1
|
Sun S, Wang Y, Shu L, Lu X, Wang Q, Zhu C, Shi J, Lye GJ, Baganz F, Hao J. Redirection of the central metabolism of Klebsiella pneumoniae towards dihydroxyacetone production. Microb Cell Fact 2021; 20:123. [PMID: 34187467 PMCID: PMC8243499 DOI: 10.1186/s12934-021-01608-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
Background Klebsiella pneumoniae is a bacterium that can be used as producer for numerous chemicals. Glycerol can be catabolised by K. pneumoniae and dihydroxyacetone is an intermediate of this catabolism pathway. Here dihydroxyacetone and glycerol were produced from glucose by this bacterium based a redirected glycerol catabolism pathway. Results tpiA, encoding triosephosphate isomerase, was knocked out to block the further catabolism of dihydroxyacetone phosphate in the glycolysis. After overexpression of a Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase (hdpA), the engineered strain produced remarkable levels of dihydroxyacetone (7.0 g/L) and glycerol (2.5 g/L) from glucose. Further increase in product formation were obtained by knocking out gapA encoding an iosenzyme of glyceraldehyde 3-phosphate dehydrogenase. There are two dihydroxyacetone kinases in K. pneumoniae. They were both disrupted to prevent an inefficient reaction cycle between dihydroxyacetone phosphate and dihydroxyacetone, and the resulting strains had a distinct improvement in dihydroxyacetone and glycerol production. pH 6.0 and low air supplement were identified as the optimal conditions for dihydroxyacetone and glycerol production by K, pneumoniae ΔtpiA-ΔDHAK-hdpA. In fed batch fermentation 23.9 g/L of dihydroxyacetone and 10.8 g/L of glycerol were produced after 91 h of cultivation, with the total conversion ratio of 0.97 mol/mol glucose. Conclusions This study provides a novel and highly efficient way of dihydroxyacetone and glycerol production from glucose. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01608-0.
Collapse
Affiliation(s)
- Shaoqi Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yike Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lin Shu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiyang Lu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Qinghui Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Chenguang Zhu
- School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK.
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China. .,Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
2
|
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:340-354. [PMID: 28394446 DOI: 10.1111/tpj.13569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.
Collapse
Affiliation(s)
- Sylwia A Stopka
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
3
|
Alagesan S, Gaudana SB, Wangikar PP. Rhythmic oscillations in KaiC1 phosphorylation and ATP/ADP ratio in nitrogen-fixing cyanobacteriumCyanothecesp. ATCC 51142. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1116737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Wang J, Si Z, Li F, Xiong X, Lei L, Xie F, Chen D, Li Y, Li Y. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus. PLANT MOLECULAR BIOLOGY 2015; 88:515-529. [PMID: 26105827 DOI: 10.1007/s11103-015-0323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation.
Collapse
Affiliation(s)
- Jianyun Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gerhardt ECM, Araújo LM, Ribeiro RR, Chubatsu LS, Scarduelli M, Rodrigues TE, Monteiro RA, Pedrosa FO, Souza EM, Huergo LF. Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling. MICROBIOLOGY-SGM 2012; 158:1656-1663. [PMID: 22461486 DOI: 10.1099/mic.0.058446-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteins belonging to the P(II) family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of P(II) relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, P(II) is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of P(II) proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that P(II) might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on in vitro uridylylation of the Azospirillum brasilense P(II) proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of P(II) by ATP. Both P(II) uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that P(II) proteins might act as cellular energy sensors.
Collapse
Affiliation(s)
- Edileusa C M Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Luíza M Araújo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Ronny R Ribeiro
- Departamento de Química, Centro Politécnico, Jardim das Américas, Caixa Postal 19081, UFPR Curitiba, Paraná, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Marcelo Scarduelli
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Thiago E Rodrigues
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| |
Collapse
|
6
|
Bonatto AC, Souza EM, Oliveira MAS, Monteiro RA, Chubatsu LS, Huergo LF, Pedrosa FO. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro. Arch Microbiol 2012; 194:643-52. [PMID: 22382722 DOI: 10.1007/s00203-012-0799-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/22/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.
Collapse
Affiliation(s)
- Ana C Bonatto
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP19046, Curitiba, PR 81531-980, Brazil.
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Biological nitrogen fixation is a complex and tightly regulated process limited to a group of prokaryotic species known as diazotrophs. Among well-studied diazotrophs, Azotobacter vinelandii is the best studied for its convenience of aerobic growth, its high levels of nitrogenase expression, and its genetic tractability. This chapter includes protocols and strategies in the molecular biology and genetic engineering of A. vinelandii that have been used as valuable tools for advancing studies on the biosynthesis, mechanism, and regulation of nitrogen fixation.
Collapse
|
9
|
Popp D, Narita A, Maeda K, Fujisawa T, Ghoshdastider U, Iwasa M, Maéda Y, Robinson RC. Filament structure, organization, and dynamics in MreB sheets. J Biol Chem 2010; 285:15858-65. [PMID: 20223832 DOI: 10.1074/jbc.m109.095901] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.
Collapse
Affiliation(s)
- David Popp
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum. J Bacteriol 2009; 191:5526-37. [PMID: 19542280 DOI: 10.1128/jb.00585-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in Rhodospirillum rubrum and in some other photosynthetic bacteria is regulated in part by the availability of light. This regulation is through a posttranslational modification system that is itself regulated by P(II) homologs in the cell. P(II) is one of the most broadly distributed regulatory proteins in nature and directly or indirectly senses nitrogen and carbon signals in the cell. However, its possible role in responding to light availability remains unclear. Because P(II) binds ATP, we tested the hypothesis that removal of light would affect P(II) by changing intracellular ATP levels, and this in turn would affect the regulation of nitrogenase activity. This in vivo test involved a variety of different methods for the measurement of ATP, as well as the deliberate perturbation of intracellular ATP levels by chemical and genetic means. To our surprise, we found fairly normal levels of nitrogenase activity and posttranslational regulation of nitrogenase even under conditions of drastically reduced ATP levels. This indicates that low ATP levels have no more than a modest impact on the P(II)-mediated regulation of NifA activity and on the posttranslational regulation of nitrogenase activity. The relatively high nitrogenase activity also shows that the ATP-dependent electron flux from dinitrogenase reductase to dinitrogenase is also surprisingly insensitive to a depleted ATP level. These in vivo results disprove the simple model of ATP as the key energy signal to P(II) under these conditions. We currently suppose that the ratio of ADP/ATP might be the relevant signal, as suggested by a number of recent in vitro analyses.
Collapse
|
11
|
Huergo LF, Merrick M, Monteiro RA, Chubatsu LS, Steffens MBR, Pedrosa FO, Souza EM. In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense. J Biol Chem 2009; 284:6674-82. [PMID: 19131333 DOI: 10.1074/jbc.m807378200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the nitrogenase enzyme in the diazotroph Azospirillum brasilense is reversibly inactivated by ammonium through ADP-ribosylation of the nitrogenase NifH subunit. This process is catalyzed by DraT and is reversed by DraG, and the activities of both enzymes are regulated according to the levels of ammonium through direct interactions with the P(II) proteins GlnB and GlnZ. We have previously shown that DraG interacts with GlnZ both in vivo and in vitro and that DraT interacts with GlnB in vivo. We have now characterized the influence of P(II) uridylylation status and the P(II) effectors (ATP, ADP, and 2-oxoglutarate) on the in vitro formation of DraT-GlnB and DraG-GlnZ complexes. We observed that both interactions are maximized when P(II) proteins are de-uridylylated and when ADP is present. The DraT-GlnB complex formed in vivo was purified to homogeneity in the presence of ADP. The stoichiometry of the DraT-GlnB complex was determined by three independent approaches, all of which indicated a 1:1 stoichiometry (DraT monomer:GlnB trimer). Our results suggest that the intracellular fluctuation of the P(II) ligands ATP, ADP, and 2-oxoglutarate play a key role in the post-translational regulation of nitrogenase activity.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba-PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Jiang P, Ninfa AJ. Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Biochemistry 2007; 46:12979-96. [PMID: 17939683 DOI: 10.1021/bi701062t] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PII signal transduction proteins are among the most widely distributed signaling proteins in nature, controlling nitrogen assimilation in organisms ranging from bacteria to higher plants. PII proteins integrate signals of cellular metabolic status and interact with and regulate receptors that are signal transduction enzymes or key metabolic enzymes. Prior work with Escherichia coli PII showed that all signal transduction functions of PII required ATP binding to PII and that ATP binding was synergistic with the binding of alpha-ketoglutarate to PII. Furthermore, alpha-ketoglutarate, a cellular signal of nitrogen and carbon status, was observed to strongly regulate PII functions. Here, we show that in reconstituted signal transduction systems, ADP had a dramatic effect on PII regulation of two E. coli PII receptors, ATase, and NRII (NtrB), and on PII uridylylation by the signal transducing UTase/UR. ADP acted antagonistically to alpha-ketoglutarate, that is, low adenylylate energy charge acted to diminish signaling of nitrogen limitation. By individually studying the interactions that occur in the reconstituted signal transduction systems, we observed that essentially all PII and PII-UMP interactions were influenced by ADP. Our experiments also suggest that under certain conditions, the three nucleotide binding sites of the PII trimer may be occupied by combinations of ATP and ADP. In the aggregate, our results show that PII proteins, in addition to serving as sensors of alpha-ketoglutarate, have the capacity to serve as direct sensors of the adenylylate energy charge.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| | | |
Collapse
|
13
|
Kasap M. Modelling NifH2 protein of Clostridium pasteurianum reveals clues about its physiological function. J Mol Graph Model 2006; 25:304-12. [PMID: 16495101 DOI: 10.1016/j.jmgm.2006.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/28/2022]
Abstract
Clostridium pasteurianum is an anaerobic free-living nitrogen fixer. As a unique feature, the organism contains five extra nifH-like genes in addition to nifH1. Detailed analysis with respect to the structure and function of the nifH-like gene products is missing due to the lack of information about the presence of their translation products in the cell. Recent work indicates that the nifH2 gene is transcribed and translated into a polypeptide of expected size in nitrogen-fixing cells of C. pasteurianum and is regulated both at the transcriptional and translational levels. However, the current data do not reveal the physiological function of the NifH2 protein. In this study, we have used computer tools and the NifH1 of C. pasteurianum as the template to predict a possible tertiary structure and assign a putative function for NifH2 protein. A comparison of the structures of the NifH1 and modelled NifH2 revealed similarities in the polypeptide conformations for both monomers. Analysis of the properties of nucleotide binding, dimer interacting and cluster containing regions did not reveal major differences between NifH1 and modelled NifH2, although minor differences were observed. Rigid docking results revealed the possibility of formation of a NifH1-NifH2 heterodimer as well as formation of a NifH2 homodimer. We, therefore, propose that NifH2 can form a dimer with NifH1, albeit less efficiently and may function as a regulatory Fe-protein.
Collapse
Affiliation(s)
- Murat Kasap
- Kocaeli University, Department of Medical Biology, Faculty of Medicine, 41380 Umuttepe, Kocaeli, Turkey.
| |
Collapse
|
14
|
Klopprogge K, Stips J, Schmitz RA. The inhibitory form of NifL from Klebsiella pneumoniae exhibits ATP hydrolyzing activity only when synthesized under nitrogen sufficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:243-54. [PMID: 11904220 DOI: 10.1016/s0167-4838(01)00307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The inhibitory function of Klebsiella pneumoniae NifL on NifA transcriptional activity in vitro is stimulated by ATP and ADP when NifL is synthesized under nitrogen sufficiency (NifL(NH4)). Further characterizations showed that NifL(NH4) binds and hydrolyzes ATP (2500 mU/mg). Analyzing fusions between MalE and different portions of NifL, we localized both the ATP binding site and ATP hydrolysis activity to the N-terminal domain of NifL. In contrast, NifL synthesized under nitrogen limitation is not affected by adenine nucleotides and exhibits no ATP hydrolyzing activity. These major differences indicate that the stimulation of the inhibitory function of NifL and the ability to hydrolyze ATP depend on a specific NifL conformation induced by ammonium. We hypothesize that the presence of ammonium alters the conformation of NifL, enabling it to use the energy of ATP hydrolysis to increase the efficiency of NifL-NifA complex formation.
Collapse
Affiliation(s)
- Kai Klopprogge
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
15
|
Kuzma MM, Winter H, Storer P, Oresnik I, Atkins CA, Layzell DB. The site of oxygen limitation in soybean nodules. PLANT PHYSIOLOGY 1999; 119:399-408. [PMID: 9952434 PMCID: PMC32115 DOI: 10.1104/pp.119.2.399] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/1998] [Accepted: 10/23/1998] [Indexed: 05/20/2023]
Abstract
In legume nodules the [O2] in the infected cells limits respiration and nitrogenase activity, becoming more severe if nodules are exposed to subambient O2 levels. To identify the site of O2 limitation, adenylate pools were measured in soybean (Glycine max) nodules that were frozen in liquid N2 before being ground, lyophilized, sonicated, and separated on density gradients of nonaqueous solvents (heptane/tetrachloroethylene) to yield fractions enriched in bacteroid or plant components. In nodules maintained in air, the adenylate energy charge (AEC = [ATP + 0.5 ADP]/[ATP + ADP + AMP]) was lower in the plant compartment (0.65 +/- 0.04) than in the bacteroids (0.76 +/- 0.095), but did not change when the nodulated root system was exposed to 10% O2. In contrast, 10% O2 decreased the bacteroid AEC to 0.56 +/- 0.06, leading to the conclusion that they are the primary site of O2 limitation in nodules. To account for the low but unchanged AEC in the plant compartment and for the evidence that mitochondria are localized in O2-enriched microenvironments adjacent to intercellular spaces, we propose that steep adenylate gradients may exist between the site of ATP synthesis (and ADP use) in the mitochondria and the extra-mitochondrial sites of ATP use (and ADP production) throughout the large, infected cells.
Collapse
Affiliation(s)
- MM Kuzma
- Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, Canada K7L 3N6 (M.M.K., D.B.L.)
| | | | | | | | | | | |
Collapse
|
16
|
Linkerhägner K, Oelze J. Cellular ATP levels and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii. J Bacteriol 1995; 177:5289-93. [PMID: 7665517 PMCID: PMC177321 DOI: 10.1128/jb.177.18.5289-5293.1995] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When Azotobacter vinelandii, growing diazotrophically in chemostat culture, was subjected to sudden increases in the ambient oxygen concentration (oxygen stress), nitrogenase activity was switched off and cellular ATP pools decreased at rates depending on the stress level. Following a fast decrease, the ATP pool approached a lower level. When the stress was released, these effects were reversed. The reversible decrease of the ATP pool upon oxygen stress could also be observed with cultures assimilating ammonium and, at the same time, fixing dinitrogen because of growth at a high C/N ratio but not with cultures growing only at the expense of ammonium. When strains OP and UW136 of A. vinelandii were subjected to long-term increases in ambient oxygen, the sizes of cellular ATP pools eventually started to increase to the level before stress and diazotrophic growth resumed. The cytochrome d-deficient mutant MK5 of A. vinelandii, however, impaired in aerotolerant diazotrophic growth, was unable to recover from stress on the basis of its ATP pool. The results suggest that adaptation to higher ambient oxygen depends on increased ATP synthesis requiring increased electron flow through the entire respiratory chain, which is possible only in combination with the more active, yet possibly uncoupled, branch terminated by cytochrome d. It is proposed that the decrease of the cellular ATP level under oxygen stress resulted from the increased energy and electron donor requirement of nitrogenase in reacting with oxygen.
Collapse
|
17
|
Eydmann T, Söderbäck E, Jones T, Hill S, Austin S, Dixon R. Transcriptional activation of the nitrogenase promoter in vitro: adenosine nucleotides are required for inhibition of NIFA activity by NIFL. J Bacteriol 1995; 177:1186-95. [PMID: 7868590 PMCID: PMC176722 DOI: 10.1128/jb.177.5.1186-1195.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The enhancer-binding protein NIFA is required for transcriptional activation of nif promoters by the alternative holoenzyme form of RNA polymerase, which contains the sigma factor sigma 54 (sigma N). NIFA hydrolyzes nucleoside triphosphates to catalyze the isomerization of closed promoter complexes to transcriptionally competent open complexes. The activity of NIFA is antagonized by the regulatory protein NIFL in response to oxygen and fixed nitrogen in vivo. We have investigated the requirement for nucleotides in the formation and stability of open promoter complexes by NIFA and inhibition of its activity by NIFL at the Klebsiella pneumoniae nifH promoter. Open complexes formed by sigma 54-containing RNA polymerase are considerably more stable to heparin challenge in the presence of GTP than in the presence of ATP. This differential stability is most probably a consequence of GTP being the initiating nucleotide at this promoter. Adenosine nucleosides are specifically required for Azotobacter vinelandii NIFL to inhibit open complex formation by native NIFA, and the nucleoside triphosphatase activity of NIFA is strongly inhibited by NIFL under these conditions. We propose a model in which NIFL modulates the activity of NIFA via an adenosine nucleotide switch.
Collapse
Affiliation(s)
- T Eydmann
- Nitrogen Fixation Laboratory, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Oresnik IJ, Layzell DB. Composition and Distribution of Adenylates in Soybean (Glycine max L.) Nodule Tissue. PLANT PHYSIOLOGY 1994; 104:217-225. [PMID: 12232074 PMCID: PMC159180 DOI: 10.1104/pp.104.1.217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adenylates (ATP, ADP, and AMP) may play a central role in the regulation of the O2-limited C and N metabolism of soybean nodules. To be able to interpret measurements of adenylate levels in whole nodules and to appreciate the significance of observed changes in adenylates associated with changes in O2-limited metabolism, methods were developed for measuring in vivo levels of adenylate pools in the cortex, plant central zone, and bacteroid fractions of soybean (Glycine max L. Merr cv Maple Arrow x Bradyrhizobium japonicum strain USDA 16) nodules. Intact nodulated roots were either frozen in situ by flushing with prechilled Freon-113(-156[deg]C) or by rapidly (<1 s) uprooting plants and plunging them into liquid N2. The adenylate energy charge (AEC = [ATP + 0.5 x ADP]/[ATP + ADP + AMP]) of whole-nodule tissue (0.65 [plus or minus] 0.01, n = 4) was low compared to that of subtending roots (0.80 [plus or minus] 0.03, n = 4), a finding indicative of hypoxic metabolism in nodules. The cortex and central zone tissues were dissected apart in lyophilized nodules, and AEC values were 0.84 [plus or minus] 0.04 and 0.61 [plus or minus] 0.03, respectively. Although the total adenylate pool in the lyophilized nodules was only 41% of that measured in hydrated tissues, the AEC values were similar, and the lyophilized nodules were assumed to provide useful material for assessing adenylate distribution. The nodule cortex contained 4.4% of whole-nodule adenylates, with 95.6% being located in the central zone. Aqueous fractionation of bacteroids from the plant fraction of whole nodules and the use of marker enzymes or compounds to correct for recovery of bacteroids and cross-contamination of the bacteroid and plant fractions resulted in estimates that 36.2% of the total adenylate pool was in bacteroids, and 59.4% was in the plant fraction of the central zone. These are the first quantitative assessments of adenylate distribution in the plant and bacteroid fractions of legume nodules. These estimates were combined with theoretical calculations of rates of ATP consumption in the cortex (9.5 nmol g-1 fresh weight of nodule s-1), plant central zone (38 nmol g-1 fresh weight of nodule s-1), and bacteroids (62 nmol g-1 fresh weight of nodule s-1) of soybean nodules to estimate the time constants for turnover of the total adenylate pool and the ATP pool within each nodule fraction. The low values for time constant (1.6-5.8 s for total adenylate, 0.9-2.5 s for ATP only) in each fraction reflect the high metabolic activity of soybean nodules and provide a background for further studies of the role of adenylates in O2-limited nodule metabolism.
Collapse
Affiliation(s)
- I. J. Oresnik
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
19
|
Seefeldt LC, Mortenson LE. Increasing nitrogenase catalytic efficiency for MgATP by changing serine 16 of its Fe protein to threonine: use of Mn2+ to show interaction of serine 16 with Mg2+. Protein Sci 1993; 2:93-102. [PMID: 8443593 PMCID: PMC2142304 DOI: 10.1002/pro.5560020110] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MgATP-binding and hydrolysis are an integral part of the nitrogenase catalytic mechanism. We are exploring the function of MgATP hydrolysis in this reaction by analyzing the properties of the Fe protein (FeP) component of Azotobacter vinelandii nitrogenase altered by site-directed mutagenesis. We have previously (Seefeldt, L.C., Morgan, T.V., Dean, D.R., & Mortenson, L.E., 1992, J. Biol. Chem. 267, 6680-6688) identified a region near the N-terminus of FeP that is involved in interaction with MgATP. This region of FeP is homologous to the well-known nucleotide-binding motif GXXXXGKS/T. In the present work, we examined the function of the four hydroxyl-containing amino acids immediately C-terminal to the conserved lysine 15 that is involved in interaction with the gamma-phosphate of MgATP. We have established, by altering independently Thr 17, Thr 18, and Thr 19 to alanine, that a hydroxyl-containing residue is not needed at these positions for FeP to function. In contrast, an hydroxyl-containing amino acid at position 16 was found to be critical for FeP function. When the strictly conserved Ser 16 was altered to Ala, Cys, Asp, or Gly, the FeP did not support N2 fixation when expressed in place of the wild-type FeP in A. vinelandii. Altering Ser 16 to Thr (S16T), however, resulted in the expression of an FeP that was partially active. This S16T FeP was purified to homogeneity, and its biochemical examination allowed us to assign a catalytic function to this hydroxyl group in the nitrogenase mechanism. Of particular importance was the finding that the S16T FeP had a significantly higher affinity for MgATP than the wild-type FeP, with a measured Km of 20 microM compared to the wild-type FeP Km of 220 microM. This increased kinetic affinity for MgATP was reflected in a significantly stronger binding of the S16T FeP for MgATP. In contrast, the affinity for MgADP, which binds at the same site as MgATP, was unchanged. The catalytic efficiency (kcat/Km) of S16T FeP was found to be 5.3-fold higher than for the wild-type FeP, with the S16T FeP supporting up to 10 times greater nitrogenase activity at low MgATP concentrations. This indicates a role for the hydroxyl group at position 16 in interaction with MgATP but not MgADP. The site of interaction of this residue was further defined by examining the properties of wild-type and S16T FePs in utilizing MnATP compared with MgATP.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L C Seefeldt
- Biochemistry Department, University of Georgia, Athens 30602
| | | |
Collapse
|
20
|
Kanamori K, Weiss RL, Roberts JD. Efficiency factors and ATP/ADP ratios in nitrogen-fixing Bacillus polymyxa and Bacillus azotofixans. J Bacteriol 1990; 172:1962-8. [PMID: 2318806 PMCID: PMC208692 DOI: 10.1128/jb.172.4.1962-1968.1990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The efficiency factor, the number of moles of ATP generated per mole of glucose fermented, was determined in anaerobic, non-carbon-limited N2-fixing cultures of Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and Clostridium butyricum through identification and quantitation of the fermentation products by 13C nuclear magnetic resonance spectroscopy and measurement of acetate kinase activities. All three Bacillus species had acetate kinase activities and produced acetate and ethanol as the major fermentation products. The maximum amounts of ATP generated per mole of glucose fermented were 2.70, 2.64, and 2.88 mol in B. polymyxa, B. macerans, and B. azotofixans, respectively, compared with 3.25 mol in C. butyricum. Thus, in the N2-fixing Bacillus species, the efficiency factors are lower than that in C. butyricum. Steady-state ATP/ADP concentration ratios were measured in non-carbon-limited N2-fixing cultures of B. polymyxa and B. azotofixans through separation and quantitation of the adenylates in cell extracts by ion-pair reversed-phase high-performance liquid chromatography. The observed ATP/ADP ratios were 4.5 and 3.8, and estimated energy charges were 0.81 to 0.86 and 0.81 to 0.83, respectively, for B. polymyxa and B. azotofixans. The results suggest that under these growth conditions, the rate of ATP regeneration is adequate to meet the energy requirement for N2 fixation in the Bacillus species, in contrast to N2-fixing Clostridium pasteurianum and Klebsiella pneumoniae, for which substantially lower steady-state ATP/ADP ratios and energy charges have been reported. Implications of the results are discussed in relation to possible differences between Bacillus and Clostridium species in energy requirements for N2 fixation and concomitant ammonia assimilation.
Collapse
Affiliation(s)
- K Kanamori
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | | | |
Collapse
|
21
|
Catanese CA, Emerich DW, Zahler WL. Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium japonicum bacteroids. J Bacteriol 1989; 171:4531-6. [PMID: 2548992 PMCID: PMC210246 DOI: 10.1128/jb.171.9.4531-4536.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenylate cyclase and cyclic AMP (cAMP) phosphodiesterase have been identified and partially characterized in bacteroids of Bradyrhizobium japonicum 3I1b-143. Adenylate cyclase activity was found in the bacteroid membrane fraction, whereas cAMP phosphodiesterase activity was located in both the membrane and the cytosol. In contrast to other microorganisms, B. japonicum adenylate cyclase remained firmly bound to the membrane during treatment with detergents. Adenylate cyclase was activated four- to fivefold by 0.01% sodium dodecyl sulfate (SDS), whereas other detergents gave only slight activation. SDS had no effect on the membrane-bound cAMP phosphodiesterase but strongly inhibited the soluble enzyme, indicating that the two enzymes are different. All three enzymes were characterized by their kinetic constants, pH optima, and divalent metal ion requirements. With increasing nodule age, adenylate cyclase activity increased, the membrane-bound cAMP phosphodiesterase decreased, and the soluble cAMP phosphodiesterase remained largely unchanged. These results suggest that cAMP plays a role in symbiosis.
Collapse
Affiliation(s)
- C A Catanese
- Department of Biochemistry, University of Missouri-Columbia 65211
| | | | | |
Collapse
|
22
|
Kanamori K, Weiss RL, Roberts JD. Ammonia assimilation pathways in nitrogen-fixing Clostridium kluyverii and Clostridium butyricum. J Bacteriol 1989; 171:2148-54. [PMID: 2564848 PMCID: PMC209870 DOI: 10.1128/jb.171.4.2148-2154.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pathways of ammonia assimilation into glutamic acid were investigated in ammonia-grown and N2-fixing Clostridium kluyverii and Clostridium butyricum by measuring the specific activities of glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. C. kluyverii had NADPH-glutamate dehydrogenase with a Km of 12.0 mM for NH4+. The glutamate dehydrogenase pathway played an important role in ammonia assimilation in ammonia-grown cells but was found to play a minor role relative to that of the glutamine synthetase/NADPH-glutamate synthase pathway in nitrogen-fixing cells when the intracellular NH4+ concentration and the low affinity of the enzyme for NH4+ were taken into account. In C. butyricum grown on glucose-salt medium with ammonia or N2 as the nitrogen source, glutamate dehydrogenase activity was undetectable, and the glutamine synthetase/NADH-glutamate synthase pathway was the predominant pathway of ammonia assimilation. Under these growth conditions, C. butyricum also lacked the activity of glucose-6-phosphate dehydrogenase, which catalyzes the regeneration of NADPH from NADP+. However, high activities of glucose-6-phosphate dehydrogenase as well as of NADPH-glutamate dehydrogenase with a Km of 2.8 mM for NH4+ were present in C. butyricum after growth on complex nitrogen and carbon sources. The ammonia-assimilating pathway of N2-fixing C. butyricum, which differs from that of the previously studied Bacillus polymyxa and Bacillus macerans, is discussed in relation to possible effects of the availability of ATP and of NADPH on ammonia-assimilating pathways.
Collapse
Affiliation(s)
- K Kanamori
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | | | |
Collapse
|
23
|
Miller RW, McRae DG, Al-Jobore A, Berndt WB. Respiration supported nitrogenase activity of isolated Rhizobium meliloti bacteroids. J Cell Biochem 1988; 38:35-49. [PMID: 3220879 DOI: 10.1002/jcb.240380105] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacteroids having a high level of respiration-supported nitrogenase activity were isolated from nitrogen-fixing alfalfa root nodules. Gentle maceration under anaerobic conditions in the presence of sodium succinate and a fatty acid scavenging agent were employed in this method. A large proportion of isolated bacteroids retained a triple membrane structure as shown by transmission electron microscopy. Dicarboxylic acids of the TCA cycle (malate, fumarate, succinate), but not glutamate or aspartate, supported sufficient respiratory activity to supply the nitrogenase system with ATP and reducing equivalents and to protect the nitrogenase system from inactivation by 4% oxygen over a period of 20-30 min. Sugars did not support nitrogenase activity in intact bacteroids. The properties of the isolated bacteroids were ascribed to minimal damage to the cytoplasmic membrane and peribacteroidal membrane during isolation. With succinate as substrate and oxygen as terminal electron acceptor, initial nitrogenase activity was determined at 4% oxygen in the gas phase of the assay system employed. At this oxygen concentration, the sustained rate of acetylene reduction by respiring bacteroids was linear up to 30 min. Bacteroid activity declined rapidly with time of exposure to oxygen above 4% in the gas phase. The optimum temperature range for this activity was 10-20 degrees C. Nitrogenase activity was measurable at incubation temperatures below 10 degrees C under 4% oxygen. Functionally intact bacteroids had little nitrogenase activity under anaerobic conditions in the presence of an external source of ATP and reductant. Treatment of the bacteroids with chlorpromazine eliminated respiration-supported activity and rendered the bacteroid cell membrane permeable to external ATP. Bacteroids treated with chlorpromazine had high acetylene reducing activity with external ATP and dithionite in the absence of oxygen.
Collapse
Affiliation(s)
- R W Miller
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario
| | | | | | | |
Collapse
|
24
|
Peterson JB. Metonidazole inhibition of nitrogenase activity in Azotobacter vinelandii. Biochim Biophys Acta Gen Subj 1988. [DOI: 10.1016/0304-4165(88)90036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
|
26
|
Paul TD, Ludden PW. Adenine nucleotide levels in Rhodospirillum rubrum during switch-off of whole-cell nitrogenase activity. Biochem J 1984; 224:961-9. [PMID: 6441571 PMCID: PMC1144534 DOI: 10.1042/bj2240961] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adenine nucleotide pools were measured in Rhodospirillum rubrum cultures that contained nitrogenase. The average energy charge [([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP])] was found to be 0.66 and 0.62 in glutamate-grown and N-limited cultures respectively. Treatment of glutamate-grown cells with darkness, ammonia, glutamine, carbonyl cyanide m-chlorophenylhydrazone, or phenazine methosulphate resulted in perturbations in the adenine nucleotide pools, and led to loss of whole-cell nitrogenase activity and modification in vivo of the Fe protein. Treatment of N-limited cells resulted in similar changes in adenine nucleotide pools but not enzyme modification. No correlations were found between changes in adenine nucleotide pools or ratios of these pools and switch-off of nitrogenase activity by Fe protein modification in vivo. Phenazine methosulphate inhibited whole-cell activity at low concentrations. The effect on nitrogenase activity was apparently independent of Fe protein modification.
Collapse
|
27
|
Ernst A, Böhme H. Control of hydrogen-dependent nitrogenase activity by adenylates and electron flow in heterocysts of Anabaena variabilis (ATCC 29413). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90206-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Gober JW, Kashket ER. H+/ATP stoichiometry of cowpea Rhizobium sp. strain 32H1 cells grown under nitrogen-fixing and nitrogen-nonfixing conditions. J Bacteriol 1984; 160:216-21. [PMID: 6237099 PMCID: PMC214703 DOI: 10.1128/jb.160.1.216-221.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The obligate aerobe Cowpea Rhizobium sp. strain 32H1 in axenic culture is able to fix N2 when grown under 0.2% O2 but not when grown under 21% O2. It was, therefore, of interest to investigate ATP synthesis in these cells grown under the two conditions. When respiring in buffers having pHs ranging from 6 to 8.5, cells grown under either O2 tension maintained an intracellular pH more alkaline than the exterior. The transmembrane chemical gradient of H+ (delta pH) was essentially the same under both conditions of growth, decreasing from ca. 90 mV at medium pH 6 to ca. 30 mV at pH 8.5. However, the transmembrane electrical gradient (delta psi) was significantly higher in cells grown under 21% O2 (150 to 166 mV) than in cells grown under 0.2% O2, the latter being 16 mV at pH 6 and increasing to 88 mV at pH 8.5. Therefore, the proton motive force of 21% O2-grown cells ranged from 237 mV at external pH 6 to 185 mV at pH 8.5, compared with a proton motive force of 114 to 121 mV in the 0.2% O2-grown cells. The cells grown in 0.2% O2 had the same proton motive force whether tested at 21 or at 0.2% O2. The phosphorylation potential, calculated from the intracellular ATP, ADP, and Pi concentrations, was 424 mV in the 21% O2-grown cells and 436 mV in the 0.2% O2-grown cells. Thus, the 21% O2-grown cells translocated 1.8 to 2.3 H+/ATP synthesized by the H+-ATPase, whereas the H+/ATP ratio for 0.2% O2-grown cells was 3.7 to 3.8.
Collapse
|
29
|
Adams MW, Mortenson LE. The purification of hydrogenase II (uptake hydrogenase) from the anaerobic N2-fixing bacterium Clostridium pasteurianum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90216-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
|
31
|
Thorneley RN, Lowe DJ. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction. Biochem J 1983; 215:393-403. [PMID: 6316927 PMCID: PMC1152408 DOI: 10.1042/bj2150393] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stopped-flow spectrophotometry and e.p.r. spectroscopy were used to study the kinetics of reduction by dithionite of the oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox.) in the presence of MgADP at 23 degrees C at pH 7.4. The active reductant, SO2.-, produced by the predissociation of S2O4(2-) in equilibrium 2SO2.-, reacts with Kp2ox. (MgADP)2, with k4 = 3.0 X 10(6) +/- 0.4 X 10(6) M-1 X s-1. The inhibition of this reaction by the Mo-Fe protein (Kp1) has enabled the rate of dissociation of Kp2ox. (MgADP)2 from Kp1+ (the Kp2-binding site on Kp1) to be measured (k-3 = 6.4 +/- 0.8 s-1). Comparison with the steady-state rate of substrate reduction shows that the dissociation (k-3) of the complex Kp2ox. (MgADP)2-Kp1+, which is formed after MgATP-induced electron transfer from Kp2 to Kp1+, is the rate-limiting step in the catalytic cycle for substrate reduction.
Collapse
|
32
|
Phosphorylation and nitrogenase activity in isolated heterocysts from Anabaena variabilis (ATCC 29413). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90012-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Privalle LS, Burris RH. Adenine nucleotide levels in and nitrogen fixation by the cyanobacterium Anabaena sp. strain 7120. J Bacteriol 1983; 154:351-5. [PMID: 6403506 PMCID: PMC217466 DOI: 10.1128/jb.154.1.351-355.1983] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adenine nucleotide levels were determined in whole filaments of Anabaena sp. 7120 grown under different N2-fixing or non-N2-fixing conditions. These were compared with levels in isolated heterocysts, Rhodospirillum rubrum, and Azotobacter vinelandii. Adenine nucleotides in whole filaments of Anabaena sp. do not reflect the energetic expense of N2 fixation as they do in R. rubrum and A. vinelandii. However, adenine nucleotide levels in heterocysts were similar to the levels found in N2-fixing R. rubrum, i.e., an ATP:ADP ratio near 1 and an energy charge between 0.5 and 0.7. Nitrogenase activity was only 50% of optimal in permeabilized heterocysts at an exogenous ATP:ADP ratio of 3.33. Hydrogen, which increases acetylene reduction activity, also causes a transient increase (2 to 5 min) in the ATP:ADP ratio. Hydrogen has little effect on energy charge.
Collapse
|
34
|
Arp DJ, Zumft WG. Overproduction of nitrogenase by nitrogen-limited cultures of Rhodopseudomonas palustris. J Bacteriol 1983; 153:1322-30. [PMID: 6402491 PMCID: PMC221780 DOI: 10.1128/jb.153.3.1322-1330.1983] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhodopseudomonas palustris cells grown on limiting nitrogen produced four- to eightfold higher nitrogenase specific activity relative to cells sparged with N2. The high activity of N-limited cells was the result of overproduction of the nitrogenase proteins. This was shown by four independent techniques: (i) titration of the Mo-Fe protein in cell-free extracts with Fe protein from Azotobacter vinelandii; (ii) direct detection of the subunits of Mo-Fe protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; (iii) monitoring of the electron paramagnetic resonance spectrum of Mo-Fe protein in whole cells; and (iv) immunological assay of the Fe protein level with an antiserum against the homologous protein of Rhodospirillum rubrum. The derepressed level of nitrogenase found in N2-grown cells was not due to an increased turnover of nitrogenase. The apparent half-lives of nitrogenase in N2-grown and N-limited cells were 58 and 98 h, respectively, but were too long to account for the difference in enzyme level. Half-lives were determined by measuring nitrogenase after repression of de novo synthesis by ammonia and subsequent release of nitrogenase switch-off by methionine sulfoximine. Observations were extended to R. rubrum, Rhodopseudomonas capsulata, and Rhodomicrobium vannielii and indicated that overproduction of nitrogenase under nitrogen limitation is not an exceptional property of R. palustris, but rather a general property of phototrophic bacteria.
Collapse
|
35
|
Haaker H, Laane C, Hellingwerf K, Houwer B, Konings WN, Veeger C. Short-term regulation of the nitrogenase activity in Rhodopseudomonas sphaeroides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 127:639-45. [PMID: 6983438 DOI: 10.1111/j.1432-1033.1982.tb06920.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The nitrogenase activity in whole cells of Rhodopseudomonas sphaeroides could be inhibited by lowering the electrical potential across the cytoplasmic membrane. The membrane potential was partly dissipated either by lowering the light intensity or by the addition of a lipophilic cation, tetraphenylphosphonium. Under these circumstances, it was shown that the intracellular ATP/ADP ratio was not affected and that the inhibition of the whole cell nitrogenase activity was not due to an inactivation of the nitrogenase enzyme. From these results it is concluded that electron transport to nitrogenase in Rps. sphaeroides is dependent on a high membrane potential. The nitrogenase enzyme in whole cells could be inactivated by lowering the membrane potential across the cytoplasmic membrane by incubating the cells in the dark or in the light in the presence of uncouplers. Nitrogenase could be reactivated in the light in the absence of uncouplers. Some possible mechanisms of action of NH+4 inhibition of whole cell nitrogenase activity could be excluded. Inhibition by NH4Cl of whole cell nitrogenase activity in Rps. sphaeroides could neither be explained by a rapid inactivation of the nitrogenase enzyme, nor by an effect on the intracellular ATP/ADP ratio or the membrane potential. NH+4 inhibits whole cell nitrogenase activity not directly but probably after being assimilated by glutamine synthetase. The role of glutamine, glutamate and 2-oxoglutarate on the regulation of electron transport to nitrogenase will be discussed.
Collapse
|
36
|
Hawkesford MJ, Reed RH, Rowell P, Stewart WD. Nitrogenase activity and membrane electrogenesis in the cyanobacterium Plectonema boryanum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 127:63-6. [PMID: 6814911 DOI: 10.1111/j.1432-1033.1982.tb06837.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The relationships between nitrogenase activity (acetylene reduction) and the transplasmalemma proton electrochemical potential gradient (delta muH+) have been investigated using the non-heterocystous filamentous cyanobacterium Plectonema boryanum. By selectively modifying the chemical (delta pH) and electrical (delta psi) components of delta muH+ under conditions in which the size of the ATP pool remained unaffected, nitrogenase activity was found to be dependent on, or regulated by delta psi. When the ATP pool decreased, concomitant with a decreased internal pH (pHi) the requirement for delta psi was modified. The observed reduction in the intracellular ATP pool and the decreased ATP:ADP ratio also correlated with an inhibition of nitrogenase activity. The data are consistent with a model in vivo in which reductant supply to nitrogenase is regulated by, or dependent on an energised plasmalemma and where there is a fine balance between the supply of reductant and ATP for nitrogenase activity. The correlation observed between delta psi and nitrogenase activity extends our previous observations using the heterocystous cyanobacterium Anabaena variabilis.
Collapse
|
37
|
Gutschick VP. Energetics of microbial fixation of dinitrogen. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1982. [DOI: 10.1007/3-540-11019-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Ching TM, Bergersen FJ, Turner GL. Energy status, growth and nitrogenase activity in continuous cultures of Rhizobium sp. strain CB756 supplied with NH+4 and various rates of aeration. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 636:82-90. [PMID: 6269594 DOI: 10.1016/0005-2728(81)90078-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
An Evaluation of N2 Fixation and H2 Production in Fermentation Culture. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/b978-0-12-040304-2.50017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|