Crandall M, Lawrence LJ. Sporulation in Hansenula wingei is induced by nitrogen starvation in maltose-containing media.
J Bacteriol 1980;
142:276-84. [PMID:
7372572 PMCID:
PMC293947 DOI:
10.1128/jb.142.1.276-284.1980]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The sexually agglutinative yeast Hansenula wingei lives in association with bark beetles that inhabit coniferous trees. This yeast was induced to sporulate by malt extract, which contains a high percentage of maltose (50%) and a low percentage of nitrogen (0.5%). A solution of 1.5% maltose without any growth factors also induced ascosporogenesis in H. wingei. Thus, only a carbon source is required for sporulation as in Saccharomyces. However, potassium acetate did not induce sporulation in H. wingei as it does in S. cerevisiae. Instead, disaccharides (such as maltose, sucrose, or cellobiose) promote sporulation better than either monosaccharides (such as dextrose, fructose, or mannose) or respiratory substrates (such as ethanol or glycerol). The specificity of disaccharides in promoting sporulation in H. wingei may be considered an adaptation since these disaccharides are present in the natural environment of this yeast. In addition, the specificity of disaccharides may be related to the induction of the disaccharidase because cells precultured on dextrose sporulate well on maltose, but cells precultured on maltose sporulate poorly on maltose. When (NH(4))(2)SO(4) was added at a low concentration (3 mM) to synthetic sporulation medium (1.5% maltose solution), sporulation was abolished, whereas other salts and nitrogen sources inhibited to a lesser extent and vitamins and trace elements had no effect. Oxygen was required for sporulation, as expected for an obligate aerobe. Maximal sporulation was achieved in 2% malt extract broth at high cell density (10(9) cells per ml), pH 5, and 25 degrees C. By using these optimal physiological conditions and hybrid strains selected from an extensive genetic breeding program, about 30% asci (10% tetrads) were obtained routinely. Thus, the genetics of cell recognition in this yeast can now be studied.
Collapse