1
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
2
|
Shi Y, Zhang Y, Wu X, Zhang H, Yang M, Tian Z. Potential dissemination mechanism of the tetC gene in Aeromonas media from the aerobic biofilm reactor under oxytetracycline stresses. J Environ Sci (China) 2021; 105:90-99. [PMID: 34130843 DOI: 10.1016/j.jes.2020.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The tetC gene has been found to be one of the most widely distributed tetracycline resistance (tet) genes in various environmental niches, but the detailed dissemination mechanisms are still largely unknown. In the present study, 11 tetC-containing Aeromonas media strains were isolated from an aerobic biofilm reactor under oxytetracycline stresses, and the genome of one strain was sequenced using the PacBio RSII sequencing approach to reveal the genetic environment of tetC. The tetC gene was carried by an IS26 composite transposon, named Tn6434. The tetC-carrying Tn6434 structure was detected in all of the A. media strains either in a novel plasmid pAeme2 (n=9) or other DNA molecules (n=2) by PCR screening. The NCBI database searching result shows that this structure was also present in the plasmids or chromosomes of other 13 genera, indicating the transferability of Tn6434. Inverse PCR and sequencing confirmed that Tn6434 can form a circular intermediate and is able to incorporate into a preexisting IS26 element, suggesting that Tn6434 might be responsible for the dissemination of tetC between different DNA molecules. This study will be helpful in uncovering the spread mechanism of tet genes in water environments.
Collapse
Affiliation(s)
- Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Shkoporov AN, Khokhlova EV, Kulagina EV, Smeianov VV, Kuchmiy AA, Kafarskaya LI, Efimov BA. Analysis of a novel 8.9kb cryptic plasmid from Bacteroides uniformis, its long-term stability and spread within human microbiota. Plasmid 2012. [PMID: 23201047 DOI: 10.1016/j.plasmid.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analysis of plasmid content in dominant Bacteroidales order intestinal strains isolated from the same child at a 5 year interval identified a 8.9 kb plasmid in Bacteroides uniformis BUN24 strain isolated at age 6 and indistinguishably sized plasmids in the isolates of B. uniformis, B. vulgatus, B. intesinalis, and Parabacteroides distasonis at age 11. We sequenced a B. uniformis BUN24 plasmid, designated pBUN24, and using molecular surveys of diverse species we established that this 8944bp molecule (G+C content 43.5%) represents a novel family of small cryptic Bacteroidales plasmids. The replication region of pBUN24 was experimentally localized to a 1707-bp fragment that includes a putative repA gene, coding for a protein of Rep_3 superfamily of replication proteins of theta-type plasmids preceded by a putative iteron-containing origin of replication. The other open reading frames (ORFs) identified in pBUN24 sequence include a putative tad-ata-type toxin-antitoxin and mobA-mobB mobilization modules, as well as seven additional cryptic ORFs. The interaction of Tad and Ada components demonstrated by a pull-down assay and the toxicity of Tad in Escherichia coli host suggests the functionality of the plasmid addiction module. Re-sequencing of plasmids in two Bacteroides strains isolated at the age of 11 showed 100% nucleotide identity to pBUN24. This data supports the notion that this plasmid is transmissible to other Bacteroidales strains in the natural ecosystem. The possible roles of toxin-antitoxin system and other proteins encoded by pBUN24 in providing an apparent ecological advantage to the plasmid-harbouring strains of a bacterial symbiont in the human gut deserve further investigation.
Collapse
Affiliation(s)
- Andrei N Shkoporov
- Department of Microbiology and Virology, The Russian National Research Medical University, 1, Ostrovitjanova St., Moscow 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
4
|
Patrick S, Blakely GW, Houston S, Moore J, Abratt VR, Bertalan M, Cerdeño-Tárraga AM, Quail MA, Corton N, Corton C, Bignell A, Barron A, Clark L, Bentley SD, Parkhill J. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. MICROBIOLOGY (READING, ENGLAND) 2010; 156:3255-3269. [PMID: 20829291 PMCID: PMC3090145 DOI: 10.1099/mic.0.042978-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Comparison of the complete genome sequence of Bacteroides fragilis 638R, originally isolated in the USA, was made with two previously sequenced strains isolated in the UK (NCTC 9343) and Japan (YCH46). The presence of 10 loci containing genes associated with polysaccharide (PS) biosynthesis, each including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface PS-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of PS biosynthesis locus diversity. Of the 10 divergent PS-associated loci apparent in each strain, none is similar between NCTC 9343 and 638R. YCH46 shares one locus with NCTC 9343, confirmed by mAb labelling, and a second different locus with 638R, making a total of 28 divergent PS biosynthesis loci amongst the three strains. The lack of expression of the phase-variable large capsule (LC) in strain 638R, observed in NCTC 9343, is likely to be due to a point mutation that generates a stop codon within a putative initiating glycosyltransferase, necessary for the expression of the LC in NCTC 9343. Other major sequence differences were observed to arise from different numbers and variety of inserted extra-chromosomal elements, in particular prophages. Extensive horizontal gene transfer has occurred within these strains, despite the presence of a significant number of divergent DNA restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst-strain diversity in PS biosynthesis loci is unprecedented.
Collapse
Affiliation(s)
- Sheila Patrick
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Garry W Blakely
- Institute of Cell Biology, University of Edinburgh, Darwin Building, Kings Buildings, Edinburgh EH9 3JR, UK
| | - Simon Houston
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jane Moore
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Valerie R Abratt
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Marcelo Bertalan
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ana M Cerdeño-Tárraga
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Michael A Quail
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Nicola Corton
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Craig Corton
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Alexandra Bignell
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Barron
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Louise Clark
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen D Bentley
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Parkhill
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
5
|
Seville LA, Patterson AJ, Scott KP, Mullany P, Quail MA, Parkhill J, Ready D, Wilson M, Spratt D, Roberts AP. Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb Drug Resist 2009; 15:159-66. [PMID: 19728772 DOI: 10.1089/mdr.2009.0916] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have analyzed the total metagenomic DNA from both human oral and fecal samples derived from healthy volunteers from six European countries to determine the molecular basis for tetracycline and erythromycin resistance. We have determined that tet(M) and tet(W) are the most prevalent tetracycline resistance genes assayed for in the oral and fecal metagenomes, respectively. Additionally, tet(Q), tet(O), and tet(O/32/O) have been shown to be common. We have also shown that erm(B), erm(V), and erm(E) are common erythromycin resistance genes present in these environments. Further, we have demonstrated the ubiquitous presence of the Tn916 integrase in the oral metagenomes and the Tn4451 and Tn1549 integrase genes within the fecal metagenomes.
Collapse
Affiliation(s)
- Lorna A Seville
- Division of Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brigham CJ, Malamy MH. Characterization of the RokA and HexA broad-substrate-specificity hexokinases from Bacteroides fragilis and their role in hexose and N-acetylglucosamine utilization. J Bacteriol 2005; 187:890-901. [PMID: 15659667 PMCID: PMC545704 DOI: 10.1128/jb.187.3.890-901.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides fragilis, a human gastrointestinal commensal and an opportunistic pathogen, utilizes simple and complex sugars and polysaccharides for growth in the large intestine and at sites of infection. Because B. fragilis lacks transport-linked sugar phosphorylation systems, cytoplasmic kinase(s) was expected to be required for the phosphorylation of hexoses and hexosamines. We have now identified two hexose kinases that are important for growth of B. fragilis on glucose, mannose, and other sugars. One kinase (RokA), a member of the ROK family of proteins, was found to be the sole kinase for activation of N-acetyl-D-glucosamine (NAG). The other kinase (HexA) is responsible for the majority of the glucose kinase activity in the cell, although a hexA deletion mutant strain was not defective for growth on any substrate tested. Deletion of both the rokA and hexA kinase genes resulted in inability of the cell to use glucose, mannose, NAG, and many other sugars. We purified RokA and determined its approximate molecular mass to be 36.5 kDa. The purified RokA protein was shown to phosphorylate several substrates, including glucose, NAG, and mannose, but not N-acetylmannosamine or N-acetylneuraminic acid. Phylogenetic analysis of RokA showed that it is most similar to kinases from the Cytophaga-Flavibacterium-Bacteroides group, while HexA was most similar to other bacterial hexokinases and eukaryotic hexokinases.
Collapse
Affiliation(s)
- Christopher J Brigham
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111.
| | | |
Collapse
|
7
|
Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004; 427:441-4. [PMID: 14749831 DOI: 10.1038/nature02285] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 12/12/2003] [Indexed: 01/07/2023]
Abstract
Strict anaerobes cannot grow in the presence of greater than 5 micro M dissolved oxygen. Despite this growth inhibition, many strict anaerobes of the Bacteroides class of eubacteria can survive in oxygenated environments until the partial pressure of O2 (PO2) is sufficiently reduced. For example, the periodontal pathogens Porphyromonas gingivalis and Tannerella forsythensis colonize subgingival plaques of mammals, whereas several other Bacteroides species colonize the gastrointestinal tract of animals. It has been suggested that pre-colonization of these sites by facultative anaerobes is essential for reduction of the PO2 and subsequent colonization by strict anaerobes. However, this model is inconsistent with the observation that Bacteroides fragilis can colonize the colon in the absence of facultative anaerobes. Thus, this strict anaerobe may have a role in reduction of the environmental PO2. Although some strictly anaerobic bacteria can consume oxygen through an integral membrane electron transport system, the physiological role of this system has not been established in these organisms. Here we demonstrate that B. fragilis encodes a cytochrome bd oxidase that is essential for O2 consumption and is required, under some conditions, for the stimulation of growth in the presence of nanomolar concentrations of O2. Furthermore, our data suggest that this property is conserved in many other organisms that have been described as strict anaerobes.
Collapse
Affiliation(s)
- Anthony D Baughn
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
8
|
Baughn AD, Malamy MH. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A 2002; 99:4662-7. [PMID: 11880608 PMCID: PMC123704 DOI: 10.1073/pnas.052710199] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 12/31/2001] [Indexed: 11/18/2022] Open
Abstract
Aconitase and isocitrate dehydrogenase (IDH) enzyme activities were detected in anaerobically prepared cell extracts of the obligate anaerobe Bacteroides fragilis. The aconitase gene was located upstream of the genes encoding the other two components of the oxidative branch of the Krebs cycle, IDH and citrate synthase. Mutational analysis indicates that these genes are cotranscribed. A nonpolar in-frame deletion of the acnA gene that encodes the aconitase prevented growth in glucose minimal medium unless heme or succinate was added to the medium. These results imply that B. fragilis has two pathways for alpha-ketoglutarate biosynthesis-one from isocitrate and the other from succinate. Homology searches indicated that the B. fragilis aconitase is most closely related to aconitases of two other Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria, Cytophaga hutchinsonii and Fibrobacter succinogenes. Phylogenetic analysis indicates that the CFB group aconitases are most closely related to mitochondrial aconitases. In addition, the IDH of C. hutchinsonii was found to be most closely related to the mitochondrial/cytosolic IDH-2 group of eukaryotic organisms. These data suggest a common origin for these Krebs cycle enzymes in mitochondria and CFB group bacteria.
Collapse
Affiliation(s)
- Anthony D Baughn
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
9
|
Whittle G, Hund BD, Shoemaker NB, Salyers AA. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol 2001; 67:3488-95. [PMID: 11472924 PMCID: PMC93048 DOI: 10.1128/aem.67.8.3488-3495.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conjugative transposon CTnDOT is virtually identical over most of its length to another conjugative transposon, CTnERL, except that CTnDOT carries an ermF gene that is not found on CTnERL. In this report, we show that the region containing ermF appears to consist of a 13-kb chimera composed of at least one class I composite transposon and a mobilizable transposon (MTn). Although the ermF region contains genes also carried on Bacteroides transposons Tn4351 and Tn4551, it does not contain the IS4351 element which is found on these transposons. In CTnDOT, insertion of the ermF region occurred near a stem-loop structure at the end of orf2, an open reading frame located immediately downstream of the integrase (int) gene of CTnDOT, and in a region known to be important for excision of CTnERL and CTnDOT. The chimera that comprises the ermF region can apparently no longer excise and circularize, but it contains a functional mobilization region related to that described for the Bacteroides MTn Tn4399. Analysis of 19 independent Bacteroides isolates showed that the ermF region is located in the same position in all of the strains analyzed and that the compositions of the ermF region are almost identical in these strains. Therefore, it appears that CTnDOT-like elements present in community and clinical isolates of Bacteroides were derived from a common ancestor and proliferated in the diverse Bacteroides population.
Collapse
Affiliation(s)
- G Whittle
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
10
|
Morgan RM, Macrina FL. bctA: a novel pBF4 gene necessary for conjugal transfer in Bacteroides spp. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2155-2165. [PMID: 9245805 DOI: 10.1099/00221287-143-7-2155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
pBF4 is a 41 kb conjugative R-plasmid that confers MLS (macrolide-lincosamide-streptogramin B) resistance in Bacteroides spp. To identify pBF4 genes governing conjugation, recombinational mutagenesis using a suicide vector carrying fragments of the pBF4 plasmid was employed. One of the six independent insertion mutants of pBF4 isolated using this method was found to be conjugation-deficient. Nucleotide sequence analysis around the insertion site on this plasmid revealed a 2.8 kb ORF that encoded a putative 110 kDa protein. A corresponding protein was observed when a 12 kb DNA fragment containing this ORF was used to program an in vitro transcription-translation system. Both the ORF and the predicted protein were novel when compared to available database sequences. This gene was designated bctA (Bacteroides conjugal transfer). Polyclonal rabbit antibodies that recognized a sub-sequence polypeptide of BctA reacted with a 55 kDa protein in Western blot analysis using a total protein extract from Bacteroides fragilis containing pBF4. The protein was not present in a B. fragilis strain containing the conjugation-deficient insertion mutant of pBF4. The 55 kDa protein was associated with the membrane fraction of B. fragilis. Although the cellular and biochemical basis of bctA-promoted conjugation remains unknown, this work demonstrates the existence of a heretofore unrecognized gene in bacterial conjugation, and the mutagenesis system used provides the means to isolate and characterize other genes involved in conjugal transfer in Bacteroides spp.
Collapse
Affiliation(s)
- Roderick M Morgan
- Department of Microbiology and Immunology. Box 980678 MCV Station, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | - Francis L Macrina
- Department of Microbiology and Immunology. Box 980678 MCV Station, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| |
Collapse
|
11
|
Murphy CG, Malamy MH. Requirements for strand- and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J Bacteriol 1995; 177:3158-65. [PMID: 7768814 PMCID: PMC177006 DOI: 10.1128/jb.177.11.3158-3165.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Replicons that contain Tn4399, a conjugal mobilizing transposon isolated from Bacteroides fragilis, can be mobilized in the presence of broad-host-range IncP plasmids RP4 and R751 in Escherichia coli to B. fragilis or E. coli recipients (C. G. Murphy and M. H. Malamy, J. Bacteriol. 175:5814-5823, 1993). To identify the initial DNA processing events involved in Tn4399-mediated mobilization in E. coli, plasmid DNA from pCGM328 (a pUC7 vector that contains the mobilization region of Tn4399) was isolated from donor cells following the release of plasmid DNA from the relaxation complex. Site- and strand-specific cleavage within the oriT region of Tn4399 was detected by denaturing gel electrophoresis and Southern hybridization analysis of this DNA in the presence or absence of IncP plasmids. Mutations in either mocA or mocB, two genes which are encoded by Tn4399 and are required for mobilization, significantly decrease the amount of specifically nicked DNA detected. These results suggest roles for the MocA and MocB gene products in specific processing of Tn4399-containing plasmid DNA prior to mobilization. By isolation of the nicked strand and primer extension of this template, we mapped the precise 5' end of the single-stranded cleavage reaction. The nucleotide position of nicTn4399 is adjacent to two sets of inverted repeats, a genetic arrangement similar to those of previously characterized oriT regions. Two site-directed mutations which remove nicTn4399 (oriT delta 1 and oriT delta 2) cannot be mobilized to recipients when they are present in trans along with functional MocA and MocB proteins and an IncP mobilizing plasmid; they are cis-dominant loss-of-function mutations.
Collapse
Affiliation(s)
- C G Murphy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
12
|
Park Y, McBride BC. Characterization of the tpr gene product and isolation of a specific protease-deficient mutant of Porphyromonas gingivalis W83. Infect Immun 1993; 61:4139-46. [PMID: 8406803 PMCID: PMC281136 DOI: 10.1128/iai.61.10.4139-4146.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The previously described protease gene (tpr) of Porphyromonas gingivalis W83 was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the recombinant protein and in vitro translation to encode a 50-kDa protein whose active form migrates with an apparent molecular mass of 90 kDa. The 50-kDa protein was expressed at high levels by using a T7 RNA polymerase/promoter system. The NH2-terminal sequence of the protein was identical to the amino acid sequence deduced from the DNA sequence of the protease gene. Affinity-purified antibody to the 90-kDa recombinant protease reacted with an 80-kDa P. gingivalis protein. A specific protease (Tpr)-deficient isogenic mutant of P. gingivalis was generated by homologous recombination between P. gingivalis chromosomal DNA and a suicide plasmid carrying the cloned gene disrupted by insertion of an erythromycin resistance gene. Gelatin substrate zymography showed that cell extracts of the mutant lacked a protease band that migrated with an apparent molecular mass of 80 kDa. Western immunoblots of the cell extracts indicated the loss of an antigen with a similar mass.
Collapse
Affiliation(s)
- Y Park
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
13
|
Smith CJ, Parker AC. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J Bacteriol 1993; 175:2682-91. [PMID: 8386723 PMCID: PMC204571 DOI: 10.1128/jb.175.9.2682-2691.1993] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transmissible cefoxitin (FX) resistance in Bacteroides vulgatus CLA341 was associated with the 12.5-kb, mobilizable transposon, Tn4555, which encoded the beta-lactamase gene cfxA. Transfer occurred by a conjugation-like mechanism, was stimulated by growth of donor cells with tetracycline (TC), and required the presence of a Bacteroides chromosomal Tcr element. Transconjugants resistant to either FX, TC, or both drugs were obtained, but only Fxr Tcr isolates could act as donors of Fxr in subsequent matings. Transfer of Fxr could be restored in Fxr Tcs strains by the introduction of a conjugal Tcr element from Bacteroides fragilis V479-1. A covalently closed circular DNA form of Tn4555 was observed in donor cells by Southern hybridization, and the levels of this circular transposon increased significantly in cells grown with TC. Both the cfxA gene and the Tn4555 mobilization region hybridized to the circular DNA, suggesting that this was a structurally intact transposon unit. Circular transposon DNA purified by CsCl-ethidium bromide density gradient centrifugation was used to transform Tcs B. fragilis 638, and Fxr transformants were obtained. Both the circular form and the integrated Tn4555 were observed in transformants, but the circular form was present at less than one copy per chromosomal equivalent. Examination of genomic DNA from Fxr transformants and transconjugants revealed that Tn4555 could insert at a wide variety of chromosomal sites. Multiple transposon insertions were present in many of the transconjugants, indicating that there was no specific barrier to the introduction of a second transposon copy.
Collapse
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, North Carolina 27858-4354
| | | |
Collapse
|
14
|
|
15
|
|
16
|
Smith CJ, Owen C, Kirby L. Activation of a cryptic streptomycin-resistance gene in the Bacteroides erm transposon, Tn4551. Mol Microbiol 1992; 6:2287-97. [PMID: 1328814 DOI: 10.1111/j.1365-2958.1992.tb01404.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteroides compound transposons encoding erm resistance are highly homologous but previous studies have shown some divergence of Tn4551. Results presented here describe a novel Tn4551 streptomycin-resistance gene, aadS, that was phenotypically silent in wild-type Bacteroides. However, aadS expression could be activated by a trans-acting chromosomal mutation. The aadS-encoded peptide displayed significant homology to Gram-positive streptomycin-dependent adenyltransferases, and enzymatic analysis confirmed the production of this activity. Examination of the nucleotide sequence showed that 200 bp upstream of aadS, the DNA base composition changed abruptly from 31% G+C to 48% G+C. These two regions were demarcated by a DNA sequence with homology to the recombination hot spots reported for Tn21 and the Bacteroides ermFU gene and to sequences at the ends of the chromosomal Bacteroides conjugal element, XBU4422.
Collapse
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, North Carolina 27858
| | | | | |
Collapse
|
17
|
Fletcher HM, Macrina FL. Molecular survey of clindamycin and tetracycline resistance determinants in Bacteroides species. Antimicrob Agents Chemother 1991; 35:2415-8. [PMID: 1804017 PMCID: PMC245395 DOI: 10.1128/aac.35.11.2415] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined 13 clinical isolates of the intestinal Bacteroides group using DNA probes representing Bacteroides macrolide-lincosamide-streptogramin B (MLS) (ermF) and tetracycline resistance (tetQ) determinants as well as an insertion sequence (IS4351) previously seen in association with erm genes. tetQ-hybridizing sequences were detected in 11 of 13 tetracycline-resistant clinical isolates. On the other hand, ermF-like sequences were detected in only three of eight clindamycin-resistant strains. One isolate displayed low-level, inducible resistance to clindamycin and was sensitive to erythromycin. This same isolate had IS4351-like sequences but was missing ermF-like sequences, in contrast to previous reports which demonstrated the common association of IS4351 and erm genes. Our results suggest the occurrence of unclassified MLS genes in the Bacteroides group and furthermore suggest that IS4351-like sequences are not always linked to Bacteroides ermF-like sequences. Finally, 4 of 13 isolates conjugally transferred tetracycline resistance or linked tetracycline-clindamycin (MLS) resistances, but this process did not involve plasmids.
Collapse
Affiliation(s)
- H M Fletcher
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678
| | | |
Collapse
|
18
|
Matthews BG, Roudier C, Guiney DG. A site-specific DNA inversion in Bacteroides plasmid pBF4 is influenced by the presence of the conjugal tetracycline resistance element. J Bacteriol 1991; 173:5239-43. [PMID: 1650348 PMCID: PMC208220 DOI: 10.1128/jb.173.16.5239-5243.1991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
pBF4 is a 42-kb R plasmid from Bacteroides fragilis which transfers clindamycin resistance (Clr) independently of the chromosomal tetracycline resistance (Tcr) transfer element. We have found that this plasmid exists in two nonequimolar conformations, A and B. These forms differ by an inversion of approximately 11.5 kb which does not involve the repeated DNA sequences previously mapped on the plasmid. The presence of chromosomal tetracycline resistance conjugal elements influences the relative amounts of the two conformations: induction with tetracycline shifts the dominant form from B to A.
Collapse
Affiliation(s)
- B G Matthews
- Department of Medicine, University of California, San Diego 92103
| | | | | |
Collapse
|
19
|
Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991; 35:1267-72. [PMID: 1929280 PMCID: PMC245156 DOI: 10.1128/aac.35.7.1267] [Citation(s) in RCA: 425] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- R Leclercq
- Service de Bactériologie-Virologie-Hygiène, Hôpital Henri Mondor, Université Paris XII, Créteil, France
| | | |
Collapse
|
20
|
Abstract
Transformation of Bacteroides spp. with a variety of plasmid DNAs was accomplished using electroporation. The standard transformation assay system used to deduce the optimal electroporation parameters employed a 50-to 100-fold concentrated cell suspension of mid-logarithmic phase Bacteroides fragilis strain 638 and the 5.4-kb clindamycin resistance (Ccr) vector, pBI191. A variety of electroporation buffers were used successfully in transformation experiments but of these, 1 mM MgCl2 in 10% glycerol was superior. The incorporation of MgCl2 was essential for optimum viability prior to electroporation and for optimum transformation. Transformants were routinely obtained using 5-ms pulses over a range of field strengths from 5 to 12.5 kV/cm, with a maximum of greater than 10(6) micrograms-1 DNA at 12.5 kV/cm. The number of transformants increased linearly with respect to DNA concentration over the range 0.01-2 micrograms tested. Recovery of transformants required an expression period of up to 2.5 h following exposure to the electric field. This period, however, was dependent on the antibiotic resistance marker used for selection of transformants, with a significantly shorter incubation required when chloramphenicol rather than clindamycin was used in the selective medium. The effect of the DNA source on transformation was tested using the shuttle vector pFD288. Plasmid DNA isolated from Bacteroides uniformis, Bacteroides ovatus, or Bacteroides thetaiotaomicron transformed B. fragilis 638 at frequencies 7.5- to 12.5-fold less than those observed for controls with homologous DNA. Further reductions were seen with Escherichia coli purified pFD288, which transformed at 1000-fold lower frequencies. Finally, using homologous pFD288 or pBI191 isolated from strain 638, several strains of B. fragilis, B. uniformis, and B. ovatus were transformed successfully without modification of the standard assay system. Two strains each of B. thetaiotaomicron and Bacteroides ruminicola were not transformed using the methods described here.
Collapse
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina 27858
| | | | | |
Collapse
|
21
|
Shoemaker NB, Barber RD, Salyers AA. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol 1989; 171:1294-302. [PMID: 2646276 PMCID: PMC209744 DOI: 10.1128/jb.171.3.1294-1302.1989] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Bacteroides conjugal tetracycline resistance (Tcr) elements appear not to be plasmids. In many cases, resistance to erythromycin (Emr) is cotransferred with Tcr. Using a newly constructed shuttle cosmid, pNJR1, we cloned 44 to 50 kilobase pairs of a conjugal Tcr Emr element on overlapping cosmid clones. Cosmid libraries were made in Escherichia coli with DNA from the original clinical Bacteroides thetaiotaomicron DOT strain containing Tcr Emr-DOT or from a Bacteroides uniformis Tcr Emr-DOT transconjugant strain. The cosmid clones were mobilized from E. coli into B. uniformis in groups of 10 to 20 per filter mating, with selection for Tcr or Emr transconjugants. The Tcr and Emr genes were cloned both separately and together on 30-kilobase-pair fragments. Several of the Tcr clones also contained transfer genes that permitted self-transfer of the cosmid from B. uniformis donors to E. coli or B. uniformis recipients. Neither the Tcr nor the Emr gene conferred resistance on E. coli, and the transfer-proficient clones did not self-transfer out of E. coli. Southern blot analysis was used to compare DNA from independently isolated Bacteroides strains carrying conjugal Tcr or Tcr Emr elements and their respective B. uniformis transconjugants. Results of these analyses indicate that there are large regions of homology, including regions outside the Tcr and Emr genes, but that the elements are not identical. Some Tcr clones contained a region which hybridized to chromosomal DNA from the wild-type B. uniformis recipient strain that did not carry the Tcr Emr-DOT element. This region of homology appeared not to be a junction fragment. It was not required in a Bacteroides recipient for successful transfer of the Tcr Emr element. Although we are not sure we have cloned a junction fragment between the Tcr Emr-DOT element and the B. uniformis chromosome, the preliminary function and restriction map appears to be linear.
Collapse
Affiliation(s)
- N B Shoemaker
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
22
|
Park BH, Levy SB. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux. Antimicrob Agents Chemother 1988; 32:1797-800. [PMID: 3072922 PMCID: PMC176021 DOI: 10.1128/aac.32.12.1797] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli containing the cryptic tetracycline resistance determinant (class F) from the Bacteroides fragilis transposon Tn4400 on plasmid pGAT400 expressed a detoxification of tetracycline as well as an active efflux of tetracycline. This finding concurs with the report of detoxification for a related tetracycline resistance determinant from B. fragilis on Tn4351 (B. S. Speer and A. Salyers, J. Bacteriol. 170:1423-1429, 1987), which specifies a 10-fold-higher resistance than Tn4400. Inactivation of tetracycline occurred at an initial rate of congruent to 0.7 micrograms of tetracycline per h per 10(8) cells, as determined by biologic assay and chromatographic analysis. The detoxification is a chemical degradation which can occur in the absence of energy-dependent efflux. The products of this degradation were not substrates for active transport into susceptible cells or out of pGAT400-containing E. coli. These results indicate that Tn4400 mediates two functionally different mechanisms for tetracycline resistance: an active efflux of tetracycline and a degradation of tetracycline.
Collapse
Affiliation(s)
- B H Park
- Department of Molecular Biology, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
23
|
Pheulpin P, Tierny Y, Béchet M, Guillaume JB. Construction of new shuttle plasmid vectors forEscherichia coli-Bacteroidestransgeneric cloning. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02791.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Guiney DG, Bouic K, Hasegawa P, Matthews B. Construction of shuttle cloning vectors for Bacteroides fragilis and use in assaying foreign tetracycline resistance gene expression. Plasmid 1988; 20:17-22. [PMID: 3071818 DOI: 10.1016/0147-619x(88)90003-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Shuttle vectors capable of replication in both Escherichia coli and Bacteroides fragilis have been developed. Conjugal transfer of these plasmids from E. coli to B. fragilis is facilitated by inclusion of the origin of transfer of the IncP plasmid RK2. The vectors pDK1 and pDK2 provide unique sites for cloning selectable markers in Bacteroides. pOA10 is a cosmid vector containing the replication region of pCP1 necessary for maintenance in Bacteroides. pDK3, pDK4.1, and pDK4.2 contain the Bacteroides clindamycin resistance gene allowing selection and maintenance in B. fragilis of plasmids containing inserted DNA fragments. pDK3 was used to test the expression in B. fragilis of five foreign tetracycline resistance (TcR) genes. The tetA, -B, and -C markers from facultative gram-negative bacteria, as well as a TcR determinant from Clostridium perfringens, did not express TcR in B. fragilis. The tetM gene, originally described in streptococci, encoded a small but reproducible increase of TcR in Bacteroides. These studies demonstrate the utility of shuttle vectors for introducing cloned genes into Bacteroides and underscore the differences in gene expression in these anaerobes.
Collapse
Affiliation(s)
- D G Guiney
- Department of Medicine, UCSD Medical Center 92103
| | | | | | | |
Collapse
|
25
|
Flint HJ, Thomson AM, Bisset J. Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola. Appl Environ Microbiol 1988; 54:855-60. [PMID: 2837147 PMCID: PMC202563 DOI: 10.1128/aem.54.4.855-860.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetracycline resistance was transferred at frequencies between 10(-7) and 10(-6) per recipient cell in anaerobic matings between two strains of the strictly anaerobic rumen bacterium Bacteroides ruminicola. The donor strain, 223/M2/7, was a multiple-plasmid-bearing tetracycline-resistant strain from the ovine rumen, and the recipient, F101, was a rifampin-resistant mutant of B14, a bovine strain belonging to B. ruminicola subsp. brevis. Resistance transfer could occur in the presence of DNase, but not in dummy mating mixtures in which filtrate from a donor culture replaced donor cells. Acquisition of tetracycline resistance by the recipient was accompanied by the appearance of a 19.5-kilobase pair plasmid (designated pRRI4) which was homologous with a plasmid of similar size and restriction pattern present in the donor strain. A transconjugant (F115) carrying pRRI4 was also able to act as a donor of tetracycline resistance and plasmid DNA in matings with another recipient. Derivatives of F115 that had spontaneously lost tetracycline resistance lacked detectable plasmid DNA. It is concluded that pRRI4 mediated the transfer of tetracycline resistance. Transfer of resistance was not detectably enhanced by pregrowth of the donor in medium containing tetracycline. Transfer of tetracycline resistance was not detected from 223/M2/7 to a strain, 23 belonging to B. ruminicola subsp. ruminicola.
Collapse
Affiliation(s)
- H J Flint
- Nutrition Division, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| | | | | |
Collapse
|
26
|
Speer BS, Salyers AA. Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli. J Bacteriol 1988; 170:1423-9. [PMID: 2832361 PMCID: PMC210984 DOI: 10.1128/jb.170.4.1423-1429.1988] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A tetracycline resistance (Tcr) gene that was found originally on two Bacteroides plasmids (pBF4 and pCP1) confers tetracycline resistance on Escherichia coli, but only when it is grown aerobically. Using maxicells, we have identified a 44-kilodalton protein which is encoded by the region that carries the Tcr gene and which may be the Tcr gene product. Localization experiments indicate that this 44-kilodalton protein is cytoplasmic. To determine whether the tetracycline resistance gene is expressed under anaerobic conditions, we have constructed a protein fusion between the Tcr gene and lacZ. In strains of E. coli carrying the fusion, beta-galactosidase activity was the same when the cells were grown under anaerobic conditions as when the cells were grown under aerobic conditions. This indicates that the tetracycline resistance gene product is made under anaerobic conditions but does not work. The failure of the Tcr protein to function under anaerobic conditions was not due to a requirement for function of the anaerobic electron transport system, because neither nitrate nor fumarate added to anaerobic media restored tetracycline resistance. Inhibition of the aerobic electron transport system with potassium cyanide did not prevent growth on tetracycline of cells containing the Tcr gene. A heme-deficient mutant, E. coli SHSP19, which carries the Tcr gene, was still resistant to tetracycline even when grown in heme-free medium. These results indicate that functioning of the Tcr gene product is not dependent on the aerobic electron transport system. Thus the requirement for aerobic conditions appears to reflect a requirement for oxygen. Spent medium from an E. coli strain carrying the Tcr gene, which was grown in medium containing tetracycline (50 micrograms/ml), did not inhibit growth of a tetracycline-susceptible strain of E. coli. Thus, the Tcr gene product may be detoxifying tetracycline.
Collapse
Affiliation(s)
- B S Speer
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
27
|
Smith CJ. Nucleotide sequence analysis of Tn4551: use of ermFS operon fusions to detect promoter activity in Bacteroides fragilis. J Bacteriol 1987; 169:4589-96. [PMID: 2820936 PMCID: PMC213826 DOI: 10.1128/jb.169.10.4589-4596.1987] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Bacteroides pBI136 clindamycin resistance (Ccr) determinant from the composite transposon Tn4551 was cloned onto the shuttle plasmid pFD160, and the regions necessary for expression in Bacteroides fragilis were determined. These results suggested that transcriptional regulatory signals required for Ccr were located in the Tn4551 direct repeat sequence (DRS) adjacent to the resistance determinant. Analysis of the nucleotide sequence of this region revealed that the Ccr structural gene, 798 base pairs (bp), was located 17 bp from the terminus of the DRS and that this gene (ermFS) differed from ermF (pBF4) by one amino acid. The DRS element was found to be 1,155 bp and appeared to contain the ermFS transcription start signals. The DRS structure was typical of insertion sequence elements isolated from other bacterial species, and its termini were characterized by 25-bp regions of imperfect dyad symmetry. The DRS was dominated by a 978-bp open reading frame, which terminated in the left inverted repeat 27 bp from the ermFS start codon, and weak amino acid sequence homology was observed with the putative transposase of IS3. Promoter activity of the DRS in B. fragilis was demonstrated by in vitro construction of operon fusions with a promoterless ermFS gene followed by transformation of the recombinant plasmids with selection for resistance to clindamycin. The location of one DRS promoter was identified by using the ermFS fusions and then verified by in vitro mutagenesis of the site with single-stranded linkers. Northern blot (RNA blot) analysis of total RNA from B. fragilis strains containing pBI136 or ermFS recombinant plasmids confirmed the location of this promoter and indicated that it was used in vivo by Tn4551. A second DRS promoter, which activated ermFS transcription by readthrough of the large DRS open reading frame, was also identified by the Northern blot analysis. The bicistronic ermFS message was not observed in strains containing a complete copy of Tn4551, and the possibility of transcriptional regulation is discussed.
Collapse
Affiliation(s)
- C J Smith
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 21701
| |
Collapse
|
28
|
Smith CJ, Spiegel H. Transposition of Tn4551 in Bacteroides fragilis: identification and properties of a new transposon from Bacteroides spp. J Bacteriol 1987; 169:3450-7. [PMID: 3038840 PMCID: PMC212416 DOI: 10.1128/jb.169.8.3450-3457.1987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tn4551, a clindamycin resistance (Ccr) transposon from the R plasmid pBI136, was cloned onto an Escherichia coli-Bacteroides shuttle vector which could replicate normally in E. coli but was maintained unstably in Bacteroides fragilis. To aid in cloning and to ensure maintenance of Tn4551 in E. coli, a kanamycin resistance determinant (Kmr) was inserted in the transposon. The transposon-bearing shuttle vector pFD197 was transformed into B. fragilis 638, and putative insertions of Tn4551::Kmr were identified by screening for resistance to clindamycin and plasmid content. Southern hybridization analyses were used to verify integration of the transposon in the B. fragilis chromosome, and the frequency of insertion was estimated at 7.8 X 10(-5) events per generation. In 57% of the isolates tested a second integration event also occurred. This second insertion apparently involved just a single copy of the 1.2-kilobase repeat sequence which flanks the transposon. In addition, Tn4551::Kmr appeared to function as a transposon in E. coli. Evidence for this was obtained by the isolation of transposon insertions into the bacteriophage P1 genome. Finally, the transposon vector, pFD197, could be mobilized to other B. fragilis strains in which transposition was detected. Mobilization from the strain 638 background was via a conjugation like process, but occurred in the absence of known conjugative elements or other detectable plasmids. This result suggested the presence of a host-encoded transfer system in this B. fragilis strain.
Collapse
|
29
|
Rasmussen JL, Odelson DA, Macrina FL. Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis. J Bacteriol 1987; 169:3573-80. [PMID: 3038844 PMCID: PMC212434 DOI: 10.1128/jb.169.8.3573-3580.1987] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence and genetic analyses of one of the directly repeated sequences flanking the macrolide-lincosamide-streptogramin B drug resistance determinant, ermF, from the Bacteroides fragilis R plasmid, pBF4, suggested that this region is an insertion sequence (IS) element. This 1,155-base-pair element contained partially matched (20 of 25 base pairs) terminal-inverted repeats, overlapping, anti-parallel open reading frames, and nine promoterlike sequences, including three that were oriented outward. Analysis of this sequence revealed no significant nucleotide homology to 13 other known IS elements. Inasmuch as Southern blot hybridization analysis detected homologous sequences in chromosomal DNA and its G+C content (42 mol%) was similar to that of B. fragilis, the data suggested that this element is of Bacteroides origin. Transposition promoted by this element was demonstrated in recA E. coli. Recombinants were recovered by selecting for the activation of a promoterless chloramphenicol resistance gene on the plasmid pDH5110 and were characterized by restriction endonuclease mapping and Southern blot hybridization. We propose that this IS element be designated IS4351.
Collapse
|
30
|
Odelson DA, Rasmussen JL, Smith CJ, Macrina FL. Extrachromosomal systems and gene transmission in anaerobic bacteria. Plasmid 1987; 17:87-109. [PMID: 3039558 DOI: 10.1016/0147-619x(87)90016-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obligately anaerobic bacteria are important in terms of their role as medical pathogens as well as their degradative capacities in a variety of natural ecosystems. Two major anaerobic genera, Bacteroides and Clostridium, are examined in this review. Plasmid elements in both genera are reviewed within the context of conjugal transfer and drug resistance. Genetic systems that facilitate the study of these anaerobic bacteria have emerged during the past several years. In large part, these developments have been linked to work centered on extrachromosomal genetic systems in these organisms. Conjugal transfer of antibiotic resistance has been a central focus in this regard. Transposable genetic elements in the Bacteroides are discussed and the evolution and spread of resistance to lincosamide antibiotics are considered at the molecular level. Recombinant DNA systems that employ shuttle vectors which are mobilized by conjugative plasmids have been developed for use in Bacteroides and Clostridium. The application of transmission and recombinant DNA genetic systems to study these anaerobes is under way and is likely to lead to an increased understanding of this important group of procaryotes.
Collapse
|
31
|
Abstract
Bacteroides are Gram-negative, obligate anaerobes that are present in high concentrations within the intestinal tracts of humans and animals. Bacteroides are also important opportunistic pathogens of humans and animals. Methods for genetic manipulation of these important organisms have only recently begun to emerge. Shuttle vectors which can be transferred by conjugation between Escherichia coli to Bacteroides are now available. A method for transforming some strains of Bacteroides has been developed. Two Bacteroides transposons, Tn4351 and Tn4400, have been found and one of them, Tn4351, has been used for transposon mutagenesis of Bacteroides. Several different Bacteroides genes have now been cloned, including a gene that codes for resistance to clindamycin, genes that code for polysaccharidases (chondroitin lyase and pullulanase), and a gene that codes for a fimbrial subunit. These cloned genes have been used to study the organization and regulation of Bacteroides genes.
Collapse
|
32
|
Rasmussen JL, Odelson DA, Macrina FL. Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol 1986; 168:523-33. [PMID: 3023281 PMCID: PMC213512 DOI: 10.1128/jb.168.2.523-533.1986] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA sequence analysis of a portion of an EcoRI fragment of the Bacteroides fragilis R plasmid pBF4 has allowed us to identify the macrolide-lincosamide-streptogramin B resistance (MLSr) gene, ermF. ermF had a relative moles percent G + C of 32, was 798 base pairs in length, and encoded a protein of approximately 30,360 daltons. Comparison between the deduced amino acid sequence of ermF and six other erm genes from gram-positive bacteria revealed striking homologies among all of these determinants, suggesting a common origin. Based on these and other data, we believe that ermF codes for an rRNA methylase. Analysis of the nucleotide sequences upstream and downstream from the ermF gene revealed the presence of directly repeated sequences, now identified as two copies of the insertion element IS4351. One of these insertion elements was only 26 base pairs from the start codon of ermF and contained the transcriptional start signal for this gene as judged by S1 nuclease mapping experiments. Additional sequence analysis of the 26 base pairs separating ermF and IS4351 disclosed strong similarities between this region and the upstream regulatory control sequences of ermC and ermA (determinants of staphylococcal origin). These results suggested that ermF was not of Bacteroides origin and are discussed in terms of the evolution of ermF and the expression of drug resistance in heterologous hosts.
Collapse
|
33
|
Osborne NG. Tubo-ovarian abscess: pathogenesis and management. J Natl Med Assoc 1986; 78:937-51. [PMID: 3537321 PMCID: PMC2571486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
That a female patient with abdominal pain is often considered to have pelvic inflammatory disease until proven otherwise is ubiquitous in the medical literature. This view is dangerous and should be challenged because it has resulted in episodes of ruptured appendix, death from ruptured ectopic pregnancies, and serious morbidity from delayed diagnoses of such entities as diverticulitis and endometriosis. Proper diagnostic steps should be taken for all patients with abdominal pain of unclear etiology.This article reviews the pathogenesis of tubo-ovarian abscesses so as to separate and clearly identify fact from fiction. Diagnostic steps and management guidelines are discussed.
Collapse
|
34
|
Matthews BG, Guiney DG. Characterization and mapping of regions encoding clindamycin resistance, tetracycline resistance, and a replication function on the Bacteroides R plasmid pCP1. J Bacteriol 1986; 167:517-21. [PMID: 3015877 PMCID: PMC212919 DOI: 10.1128/jb.167.2.517-521.1986] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Bacteroides drug resistance plasmid pCP1 encodes clindamycin resistance (Clr) and a cryptic tetracycline resistance (Tcr) determinant that is expressed in Escherichia coli cells grown aerobically, but not anaerobically, and is not expressed phenotypically in Bacteroides spp. Localization of genetic functions on pCP1 was facilitated by the construction of hybrid shuttle plasmids containing portions of pCP1 ligated to pDG5, a pBR322 derivative carrying the RK2 transfer origin. pDP1 delta 4 is a BglII deletion derivative of pCP1 linked to pDG5 and can be maintained in both E. coli and Bacteroides fragilis. By using Tn5 mutagenesis and subcloning, we localized the Clr and Tcr regions on the EcoRI B fragment between the 1.2-kilobase direct repeats of pCP1. The Clr and Tcr determinants are distinct and appear to be transcribed separately. Control of the Tcr phenotype is unusual in that expression is constitutive and is enhanced by a region encompassing the adjacent direct repeat. In addition, a region of pCP1 required for replication in Bacteroides spp. has been identified in the neighboring EcoRI A fragment.
Collapse
|
35
|
Shoemaker NB, Getty C, Guthrie EP, Salyers AA. Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coli-Bacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance element. J Bacteriol 1986; 166:959-65. [PMID: 3519587 PMCID: PMC215218 DOI: 10.1128/jb.166.3.959-965.1986] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteroides-Escherichia coli shuttle vectors containing a nonmobilizable pBR322 derivative and either pBFTM10 (pDP1, pCG30) or pB8-51 (pEG920) were mobilized by IncP plasmid R751 or pRK231 (an ampicillin-sensitive derivative of RK2) between E. coli strains and from E. coli to Bacteroides recipients. IncI alpha R64 drd-ll transferred these vectors 1,000 times less efficiently than did the IncP plasmids. pDP1, pCG30, and pEG920 could be mobilized from B. uniformis donors to both E. coli and Bacteroides recipients by a conjugative Bacteroides Tcr (Tcr ERL) element which was originally found in a clinical Bacteroides fragilis strain (B. fragilis ERL). However, the shuttle vector pE5-2, which contains pB8-51 cloned in a restriction site that prevents its mobilization by IncP or IncI alpha plasmids, also was not mobilized at detectable frequencies from Bacteroides donors by the Tcr ERL element. The mobilization frequencies of pCG30, pDP1, and pEG920 by the Tcr ERL element in B. uniformis donors to E. coli recipients was about the same as those to isogenic B. uniformis recipients. Transfer of the shuttle vectors from B. uniformis donors to E. coli occurred at the same frequencies when the matings were done aerobically or anaerobically. Growth of the B. uniformis donors in tetracycline (1 microgram/ml) prior to conjugation increased the mobilization frequencies of the vectors to both E. coli and Bacteroides recipients 50 to 100 times.
Collapse
|
36
|
Cuchural GJ, Tally FP, Storey JR, Malamy MH. Transfer of beta-lactamase-associated cefoxitin resistance in Bacteroides fragilis. Antimicrob Agents Chemother 1986; 29:918-20. [PMID: 3488018 PMCID: PMC284179 DOI: 10.1128/aac.29.5.918] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A cefoxitin-resistant Bacteroides fragilis isolate, TAL 4170, which inactivates cefoxitin, was able to transfer beta-lactamase-mediated cefoxitin resistance to a susceptible B. fragilis recipient. Cefoxitin-resistant transconjugants acquired a new beta-lactamase with a pI of 8.1 and were able to inactivate cefoxitin and retransfer cefoxitin resistance. No plasmids were detected in the donor or transconjugants.
Collapse
|
37
|
Shoemaker NB, Getty C, Gardner JF, Salyers AA. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol 1986; 165:929-36. [PMID: 3005243 PMCID: PMC214518 DOI: 10.1128/jb.165.3.929-936.1986] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gene for resistance to erythromycin and clindamycin, which is carried on the conjugative Bacteroides plasmid, pBF4, has been shown previously to be part of an element (Tn4351) that transposes in Escherichia coli. We have now introduced Tn4351 into Bacteroides uniformis 0061 on the following two suicide vectors: (i) the broad-host-range IncP plasmid R751 (R751::Tn4351) and (ii) pSS-2, a chimeric plasmid which contains 33 kilobases of pBF4 (including Tn4351) cloned into the IncQ plasmid RSF1010 and which is mobilized by R751. When E. coli HB101, carrying either R751::Tn4351 or R751 and pSS-2, was mated with B. uniformis under aerobic conditions, Emr transconjugants were detected at a frequency of 10(-6) to 10(-5) (R751::Tn4351) or 10(-8) to 10(-6) (R751 and pSS-2). In matings involving pSS-2, all Emr transconjugants contained simple insertions of Tn4351 in the chromosome, whereas in matings involving R751::Tn4351, about half of the Emr transconjugants had R751 cointegrated with Tn4351 in the chromosome. Of the Emr transconjugants, 13% were auxotrophs. Bacteroides spp. which had R751 cointegrated with Tn4351 in the chromosome did not transfer R751 or Tn4351 to E. coli HB101 or to isogenic B. uniformis, nor did the intergrated R751 mobilize pE5-2, an E. coli-Bacteroides shuttle vector that contains a transfer origin that is recognized by R751.
Collapse
|
38
|
Robillard NJ, Tally FP, Malamy MH. Tn4400, a compound transposon isolated from Bacteroides fragilis, functions in Escherichia coli. J Bacteriol 1985; 164:1248-55. [PMID: 2999075 PMCID: PMC219322 DOI: 10.1128/jb.164.3.1248-1255.1985] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transfer factor pBFTM10, isolated from the obligate anaerobic bacterium Bacteroides fragilis, carries a clindamycin resistance determinant which we have suggested is part of a transposable element. DNA homologous to this determinant is found in many Clnr Bacteroides isolates, either in the chromosome or on plasmids. We have now established that Ccr resides on a transposon, Tn4400. In addition to the Ccr determinant that functions under anaerobic conditions in B. fragilis, Tn4400 also carries a determinant for tetracycline resistance (Tcr) which only functions in Escherichia coli under aerobic conditions. The presence of Tn4400 on pBFTM10 does not confer tetracycline resistance on B. fragilis cells containing it. DNA from pBFTM10 was cloned in E. coli, with pDG5 as the cloning vector, to form pGAT500. Using a mobilization assay involving pGAT500 and an F factor derivative, pOX38, we determined that a 5.6-kilobase region of pBFTM10 DNA was capable of mediating replicon fusion and transposition. Most of the mobilization products resulted from inverse transposition reactions, while some were the result of true cointegrate formation. Analysis of the cointegrate molecules showed that three were formed by the action of one of the ends of Tn4400 (IS4400), and one was formed by the action of the whole element (Tn4400). The cointegrate molecule carrying intact copies of Tn4400 at the junction of the two plasmids could resolve to yield an unaltered donor plasmid (pGAT500) and a conjugal plasmid containing a copy of Tn4400 or a copy of one insertion sequence element (pOX38::Tn4400 or pOX38::IS4400). Thus, Tn4400 is a compound transposon containing active insertion sequence elements as directly repeated sequences at its ends.
Collapse
|
39
|
Smith CJ. Polyethylene glycol-facilitated transformation of Bacteroides fragilis with plasmid DNA. J Bacteriol 1985; 164:466-9. [PMID: 4044530 PMCID: PMC214267 DOI: 10.1128/jb.164.1.466-469.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A method for the transformation of Bacteroides fragilis with plasmid DNA was developed by using the clindamycin resistance plasmid pBFTM10 as the source of transforming DNA. The method was technically simple to perform and resulted in an average of 4.2 X 10(3) transformants per microgram of pBFTM10 added. A method for the preparation of frozen competent cells is also described.
Collapse
|
40
|
Smith CJ. Development and use of cloning systems for Bacteroides fragilis: cloning of a plasmid-encoded clindamycin resistance determinant. J Bacteriol 1985; 164:294-301. [PMID: 2995313 PMCID: PMC214243 DOI: 10.1128/jb.164.1.294-301.1985] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chimeric plasmids able to replicate in Bacteroides fragilis or in B. fragilis and Escherichia coli were constructed and used as molecular cloning vectors. The 2.7-kilobase pair (kb) cryptic Bacteroides plasmid pBI143 and the E. coli cloning vector pUC19 were the two replicons used for these constructions. Selection of the plasmid vectors in B. fragilis was made possible by ligation to a restriction fragment bearing the clindamycin resistance (Ccr) determinant from a Bacteroides R plasmid, pBF4;Ccr was not expressed in E. coli. The chimeric plasmids ranged from 5.3 to 7.3 kb in size and contained at least 10 unique restriction enzyme recognition sites suitable for cloning. Transformation of B. fragilis with the chimeric plasmids was dependent upon the source of the DNA; generally 10(5) transformants micrograms-1 of DNA were recovered when plasmid purified from B. fragilis was used. When the source of DNA was E. coli, there was a 1,000-fold decrease in the number of transformants obtained. Two of the shuttle plasmids not containing the pBF4 Ccr determinant were used in an analysis of the transposon-like structure encoding Ccr in the R plasmid pBI136. This gene encoding Ccr was located on a 0.85-kb EcoRI-HaeII fragment and cloned nonselectively in E. coli. Recombinants containing the gene inserted in both orientations at the unique ClaI site within the pBI143 portion of the shuttle plasmids could transform B. fragilis to clindamycin resistance. These results together with previous structural data show that the gene encoding Ccr lies directly adjacent to one of the repeated sequences of the pBI136 transposon-like structure.
Collapse
|
41
|
Martínez-Suárez JV, Baquero F, Reig M, Pérez-Díaz JC. Transferable plasmid-linked chloramphenicol acetyltransferase conferring high-level resistance in Bacteroides uniformis. Antimicrob Agents Chemother 1985; 28:113-7. [PMID: 3899001 PMCID: PMC176320 DOI: 10.1128/aac.28.1.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacteroides uniformis RYC3373 resistant to 64 micrograms of chloramphenicol per ml was isolated from a peritoneal pelvic abscess of a patient not previously treated with this drug. Chloramphenicol resistance was transferable at low frequency to a suitable Bacteroides fragilis recipient. The acquisition of resistance was linked to the presence of a 39.5-kilobase plasmid (pRYC3373), which was subsequently transferred to a secondary recipient. The transfer of Cm resistance occurred by a conjugation-like process. Donor and transconjugant strains produced chloramphenicol acetyltransferase constitutively. The Km for chloramphenicol was 40 microM, and its inactivation by 5-5'-dithiobis(2-nitrobenzoic acid) suggested its similarity to the type II enterobacterial enzymes encoded by different conjugative plasmids and also to a previously described enzyme of B. fragilis F47 and F48. The specific activity and the resistance level in pRYC3373-bearing strains were more than 10-fold higher than in the case of the enzyme from B. fragilis strains F47 and F48. The genetic basis of chloramphenicol acetyltransferase synthesis in Bacteroides spp. had not been previously established.
Collapse
|
42
|
Smith CJ, Gonda MA. Comparison of the transposon-like structures encoding clindamycin resistance in Bacteroides R-plasmids. Plasmid 1985; 13:182-92. [PMID: 2987997 DOI: 10.1016/0147-619x(85)90041-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The R-plasmids pBF4, pBFTM10, and pBI136 encode transmissible clindamycin resistance (Ccr) in Bacteroides spp. These plasmids are distinct replicons but the regions implicated in Ccr share some homology and appear to have a transposon-like structure. To better understand the mechanism of dissemination and to locate the Ccr determinant(s), the genetic and structural properties of the Ccr regions of each plasmid were compared and contrasted. For this work a single EcoRI restriction fragment containing the Ccr region from each plasmid was cloned into pBR322 in Escherichia coli. Results of restriction mapping and heteroduplex experiments showed that the pBF4 EcoRI-D and pBFTM10 EcoRI-B fragments shared more than 90% base sequence homology but that the EcoRI-C fragment of pBI136 had diverged significantly. The pBI136 fragment also did not confer tetracycline resistance in E. coli as shown for the pBF4 EcoRI-D fragment (D.G. Guiney, P. Hasegawa, and C. E. Davis, 1984, Plasmid 11, 248-252). Heteroduplex experiments showed that the pBI136 EcoRI-C and pBF4 EcoRI-D fragments shared a 1.2-kb region of homology attributed to a directly repeated sequence which bounds the Ccr region. Southern hybridization studies indicated that an additional 0.85 kb of the pBI136 EcoRI-C fragment was homologous to the EcoRI-D fragment of pBF4. This region was characterized by its sequential restriction endonuclease sites for HindIII, AvaII, and DdeI, and it is proposed that the Ccr gene(s) resides in this area.
Collapse
|
43
|
Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element. J Bacteriol 1985; 162:626-32. [PMID: 2985540 PMCID: PMC218895 DOI: 10.1128/jb.162.2.626-632.1985] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We constructed a shuttle vector, pE5-2, which can replicate in both Bacteroides spp. and Escherichia coli. pE5-2 contains a cryptic Bacteroides plasmid (pB8-51), a 3.8-kilobase (kb) EcoRI-D fragment from the 41-kb Bacteroides fragilis plasmid pBF4, and RSF1010, an IncQ E. coli plasmid. pE5-2 was mobilized by R751, an IncP E. coli plasmid, between E. coli strains with a frequency of 5 X 10(-2) to 3.8 X 10(-1) transconjugants per recipient. R751 also mobilized pE5-2 from E. coli donors to Bacteroides uniformis 0061RT and Bacteroides thetaiotaomicron 5482 with a frequency of 0.9 X 10(-6) to 2.5 X 10(-6). The Bacteroides transconjugants contained only pE5-2 and were resistant to clindamycin and erythromycin. Thus, the gene for clindamycin and erythromycin resistance must be located within the Eco RI-D fragment of BF4. A second recombinant plasmid, pSS-2, which contained 33 kb of pBF4 (including the EcoRI-D fragment and contiguous regions) could also be mobilized by R751 between E. coli strains. In some transconjugants, a 5.5-kb (+/- 0.3 kb) segment of the pBF4 portion of pSS2 was inserted into one of several sites on R751. In some other transconjugants this same 5.5-kb segment was integrated into the E. coli chromosome. This segment could transfer a second time onto R751. Transfer was RecA independent. The transferred segment included the entire EcoRI-D fragment, and thus the clindamycin-erythromycin resistance determinant, from pBF4.
Collapse
|
44
|
Characterization of Bacteroides ovatus plasmid pBI136 and structure of its clindamycin resistance region. J Bacteriol 1985; 161:1069-73. [PMID: 2982783 PMCID: PMC215008 DOI: 10.1128/jb.161.3.1069-1073.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic and physical analyses were used to characterize the Bacteroides ovatus R plasmid pBI136. Results from restriction endonuclease cleavage studies were used to construct a physical map of the plasmid for the enzymes EcoRI, BamHI, ClaI, XbaI, SalI, and SmaI. Based on the sizes of restriction fragments generated in these studies, the plasmid was estimated to be 80.6 kilobase pairs (kb). A 7.2-kb region of the plasmid required for resistance to lincosamide and macrolide (LM) antibiotics was mapped by analysis of spontaneously occurring LM-sensitive deletion derivatives. Hybridization studies showed that this region and an adjoining 2.9-kb EcoRI fragment were responsible for the previously reported homology among Bacteroides plasmids pBF4, pBFTM10, and pBI136. Within this region of homology, 0.5 kb was attributed to a directly repeated sequence thought to bound the LM resistance determinant on pBF4 and pBFTM10. Two pBI136 EcoRI fragments spanning the putative LM resistance region were cloned in Escherichia coli, and heteroduplex analysis of these recombinant plasmids revealed the presence of a 1.2-kb directly repeated sequence. These results suggested that the pBI136 LM resistance determinant resides on an 8.4-kb segment of DNA containing 6.0 kb of intervening DNA sequences bounded by a 1.2-kb directly repeated sequence.
Collapse
|
45
|
Guiney DG, Hasegawa P, Davis CE. Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids. Plasmid 1984; 11:248-52. [PMID: 6379711 DOI: 10.1016/0147-619x(84)90031-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The putative clindamycin resistance region of the Bacteroides fragilis R plasmid pBF4 was cloned in the vector R300B in Escherichia coli. This 3.8-kb EcoRI D fragment from pBF4 expressed noninducible tetracycline resistance in E. coli under aerobic but not anaerobic growth conditions. The fragment does not express tetracycline resistance in Bacteroides, a strict anaerobe. The separate tetracycline resistance transfer system in the Bacteroides host strain V479-1 has no homology to the cryptic determinant on pBF4. In addition, this aerobic tetracycline resistance determinant is not homologous to the three major plasmid mediated tetracycline resistance regions found in facultative gram-negative bacteria, represented by R100, RK2, and pBR322. A similar cryptic tetracycline resistance fragment was cloned from pCP1, a separate clindamycin resistance plasmid from Bacteroides that shares homology with the EcoRI D fragment of pBF4. This study identifies cryptic drug resistance determinants in Bacteroides that are expressed when inserted into an aerobically growing organism.
Collapse
|
46
|
Abstract
Two different species of clindamycin-resistant Bacteroides were isolated from the same infection. One isolate contained a single 15-kb plasmid (pCP1) which encoded transferable clindamycin resistance. pCP1 appears similar to the Bacteroides clindamycin resistance plasmid pBFTM10 isolated independently by F.P. Tally, D.R. Snydman, M.J. Shimell, and M.H. Malamy (1982, J. Bacteriol. 151, 686-691). The second strain had a 10-kb plasmid (pCP2) but did not transfer resistance. DNA hybridization studies revealed that pCP1 shares a 5-kb region of homology with the B. fragilis R plasmid pBF4 studied by R.A. Welch and F.L. Macrina (1981, J. Bacteriol. 145, 867-872). This region in both plasmids was shown to be bounded by homologous direct repeats and contains the putative clindamycin resistance determinant. pCP1 and pCP2 were found to share extensive homology but sequences homologous to the clindamycin resistance region were missing from pCP2 and found instead in the whole cell DNA of the host strain. These results identify a transposon-like structure on Bacteroides clindamycin resistance plasmids.
Collapse
|
47
|
Abstract
Bacteroides ovatus IB106 contained two plasmids, pBI106 (46 kilobases) and pBI136 (82 kilobases). Transmissible clindamycin-erythromycin resistance (Ccr) was mediated by pBI136 , whose Ccr determinant was closely related to the determinant on the Bacteroides R plasmids pBF4 and pBFTM10 . Hybridization studies showed that pBI106 was not involved in Ccr transfer, but it shared extensive homology to pBF4 with the exception of the pBF4 region implicated in Ccr.
Collapse
|
48
|
Zar FA. Modified broth-disk surveillance of clindamycin-resistant Bacteroides fragilis group. Antimicrob Agents Chemother 1983; 23:947-9. [PMID: 6614896 PMCID: PMC185017 DOI: 10.1128/aac.23.6.947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The modified broth-disk susceptibility test was used to assess the incidence of clindamycin resistance in the Bacteroides fragilis group. Over a 34-month period, 544 isolates were tested, 21 (4%) of which were found to be resistant. There was no significant difference in resistance among the six species, and resistance did not increase with time. In a 12-disk assay, the concentrations of clindamycin achieved approximated the concentrations expected (expected breakpoint, 4.8 micrograms/ml).
Collapse
|
49
|
Marsh PK, Malamy MH, Shimell MJ, Tally FP. Sequence homology of clindamycin resistance determinants in clinical isolates of Bacteroides spp. Antimicrob Agents Chemother 1983; 23:726-30. [PMID: 6870222 PMCID: PMC184800 DOI: 10.1128/aac.23.5.726] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The sequence homology of clindamycin resistance (Clnr) determinants was studied in 16 Clnr Bacteroides strains. The isolates were surveyed for plasmid content, homology with the Clnr determinant of pBFTM10, and ability to transfer Clnr. The Clnr DNA probes used in the Southern hybridizations were pBFTM10 and a plasmid derivative containing an EcoRI fragment of pBFTM10 cloned into Escherichia coli. A total of 13 of 16 Clnr strains also carried tetracycline resistance, and 15 of 16 Clnr Bacteroides isolates showed homology with the Clnr determinant of pBFTM10. These data suggest that the previously characterized Clnr determinant of pBFTM10 is widely distributed in nature and may be found on either a plasmid or the chromosome. The Clnr Bacteroides fragilis strain which lacked homology with pBFTM10 also had different transfer properties; thus, more than one type of Clnr determinant may exist in Bacteroides spp.
Collapse
|
50
|
Shimell MJ, Smith CJ, Tally FP, Macrina FL, Malamy MH. Hybridization studies reveal homologies between pBF4 and pBFTM10, Two clindamycin-erythromycin resistance transfer plasmids of Bacteroides fragilis. J Bacteriol 1982; 152:950-3. [PMID: 6290460 PMCID: PMC221560 DOI: 10.1128/jb.152.2.950-953.1982] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two clindamycin-erythromycin resistance transfer factors of Bacteroides fragilis, pBF4 and pBFTM10, were analyzed for regions of DNA homology. Although the plasmids were derived from different clinical isolates of B. fragilis and have different sizes, they showed homology in the clindamycin-erythromycin resistance region; no homology could be detected outside of this region.
Collapse
|