1
|
Gorter de Vries AR, Pronk JT, Daran JMG. Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Res 2020; 19:5573808. [PMID: 31553794 PMCID: PMC6790113 DOI: 10.1093/femsyr/foz063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The yeast Saccharomyces pastorianus is responsible for the annual worldwide production of almost 200 billion liters of lager-type beer. S. pastorianus is a hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been studied for well over a century. Scientific interest in S. pastorianus intensified upon the discovery, in 2011, of its S. eubayanus ancestor. Moreover, advances in whole-genome sequencing and genome editing now enable deeper exploration of the complex hybrid and aneuploid genome architectures of S. pastorianus strains. These developments not only provide novel insights into the emergence and domestication of S. pastorianus but also generate new opportunities for its industrial application. This review paper combines historical, technical and socioeconomic perspectives to analyze the evolutionary origin and genetics of S. pastorianus. In addition, it provides an overview of available methods for industrial strain improvement and an outlook on future industrial application of lager-brewing yeasts. Particular attention is given to the ongoing debate on whether current S. pastorianus originates from a single or multiple hybridization events and to the potential role of genome editing in developing industrial brewing yeast strains.
Collapse
Affiliation(s)
- Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Vlahakis A, Lopez Muniozguren N, Powers T. Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy. J Cell Biol 2016; 215:779-788. [PMID: 27899413 PMCID: PMC5166500 DOI: 10.1083/jcb.201605030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/02/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a catabolic process that recycles cytoplasmic contents and is crucial for cell survival during stress. The target of rapamycin (TOR) kinase regulates autophagy as part of two distinct protein complexes, TORC1 and TORC2. TORC1 negatively regulates autophagy according to nitrogen availability. In contrast, TORC2 functions as a positive regulator of autophagy during amino acid starvation, via its target kinase Ypk1, by repressing the activity of the calcium-dependent phosphatase calcineurin and promoting the general amino acid control (GAAC) response. Precisely how TORC2-Ypk1 signaling regulates calcineurin within this pathway remains unknown. Here we demonstrate that activation of calcineurin requires Mid1, an endoplasmic reticulum-localized calcium channel regulatory protein implicated in the oxidative stress response. We find that normal mitochondrial respiration is perturbed in TORC2-Ypk1-deficient cells, which results in the accumulation of mitochondrial-derived reactive oxygen species that signal to Mid1 to activate calcineurin, thereby inhibiting the GAAC response and autophagy. These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation.
Collapse
Affiliation(s)
- Ariadne Vlahakis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Nerea Lopez Muniozguren
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| |
Collapse
|
3
|
Ferreira TC, de Moraes LMP, Campos ÉG. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:408-17. [DOI: 10.1111/j.1567-1364.2011.00729.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
4
|
Cong Y, Wang J, Chen Z, Xiong K, Xu Q, Hu F. Characterization of swarming motility in Citrobacter freundii. FEMS Microbiol Lett 2011; 317:160-71. [PMID: 21261700 DOI: 10.1111/j.1574-6968.2011.02225.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial swarming motility is a flagella-dependent translocation on the surface environment. It has received extensive attention as a population behavior involving numerous genes. Here, we report that Citrobacter freundii, an opportunistic pathogen, exhibits swarming movement on a solid medium surface with appropriate agar concentration. The swarming behavior of C. freundii was described in detail. Insertional mutagenesis with transposon Mini-Tn5 was carried out to discover genetic determinants related to the swarming of C. freundii. A number of swarming genes were identified, among which flhD, motA, motB, wzx, rfaL, rfaJ, rfbX, rfaG, rcsD, rcsC, gshB, fabF, dam, pgi, and rssB have been characterized previously in other species. In mutants related to lipopolysaccharide synthesis and RcsCDB signal system, a propensity to form poorly motile bacterial aggregates on the agar surface was observed. The aggregates hampered bacterial surface migration. In several mutants, the insertion sites were identified to be in the ORF of yqhC, yeeZ, CKO_03941, glgC, and ttrA, which have never been shown to be involved in swarming. Our results revealed several novel characteristics of swarming motility in C. freundii which are worthy of further study.
Collapse
Affiliation(s)
- Yanguang Cong
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
5
|
Identification of the Leishmania major proteins LmjF07.0430, LmjF07.0440, and LmjF27.2440 as components of fatty acid synthase II. J Biomed Biotechnol 2010; 2009:950864. [PMID: 20145708 PMCID: PMC2817374 DOI: 10.1155/2009/950864] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/23/2009] [Indexed: 11/18/2022] Open
Abstract
Leishmania major causes leishmaniasis and is grouped within the Trypanosomatidae family, which also includes the etiologic agent for African sleeping sickness, Trypanosoma brucei. Previous studies on T. brucei showed that acyl carrier protein (ACP) of mitochondrial fatty acid synthase type 2 (FASII) plays a crucial role in parasite survival. Additionally, 3-oxoacyl-ACP synthase TbKASIII as well as TbHTD2 representing 3-hydroxyacyl-ACP dehydratase were also identified; however, 3-oxoacyl-ACP reductase TbKAR1 has hitherto evaded positive identification. Here, potential Leishmania FASII components LmjF07.0440 and LmjF07.0430 were revealed as 3-hydroxyacyl-ACP dehydratases LmHTD2-1 and LmHTD2-2, respectively, whereas LmjF27.2440 was identified as LmKAR1. These Leishmania proteins were ectopically expressed in Saccharomyces cerevisiae htd2Delta or oar1Delta respiratory deficient cells lacking the corresponding mitochondrial FASII enzymes Htd2p and Oar1p. Yeast mutants producing mitochondrially targeted versions of the parasite proteins resembled the self-complemented cells for respiratory growth. This is the first identification of a FASII-like 3-oxoacyl-ACP reductase from a kinetoplastid parasite.
Collapse
|
6
|
Gurvitz A. A C. elegans model for mitochondrial fatty acid synthase II: the longevity-associated gene W09H1.5/mecr-1 encodes a 2-trans-enoyl-thioester reductase. PLoS One 2009; 4:e7791. [PMID: 19924289 PMCID: PMC2774161 DOI: 10.1371/journal.pone.0007791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022] Open
Abstract
Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated specifically to curtailing mitochondrial FASII in metazoans. The availability of affected survivors will help to position C. elegans as an excellent model for future pursuits in the emerging field of mitochondrial FASII research.
Collapse
Affiliation(s)
- Aner Gurvitz
- Section of Physiology of Lipid Metabolism, Institute of Physiology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Physiological function of mycobacterial mtFabD, an essential malonyl-CoA:AcpM transacylase of type 2 fatty acid synthase FASII, in yeast mct1Delta cells. Comp Funct Genomics 2009:836172. [PMID: 19859569 PMCID: PMC2765072 DOI: 10.1155/2009/836172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis mtFabD is an essential malonyl-CoA:AcpM transacylase and is important for vital protein-protein interactions within type 2 fatty acid synthase FASII. mtFabD contacts KasA, KasB, FabH, InhA, and possibly also HadAB, HadBC, and FabG1/MabA. Disruption of mtFabD's interactions during FASII has been proposed for drug development. Here, the gene for a mitochondrially targeted mtFabD was ectopically expressed in Saccharomyces cerevisiae mct1Δ mutant cells lacking the corresponding mitochondrial malonyl-CoA transferase Mct1p, allowing the mutants to recover their abilities to respire on glycerol and synthesize lipoic acid. Hence, mtFabD could physiologically function in an environment lacking holo-AcpM or other native interaction partners.
Collapse
|
8
|
Caenorhabditis elegans F09E10.3 encodes a putative 3-oxoacyl-thioester reductase of mitochondrial type 2 fatty acid synthase FASII that is functional in yeast. J Biomed Biotechnol 2009; 2009:235868. [PMID: 19746209 PMCID: PMC2739286 DOI: 10.1155/2009/235868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/05/2009] [Accepted: 06/17/2009] [Indexed: 11/23/2022] Open
Abstract
Caenorhabditis elegans F09E10.3 (dhs-25) was identified as encoding a 3-oxoacyl-thioester reductase, potentially of the mitochondrial type 2 fatty acid synthase (FASII) system. Mitochondrial FASII is a relatively recent discovery in metazoans, and the relevance of this process to animal physiology has not been elucidated. A good animal model to study the role of FASII is the nematode C. elegans. However, the components of nematode mitochondrial FASII have hitherto evaded positive identification. The nematode F09E10.3 protein was ectopically expressed without an additional mitochondrial targeting sequence in Saccharomyces cerevisiae mutant cells lacking the homologous mitochondrial FASII enzyme 3-oxoacyl-ACP reductase Oar1p. These yeast oar1Δ mutants are unable to respire, grow on nonfermentable carbon sources, or synthesize sufficient levels of lipoic acid. Mutant yeast cells producing a full-length mitochondrial F09E10.3 protein contained NAD+-dependent 3-oxoacyl-thioester reductase activity and resembled the corresponding mutant overexpressing native Oar1p for the above-mentioned phenotype characteristics. This is the first identification of a metazoan 3-oxoacyl-thioester reductase (see Note Added in Proof).
Collapse
|
9
|
Heterologous expression of mycobacterial proteins in Saccharomyces cerevisiae reveals two physiologically functional 3-hydroxyacyl-thioester dehydratases, HtdX and HtdY, in addition to HadABC and HtdZ. J Bacteriol 2009; 191:2683-90. [PMID: 19136596 DOI: 10.1128/jb.01046-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report on Mycobacterium tuberculosis Rv0241c and Rv3389c, representing two physiologically functional 3-hydroxyacyl-thioester dehydratases (Htd). These enzymes are potentially entrained in type 2 fatty acid synthase (FASII). Mycobacterial FASII is involved in the synthesis of mycolic acids, which are the major constituents of the protective layer around the pathogen, shielding it from noxious chemicals and the host's immune system. Mycolic acids are additionally associated with the virulence and resilience of M. tuberculosis. Here, Rv0241c and Rv3389c, which are distinct from the previously identified heterodimers Rv0635-Rv0636 (HadAB) and Rv0636-Rv0637 (HadBC) but also the homodimer Rv0130 (HtdZ), were identified by expressing the corresponding candidate open reading frames in Saccharomyces cerevisiae htd2Delta cells lacking mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase activity, followed by scoring for phenotype rescue. The htd2Delta mutant fails to produce sufficient levels of lipoic acid and does not respire or grow on nonfermentable carbon sources. Soluble protein extracts made from mutant htd2Delta cells expressing mitochondrially targeted Rv0241c or Rv3389c contained 3-hydroxyacyl-thioester hydratase activity. Moreover, mutant yeast cells expressing Rv0241c or Rv3389c were able to recover their respiratory growth on glycerol medium and efficiently reduce 2,3,5-triphenyltetrazolium chloride. Additionally, expression of mitochondrial Rv0241c or Rv3389c in htd2Delta cells also restored de novo lipoic acid synthesis to 92 and 40% of the level in the wild-type strain, respectively. We propose naming Rv0241c and Rv3389c as HtdX and HtdY, respectively, and discuss the implications of our finding with reference to Rv0098, a candidate mycobacterial FabZ homologue with intrinsic thioesterase and hydratase activities that lacks the eukaryotic-like hydratase-2 motif.
Collapse
|
10
|
Vagabov VM, Trilisenko LV, Kulakovskaya EV, Kulaev IS. Study of the content of inorganic polyphosphates in Saccharomyces cerevisiae grown on different carbon sources with different O2 concentrations in the medium. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708050056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Kulakovskaya EV, Ivanov AY, Kulakovskaya TV, Vagabov VM, Kulaev IS. Effects of cellobiose lipid B on Saccharomyces cerevisiae cells: K+ leakage and inhibition of polyphosphate accumulation. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708030065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:5078-85. [PMID: 18552191 DOI: 10.1128/aem.00655-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C(20) fatty acids to form C(60)-to-C(90) mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Delta cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Delta cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C(4) to C(8)) than was previously thought (>C(12)). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.
Collapse
|
13
|
Identification of a novel mycobacterial 3-hydroxyacyl-thioester dehydratase, HtdZ (Rv0130), by functional complementation in yeast. J Bacteriol 2008; 190:4088-90. [PMID: 18375556 DOI: 10.1128/jb.00016-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification of Mycobacterium tuberculosis HtdZ (Rv0130), representing a novel 3-hydroxyacyl-thioester dehydratase. HtdZ was picked up by the functional complementation of Saccharomyces cerevisiae htd2Delta cells lacking the dehydratase of mitochondrial type II fatty acid synthase. Mutant cells expressing HtdZ contained dehydratase activity, recovered their respiratory ability, and partially restored de novo lipoic acid synthesis.
Collapse
|
14
|
Gurvitz A, Hartig A, Ruis H, Hamilton B, Couet H. Preliminary characterisation ofDML1, an essentialSaccharomyces cerevisiaegene related tomisatoofDrosophila melanogaster. FEMS Yeast Res 2002. [DOI: 10.1111/j.1567-1364.2002.tb00077.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res 2001; 1:57-65. [PMID: 12702463 DOI: 10.1111/j.1567-1364.2001.tb00013.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A grande gsh1 disruptant mutant of Saccharomyces cerevisiae was generated by crossing a petite disruptant to a wild-type grande strain. This strain was relatively stable, but generated petites at an elevated frequency, illustrating the ancillary role of glutathione (GSH) in the maintenance of the genetic integrity of the mitochondrial genome. The availability of the grande gsh1 deletant enabled an evaluation of the role of GSH in the cellular response to hydrogen peroxide independent of the effects of a petite mutation. The mutant strain was more sensitive to hydrogen peroxide than the wild-type strain but was still capable of producing an adaptive stress response to this compound. GSH was found to be essential for growth and sporulation of the yeast, but the intracellular level needed to support growth was at least two orders of magnitude less than that normally present in wild-type cells. This surprising result indicates that there is an essential role for GSH but only very low amounts are needed for growth. This result was also found in anaerobic conditions, thus this essential function does not involve protection from oxidative stress. Suppressors of the gsh1 deletion mutation were isolated by ethylmethanesulfonate mutagenesis. These were the result of a single recessive mutation (sgr1, suppressor for glutathione requirement) that relieved the requirement for GSH for growth on minimal medium but did not affect the sensitivity to H(2)O(2) stress. Interestingly, the gsh1 sgr1 mutant generated petites at a lower rate than the gsh1 mutant. Thus, it is suggested that the essential role of GSH is involved in the maintenance of the mitochondrial genome.
Collapse
Affiliation(s)
- J C Lee
- School of Biochemistry and Molecular Genetics, The CRC for Food Industry Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Wang X, Gong CS, Tsao GT. Production of L-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts. Appl Biochem Biotechnol 1998; 70-72:845-52. [PMID: 9627400 DOI: 10.1007/bf02920194] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The yeast Saccharomyces cerevisiae has been used to efficiently produce L-malic acid from fumaric acid. Fumarase is responsible for the reversible conversion of fumaric and L-malic acids in the TCA cycle. To investigate the function of mitochondrial and cytoplasmic fumarase isoenzymes in L-malic acid bioconversion, a wild-type strain and a cytoplasmic respiratory-deficient mutant devoid of functional mitochondria were employed. The mutant strain, which only contained the cytoplasmic fumarase, was still functional in fumaric acid to L-malic acid bioconversion However, its specific conversion rate was much lower (0.20 g/g.h) than that of the wild-type strain (0.55 g/g.h).
Collapse
Affiliation(s)
- X Wang
- Laboratory of Renewable Resources Engineering, Potter Engineering Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
17
|
Evans MV, Turton HE, Grant CM, Dawes IW. Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol 1998; 180:483-90. [PMID: 9457848 PMCID: PMC106912 DOI: 10.1128/jb.180.3.483-490.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Linoleic acid hydroperoxide (LoaOOH) formed during free radical attack on long-chain unsaturated fatty acids is an important source of biomembrane damage and is implicated in the onset of atherosclerosis, hepatic diseases, and food rancidity. LoaOOH is toxic to wild-type Saccharomyces cerevisiae at a very low concentration (0.2 mM) relative to other peroxides. By using isogenic mutant strains, the possible roles of glutathione (gsh1 and gsh2), glutathione reductase (glr1), respiratory competence ([rho0] petite), and yAP-1p-mediated expression (yap1) in conferring LoaOOH resistance have been examined. Respiration-related processes were essential for maximal toxicity and adaptation, as evidenced by the fact that the [rho0] petite mutant was most resistant to LoaOOH but could not adapt. Furthermore, when respiration was blocked by using inhibitors of respiration and mutants defective in respiratory-chain components, cells became more resistant. An important role for reduced glutathione and yAP-1 in the cellular response to LoaOOH was shown, since the yap1 and glr1 mutants were more sensitive than the wild type. In addition, total glutathione peroxidase activity increased following treatment with LoaOOH, indicating a possible detoxification role for this enzyme. Yeast also showed an adaptive response when pretreated with a nonlethal dose of LoaOOH (0.05 mM) and subsequently treated with a lethal dose (0.2 mM), and de novo protein synthesis was required, since adaptation was abolished upon treatment of cells with cycloheximide (25 microg ml-1). The wild-type adaptive response to LoaOOH was independent of those for the superoxide-generating agents paraquat and menadione and also of those for the organic hydroperoxides cumene hydroperoxide and tert-butyl hydroperoxide. Pretreatment with LoaOOH induced resistance to hydrogen peroxide, while pretreatment of cells with malondialdehyde (a lipid peroxidation product) and heat shock (37 degrees C) gave cross-adaptation to LoaOOH, indicating that yeast has effective overlapping defense systems that can detoxify fatty acid hydroperoxides directly or indirectly.
Collapse
Affiliation(s)
- M V Evans
- School of Biochemistry and Molecular Genetics and Cooperative Research Centre for Food Industry Innovation, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- C Wills
- Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
19
|
Blázquez MA, Gamo FJ, Gancedo C. A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae. FEBS Lett 1995; 377:197-200. [PMID: 8543050 DOI: 10.1016/0014-5793(95)01337-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Yeasts with disruptions in the genes PYC1 and PYC2 encoding the isoenzymes of pyruvate carboxylase cannot grow in a glucose-ammonium medium (Stucka et al. (1991) Mol. Gen. Genet. 229, 307-315). We have isolated a dominant mutation, BPC1-1, that allows growth in this medium of yeasts with interrupted PYC1 and PYC2 genes. The BPC1-1 mutation abolishes catabolite repression of a series of genes and allows expression of the enzymes of the glyoxylate cycle during growth in glucose. A functional glyoxylate cycle is necessary for suppression as a disruption of gene ICL1 encoding isocitrate lyase abolished the phenotypic effect of BPC1-1 on growth in glucose-ammonium. Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants. The mutation BPC1-1 is either allelic or closely linked to the mutation DGT1-1.
Collapse
Affiliation(s)
- M A Blázquez
- Instituto de Investigaciones Biomédicas del C.S.I.C., Unidad de Bioquímica y Genética de Levaduras, Madrid, Spain
| | | | | |
Collapse
|
20
|
Brown TA, Evangelista C, Trumpower BL. Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae. J Bacteriol 1995; 177:6836-43. [PMID: 7592476 PMCID: PMC177551 DOI: 10.1128/jb.177.23.6836-6843.1995] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression.
Collapse
Affiliation(s)
- T A Brown
- Dartmouth Medical School, Department of Biochemistry, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
21
|
Aschenbrenner M, Mueller DM, Zak R, Wiesner RJ. Increased expression of F1ATP synthase subunits in yeast strains carrying point mutations which destabilize the beta subunit. FEBS Lett 1993; 323:27-30. [PMID: 8495741 DOI: 10.1016/0014-5793(93)81441-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In yeast strains (S. cerevisiae) carrying a point mutation of the ATP2 gene, which destabilizes the beta subunit of F1 ATP synthase in vitro, the growth rate was reduced significantly, demonstrating that the mutation is also deleterious in vivo. Immunoblots showed that levels of the mutated beta, but also of the wild-type alpha subunit were increased in the mutated strains, together with levels of the corresponding mRNAs (approximately 1.6-fold). Northern analysis showed that this was due to both the appearance of new transcript species as well as upregulation of the cognate transcripts, strongly indicating that the increase was probably due to activation of transcription. Levels of other mitochondrial proteins, e.g. cytochrome c oxidase, were unaffected. We conclude that a specific signal communicates the actual performance of the ATP synthase inside the mitochondria to the nuclear genes encoding its subunits.
Collapse
|
22
|
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas del C.S.I.C., Facultad de Medicina UAM, Spain
| |
Collapse
|
23
|
Abstract
This review briefly surveys the literature on the nature, regulation, genetics, and molecular biology of the major energy-yielding pathways in yeasts, with emphasis on Saccharomyces cerevisiae. While sugar metabolism has received the lion's share of attention from workers in this field because of its bearing on the production of ethanol and other metabolites, more attention is now being paid to ethanol metabolism and the regulation of aerobic metabolism by fermentable and nonfermentable substrates. The utility of yeast as a highly manipulable organism and the discovery that yeast metabolic pathways are subject to the same types of control as those of higher cells open up many opportunities in such diverse areas as molecular evolution and cancer research.
Collapse
Affiliation(s)
- C Wills
- Department of Biology, University of California, San Diego, La Jolla
| |
Collapse
|
24
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
25
|
Käppeli O. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 1987; 28:181-209. [PMID: 3544735 DOI: 10.1016/s0065-2911(08)60239-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Gopalan G, Rajamanickam C. Role of exogenous hemin in the synthesis of hemoproteins and nonheme proteins during glucose repression in Saccharomyces cerevisiae. Arch Biochem Biophys 1986; 248:210-4. [PMID: 2873792 DOI: 10.1016/0003-9861(86)90418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exogenous addition of hemin to glucose-repressed cells of Saccharomyces cerevisiae stimulates the incorporation of amino acid into cytoplasmic proteins twofold. There was no significant change in the synthesis of total cytoplasmic RNA whereas a 40% increase in the synthesis of poly(A)-containing RNA was observed upon hemin treatment. Cell-free translation of cytoplasmic mRNAs and immunoprecipitation analysis of the translated products with antibodies against subunit V of cytochrome oxidase and the alpha and beta subunits of F1-ATPase reveals that there is an eightfold enrichment of the mRNA for subunit V of cytochrome oxidase upon hemin treatment. The effect of hemin on the alpha and beta subunits of F1-ATPase is only marginal, suggesting a differential role for heme in the synthesis of hemoproteins and nonheme proteins during glucose repression.
Collapse
|
27
|
|
28
|
Hanes SD, Koren R, Bostian KA. Control of cell growth and division in Saccharomyces cerevisiae. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 21:153-223. [PMID: 3530635 DOI: 10.3109/10409238609113611] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Considerable advances have been made in recent years in our understanding of the biochemistry of protein and nucleic acid synthesis and, particularly, the molecular biology of gene expression in eukaryotes. The yeast Saccharomyces cerevisiae, and to a lesser extent Schizosaccharomyces pombe, has had a preeminent role as a focus for these studies, principally because of the facility with which these organisms can be experimentally manipulated biochemically and genetically. This review will be designed to critically examine and integrate recent advances in several vital areas of regulatory control of enzyme synthesis in yeast: structure and organization of DNA, transcriptional regulation, post-transcriptional modification, control of translation, post-translational modification and secretion, and cell-cycle modulation. It will attempt to emphasize and illustrate, where detailed information is available, principal underlying molecular mechanisms, and it will attempt to make relevant comparisons of this material to inferred and demonstrated facets of regulatory control of enzyme and protein synthesis in higher eukaryotes.
Collapse
|
29
|
Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components. Mol Cell Biol 1984. [PMID: 6328277 DOI: 10.1128/mcb.4.5.939] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By Northern blot hybridization analysis, we demonstrated that the steady-state levels of mRNAs specifying the alpha subunit of ATPase, the beta subunit of ATPase, and the ATP/ADP translocator are all reduced in cells grown in glucose-rich medium. The extent to which glucose represses the levels of alpha, beta, and translocator mRNAs varies from strain to strain, from 2.5- to 7-fold. Furthermore, by hybridization experiments with an excess of DNA, we showed that glucose represses the rates of synthesis of these mRNAs. The kinetics of repression and depression of transcription were also studied. Finally, a mutant was characterized which appears to be defective in depression of transcription of the genes encoding the alpha and beta ATPase subunits as well as the ATP/ADP translocator.
Collapse
|
30
|
Szekely E, Montgomery DL. Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components. Mol Cell Biol 1984; 4:939-46. [PMID: 6328277 PMCID: PMC368844 DOI: 10.1128/mcb.4.5.939-946.1984] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By Northern blot hybridization analysis, we demonstrated that the steady-state levels of mRNAs specifying the alpha subunit of ATPase, the beta subunit of ATPase, and the ATP/ADP translocator are all reduced in cells grown in glucose-rich medium. The extent to which glucose represses the levels of alpha, beta, and translocator mRNAs varies from strain to strain, from 2.5- to 7-fold. Furthermore, by hybridization experiments with an excess of DNA, we showed that glucose represses the rates of synthesis of these mRNAs. The kinetics of repression and depression of transcription were also studied. Finally, a mutant was characterized which appears to be defective in depression of transcription of the genes encoding the alpha and beta ATPase subunits as well as the ATP/ADP translocator.
Collapse
|
31
|
Bailey RB, Woodword A. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1984; 193:507-12. [PMID: 6323921 DOI: 10.1007/bf00382091] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new mutation has been described which confers resistance to catabolite repression in Saccharomyces cerevisiae. The mutant allele, termed grr-1 for glucose repression-resistant, is characterized by insensitivity to glucose repression for the cytoplasmic enzymes invertase, maltase, and galactokinase, as well as the mitochondrial enzyme cytochrome c oxidase. Hexokinase levels in grr-1 mutants are approximately 3-fold higher than the corresponding activity of the parental strain. Although the grr-1 allele is expressed phenotypically similarly to the hex-1 (hxk-2) and hex-2 mutations described by Entian et al. (1977) and Zimmermann and Scheel (1977) respectively, we have shown genetically and physiologically that grr-1 represents a new class of mutation.
Collapse
|
32
|
Comparison of the levels of the 21S mitochondrial rRNA in derepressed and glucose-repressed Saccharomyces cerevisiae. Mol Cell Biol 1984. [PMID: 6361522 DOI: 10.1128/mcb.3.11.1949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA preparation, synthesized by using Saccharomyces cerevisiae mitochondrial RNA as template and oligodeoxythymidylic acid as primer, was found to specifically hybridize to the mitochondrial 21S rRNA by the following criteria: (i) it hybridizes only to the 21S RNA species in mitochondrial RNA and not to RNA from a [rho0] mutant, and (ii) it hybridizes to fragments in restriction digests of mitochondrial DNA that contain the 21S rRNA gene but not to nuclear DNA. This cDNA was used as a probe to demonstrate that a 2.6-fold decrease in the cellular level of the mitochondrial large rRNA is associated with glucose repression of mitochondrial function in S. cerevisiae. A corresponding decrease in the level of mitochondrial DNA was not observed.
Collapse
|
33
|
Guarente L, Lalonde B, Gifford P, Alani E. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 1984; 36:503-11. [PMID: 6319028 DOI: 10.1016/0092-8674(84)90243-5] [Citation(s) in RCA: 423] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The upstream activation site (UAS) of the yeast CYC1 gene is shown to contain two homologous subsites, UAS1 and UAS2. Each site, when placed upstream of the transcriptional initiation region of the yeast LEU2 gene, activates LEU2 transcription which is regulated by catabolite repression. UAS1 is responsible for most of the transcription under glucose repressed conditions, while UAS1 and UAS2 contribute equally to lactate derepressed transcription. A single point mutation in UAS2 increases its activity in glucose 10- to 20-fold. Several experiments indicate that UAS1 and UAS2 are regulated distinctly at the molecular level. First, UAS1 but not UAS2 is fully depressed in glucose by increasing the levels of intracellular heme. Second, trans-acting regulatory mutations, hap1-1 and hap2-1, selectively abolish the activity of UAS1 or UAS2. HAP1 appears to encode a protein that mediates catabolite repression of UAS1 by responding to intracellular heme levels.
Collapse
|
34
|
Kelly R, Phillips SL. Comparison of the levels of the 21S mitochondrial rRNA in derepressed and glucose-repressed Saccharomyces cerevisiae. Mol Cell Biol 1983; 3:1949-57. [PMID: 6361522 PMCID: PMC370062 DOI: 10.1128/mcb.3.11.1949-1957.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A cDNA preparation, synthesized by using Saccharomyces cerevisiae mitochondrial RNA as template and oligodeoxythymidylic acid as primer, was found to specifically hybridize to the mitochondrial 21S rRNA by the following criteria: (i) it hybridizes only to the 21S RNA species in mitochondrial RNA and not to RNA from a [rho0] mutant, and (ii) it hybridizes to fragments in restriction digests of mitochondrial DNA that contain the 21S rRNA gene but not to nuclear DNA. This cDNA was used as a probe to demonstrate that a 2.6-fold decrease in the cellular level of the mitochondrial large rRNA is associated with glucose repression of mitochondrial function in S. cerevisiae. A corresponding decrease in the level of mitochondrial DNA was not observed.
Collapse
|
35
|
Borralho LM, Panek AD, Malamud DR, Sanders HK, Mattoon JR. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant. J Bacteriol 1983; 156:141-7. [PMID: 6352674 PMCID: PMC215062 DOI: 10.1128/jb.156.1.141-147.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To facilitate the study of the effects of carbon catabolite repression and mutations on 5-aminolevulinate dehydratase (EC 4.2.1.24) from Saccharomyces cerevisiae, a sensitive in situ assay was developed, using cells permeabilized by five cycles of freezing and thawing. Enzymatic activity was measured by colorimetric determination of porphobilinogen with a modified Ehrlich reagent. For normal strains, porphobilinogen production was linear for 15 min, and the reaction rate was directly proportional to the permeabilized cell concentration up to 20 mg (dry weight) per ml. The reaction exhibited Michaelis-Menten-type kinetics, and an apparent Km of 2.6 mM was obtained for 5-aminolevulinic acid. This value is only slightly higher than the value of 1.8 mM obtained for the enzyme assayed in cell extracts. The in situ assay was used to assess catabolite repression-dependent changes in 5-aminolevulinate dehydratase during batch culture on glucose medium. In normal S. cerevisiae cells, the enzyme is strongly repressed as long as glucose is present in the medium. In contrast, a strain bearing the hex2-3 mutation exhibits derepressed levels of enzyme activity during growth on glucose. Synthesis of cytochromes by this strain is also resistant to catabolite repression. Similar studies employing a strain containing the glc1 mutation, which enhances porphyrin accumulation, did not reveal any significant phenotypic change in catabolite regulation of 5-aminolevulinate dehydratase.
Collapse
|