by leucine at physiological pH, observed in vitro in this study, correlates with the idea that acetohydroxy acid synthase is a target for the toxicity of the abnormally high concentrations of leucine in E. coli K-12.
Collapse
|
46
|
Hobert EH, Datta P. Synthesis of biodegradative threonine dehydratase in Escherichia coli: role of amino acids, electron acceptors, and certain intermediary metabolites. J Bacteriol 1983; 155:586-92. [PMID: 6348023 PMCID: PMC217726 DOI: 10.1128/jb.155.2.586-592.1983] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.
Collapse
|
47
|
Ferber DM, Ely B. Resistance to amino acid inhibition in Caulobacter crescentus. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf00332626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Louarn J, Patte J, Louarn JM. Suppression of Escherichia coli dnaA46 mutations by integration of plasmid R100.1. derivatives: constraints imposed by the replication terminus. J Bacteriol 1982; 151:657-67. [PMID: 7047494 PMCID: PMC220306 DOI: 10.1128/jb.151.2.657-667.1982] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have studies the phenotypic suppression of a dnaA46 mutation by plasmid integration at preselected chromosomal sites after introducing homologous sequences (Mu prophages) onto both the chromosomes and the suppressive plasmid. The plasmids used were all derived from plasmid R100.1. We found that the conditions required to get viable suppressive integration varied as the plasmid integration site moved from the origin to the terminus of chromosome replication. Two constraints were observed. Both appeared to be linked to the new characteristics acquired by chromosome replication from the integrated plasmid. One constraint was that strains with integrative suppression near the terminus terC were viable only in minimal medium. The rich medium sensitivity of these strains was correlated with a loss of regulation of initiation. The other constraint was a requirement for a specific orientation in certain regions of the chromosome. The two branches defined by normally initiated replication, between oriC and terC, were also symmetrical with respect to these plasmid orientation constraints. In studying the possible reasons for a plasmid orientation constraint, we found that, of the two forks initiated in bidirectional replication from the integrated plasmid, one was capable of moving across the terC region with a higher movability than the other.
Collapse
|
49
|
Gollop N, Tavori H, Barak Z. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli. J Bacteriol 1982; 149:387-90. [PMID: 7033214 PMCID: PMC216639 DOI: 10.1128/jb.149.1.387-390.1982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides.
Collapse
|
50
|
Tavori H, Kimmel Y, Barak Z. Toxicity of leucine-containing peptides in Escherichia coli caused by circumvention of leucine transport regulation. J Bacteriol 1981; 146:676-83. [PMID: 7012134 PMCID: PMC217012 DOI: 10.1128/jb.146.2.676-683.1981] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A variety of leucine-containing peptides (LCP), Phe-Leu, Gly-Leu, Pro-Leu, Ala-Leu, Ala-Leu-Lys, Leu-Phe-Ala, Leu-Leu-Leu, and Leu-Gly-Gly, inhibited the growth of a prototrophic strain of Escherichia coli K-12 at concentrations between 0.05 and 0.28 mM. Toxicity requires normal uptake of peptides. When peptide transport was impaired by mutations, strains became resistant to the respective LCP. Inhibition of growth occurred immediately after the addition of LCP, and was relieved when 0.4 mM isoleucine was added. The presence of Gly-Leu in the medium correlated with the inhibition of growth, and the bacteria began to grow at the normal rate 70 min after Gly-Leu became undetectable. Disappearance of the peptide corresponded with the appearance of free leucine and glycine in the medium. The concentration of leucine inside the LCP-treated bacteria was higher than that in the leucine-treated and the control cultures. We suggest that entry of LCP into the cells via peptide transport systems circumvents the regulation of leucine transport, thereby causing abnormality high concentrations of leucine inside the cells. This accumulation of leucine interferes with the biosynthesis of isoleucine and inhibits the growth of the bacteria.
Collapse
|