1
|
Maeda I. Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields. Microorganisms 2021; 10:microorganisms10010028. [PMID: 35056477 PMCID: PMC8777916 DOI: 10.3390/microorganisms10010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.
Collapse
Affiliation(s)
- Isamu Maeda
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| |
Collapse
|
2
|
Autenrieth C, Shaw S, Ghosh R. New Approach for the Construction and Calibration of Gas-Tight Setups for Biohydrogen Production at the Small Laboratory Scale. Metabolites 2021; 11:metabo11100667. [PMID: 34677382 PMCID: PMC8541310 DOI: 10.3390/metabo11100667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022] Open
Abstract
Biohydrogen production in small laboratory scale culture vessels is often difficult to perform and quantitate. One problem is that commonly used silicon tubing and improvised plastic connections used for constructing apparatus are cheap and easy to connect but are generally not robust for gases such as hydrogen. In addition, this type of apparatus presents significant safety concerns. Here, we demonstrate the construction of hydrogen-tight apparatus using a commercially available modular system, where plastic tubing and connections are made of explosion-proof dissipative plastic material. Using this system, we introduce a gas chromatograph calibration procedure, which can be easily performed without necessarily resorting to expensive commercial gas standards for the calibration of hydrogen gas concentrations. In this procedure, the amount of hydrogen produced by the reaction of sodium borohydride with water in a closed air-filled bottle is deduced from the observed decrease of the oxygen partial pressure, using the ideal gas law. Finally, the determined calibration coefficients and the gas-tight apparatus are used for the analysis of simultaneous oxygen consumption and hydrogen production of the purple photosynthetic bacterium, Rhodospirillum rubrum, during semi-aerobic growth in the dark.
Collapse
Affiliation(s)
- Caroline Autenrieth
- Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany; (S.S.); (R.G.)
- Correspondence: ; Tel.: +49-711-685-65048
| | - Shreya Shaw
- Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany; (S.S.); (R.G.)
- School of Molecular Sciences, Tempe Campus, Mailcode 1604, Arizona State University, Tempe, AZ 85281, USA
| | - Robin Ghosh
- Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany; (S.S.); (R.G.)
| |
Collapse
|
3
|
Liu X, Wang M, Song Y, Li Y, Liu P, Shi H, Li Y, Hao T, Zhang H, Jiang W, Chen S, Li J. Combined Assembly and Targeted Integration of Multigene for Nitrogenase Biosynthetic Pathway in Saccharomyces cerevisiae. ACS Synth Biol 2019; 8:1766-1775. [PMID: 31117360 DOI: 10.1021/acssynbio.9b00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological nitrogen fixation, a process unique to diazotrophic prokaryote, is catalyzed by the nitrogenase complex. There has been a long-standing interest in reconstituting a nitrogenase biosynthetic pathway in a eukaryotic host with the final aim of developing N2-fixing cereal crops. In this study, we report that a nitrogenase biosynthetic pathway (∼38 kb containing 15 genes) was assembled in two individual one-step methods via in vivo assembly and integrated at δ and HO sites in Saccharomyces cerevisiae chromosome. Of the 15 genes, 11 genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA, nifV, groES, groEL) were from Paenibacillus polymyxa WLY78 and 4 genes (nifS, nifU, nifF, nifJ) were from Klebsiella oxytoca. The 15-gene nitrogenase biosynthetic pathway was correctly assembled and transcribed in the recombinant S. cerevisiae. The NifDK tetramer with an identical molecular weight as that of P. polymyxa was formed in yeast and the expressed NifH exhibited the activity of Fe protein. This study demonstrates that it will be possible to produce active nitrogenase in eukaryotic hosts.
Collapse
Affiliation(s)
- Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Minyang Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yi Song
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Pengxi Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Haowen Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yunlong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Tianyi Hao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
4
|
Moure VR, Siöberg CLB, Valdameri G, Nji E, Oliveira MAS, Gerdhardt ECM, Pedrosa FO, Mitchell DA, Seefeldt LC, Huergo LF, Högbom M, Nordlund S, Souza EM. The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense. FEBS J 2019; 286:1214-1229. [PMID: 30633437 DOI: 10.1111/febs.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/04/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
The ammonium-dependent posttranslational regulation of nitrogenase activity in Azospirillum brasilense requires dinitrogenase reductase ADP-ribosyl transferase (DraT) and dinitrogenase reductase ADP-glycohydrolase (DraG). These enzymes are reciprocally regulated by interaction with the PII proteins, GlnB and GlnZ. In this study, purified ADP-ribosylated Fe-protein was used as substrate to study the mechanism involved in the regulation of A. brasilense DraG in vitro. The data show that DraG is partially inhibited by GlnZ and that DraG inhibition is further enhanced by the simultaneous presence of GlnZ and AmtB. These results are the first to demonstrate experimentally that DraG inactivation requires the formation of a ternary DraG-GlnZ-AmtB complex in vitro. Previous structural data have revealed that when the DraG-GlnZ complex associates with AmtB, the flexible T-loops of the trimeric GlnZ bind to AmtB and become rigid; these molecular events stabilize the DraG-GlnZ complex, resulting in DraG inactivation. To determine whether restraining the flexibility of the GlnZ T-loops is a limiting factor in DraG inhibition, we used a GlnZ variant that carries a partial deletion of the T-loop (GlnZΔ42-54). However, although the GlnZΔ42-54 variant was more effective in inhibiting DraG in vitro, it bound to DraG with a slightly lower affinity than does wild-type GlnZ and was not competent to completely inhibit DraG activity either in vitro or in vivo. We, therefore, conclude that the formation of a ternary complex between DraG-GlnZ-AmtB is necessary for the inactivation of DraG.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Catrine L B Siöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Glaucio Valdameri
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Marco Aurelio S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Edileusa C M Gerdhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - David A Mitchell
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,Setor Litoral, Universidade Federal do Paraná, Matinhos, Brazil
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Akentieva N. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate. World J Microbiol Biotechnol 2018; 34:184. [PMID: 30488133 DOI: 10.1007/s11274-018-2564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.
Collapse
Affiliation(s)
- Natalia Akentieva
- Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Street Academician Semenov, 1., Chernogolovka, 142432, Moscow Region, Russia.
| |
Collapse
|
6
|
Wang L, Yu Z, Yang J, Zhou J. Diazotrophic bacterial community variability in a subtropical deep reservoir is correlated with seasonal changes in nitrogen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19695-19705. [PMID: 26278898 DOI: 10.1007/s11356-015-5144-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Nitrogen-fixing microorganisms (diazotrophs) play important roles in aquatic biogeochemistry and ecosystem functioning. However, little is known about the spatiotemporal variation of diazotrophic microbial communities in deep subtropical reservoirs. In this study, denaturing gradient gel electrophoresis (DGGE), clone libraries, quantitative PCR, and quantitative reverse transcription (RT)-PCR were used together to examine the vertical and seasonal patterns of diazotrophic microbial communities based on nitrogenase (nifH) gene sequences in the Dongzhen Reservoir, China, across time (every 3 months for 1 year) and space (five different water depths). In general, the numbers of DGGE bands increased with water depth during the stratification seasons (spring, summer, and autumn), with the clone-library-based operational taxonomic unit (OTU) number and nifH gene diversity being highest in autumn (6 OTUs at depth 0 m; 15 OTUs at 33 m) and winter (12 OTUs at 0 m, 13 OTUs at 33 m) but decreasing drastically in spring (2 OTUs at 0 m, 3 OTUs at 33 m) and summer (3 OTUs at 0 m, 2 OTUs at 33 m). The nifH gene abundance was lowest in the water mixing season (winter average, 5.17 × 10(7) copies/L) but increased in the three other seasons (9.03 × 10(9) copies/L). Cyanobacteria (dominated by filamentous thermophilic cyanobacteria and Cylindrospermopsis raciborskii) were the most dominant diazotrophic group at all depths and seasons, while both alphaproteobacteria and gammaproteobacteria were co-dominant in the bottom waters in autumn and winter. The distinct seasonal and spatial patterns in diazotrophic communities were significantly related to total nitrogen (TN) and ammonium nitrogen (NH4-N) in the reservoir (P < 0.01). Further, TN showed a significant positive correlation with nifH RNA copy number (P < 0.05) and DGGE band number (P < 0.01), whereas the NH4-N was negatively correlated with nifH DNA copy number (P < 0.01) and positively with both RNA/DNA ratio (P < 0.01) and DGGE band number (P < 0.01). Our data indicated that water stratification, mixing, and nitrogen might drive the diazotrophic community structure and activity in complex ways, thereby influencing the aquatic nitrogen cycle. Therefore, adaptive reservoir management strategies should carefully consider the effects of water stratification for protecting drinking water quality and for controlling the potential for diazotrophic cyanobacteria blooms.
Collapse
Affiliation(s)
- Lina Wang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Yu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jing Zhou
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, China
| |
Collapse
|
7
|
Moure VR, Costa FF, Cruz LM, Pedrosa FO, Souza EM, Li XD, Winkler F, Huergo LF. Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr Top Microbiol Immunol 2015; 384:89-106. [PMID: 24934999 DOI: 10.1007/82_2014_380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Posttranslational modification of proteins plays a key role in the regulation of a plethora of metabolic functions. Protein modification by mono-ADP-ribosylation was first described as a mechanism of action of bacterial toxins. Since these pioneering studies, the number of pathways regulated by ADP-ribosylation in organisms from all domains of life expanded significantly. However, in only a few cases the full regulatory ADP-ribosylation circuit is known. Here, we review the system where mono-ADP-ribosylation regulates the activity of an enzyme: the regulation of nitrogenase in bacteria. When the nitrogenase product, ammonium, becomes available, the ADP-ribosyltransferase (DraT) covalently links an ADP-ribose moiety to a specific arginine residue on nitrogenase switching-off nitrogenase activity. After ammonium exhaustion, the ADP-ribosylhydrolase (DraG) removes the modifying group, restoring nitrogenase activity. DraT and DraG activities are reversibly regulated through interaction with PII signaling proteins . Bioinformatics analysis showed that DraT homologs are restricted to a few nitrogen-fixing bacteria while DraG homologs are widespread in Nature. Structural comparisons indicated that bacterial DraG is closely related to Archaea and mammalian ADP-ribosylhydrolases (ARH). In all available structures, the ARH active site consists of a hydrophilic cleft carrying a binuclear Mg(2+) or Mn(2+) cluster, which is critical for catalysis.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ernst A, Liu YD, Reich S, Böger P. Diurnal Nitrogenase Modification in the CyanobacteriumAnabaena variabilis*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1990.tb00146.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liu CH, Chang CY, Liao Q, Zhu X, Chang JS. Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. BIORESOURCE TECHNOLOGY 2013; 145:331-336. [PMID: 23305898 DOI: 10.1016/j.biortech.2012.12.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
In this work, Chlorella vulgaris ESP6 was used to assimilate the soluble metabolites in the hydrogen fermentation broth of Clostridium butyricum CGS5 to obtain valuable microalgae biomass. The results show that C. vulgaris ESP6 could grow on the 4-fold diluted dark fermentation broth. Acetate was efficiently utilized during the growth of C. vulgaris ESP6, whereas the microalgae growth was inhibited by lactate, butyrate, and HCO3(-) when their concentrations were higher than 0.5, 0.1, and 2.72 g/L, respectively. C. vulgaris ESP6 could completely consume butyrate (the most abundant dark fermentation metabolite) when it was grown on Tris-Acetate-Phosphate medium under a food to microorganism (F/M) ratio of 1.11.
Collapse
Affiliation(s)
- Chien-Hung Liu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | |
Collapse
|
10
|
Carius L, Carius AB, McIntosh M, Grammel H. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum. BMC Microbiol 2013; 13:189. [PMID: 23927486 PMCID: PMC3751510 DOI: 10.1186/1471-2180-13-189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The facultative anoxygenic photosynthetic bacterium Rhodospirillum rubrum exhibits versatile metabolic activity allowing the adaptation to rapidly changing growth conditions in its natural habitat, the microaerobic and anoxic zones of stagnant waters. The microaerobic growth mode is of special interest as it allows the high-level expression of photosynthetic membranes when grown on succinate and fructose in the dark, which could significantly simplify the industrial production of compounds associated with PM formation. However, recently we showed that PM synthesis is no longer inducible when R. rubrum cultures are grown to high cell densities under aerobic conditions. In addition a reduction of the growth rate and the continued accumulation of precursor molecules for bacteriochlorophyll synthesis were observed under high cell densities conditions. RESULTS In the present work, we demonstrate that the cell density-dependent effects are reversible if the culture supernatant is replaced by fresh medium. We identified six N-acylhomoserine lactones and show that four of them are produced in varying amounts according to the growth phase and the applied growth conditions. Further, we demonstrate that N-acylhomoserine lactones and tetrapyrrole compounds released into the growth medium affect the growth rate and PM expression in high cell density cultures. CONCLUSIONS In summary, we provide evidence that R. rubrum possesses a Lux-type quorum sensing system which influences the biosynthesis of PM and the growth rate and is thus likely to be involved in the phenotypes of high cell density cultures and the rapid adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Lisa Carius
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106, Magdeburg, Germany.
| | | | | | | |
Collapse
|
11
|
Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME JOURNAL 2013; 7:1413-23. [PMID: 23446833 DOI: 10.1038/ismej.2013.26] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Baltic Sea receives large nitrogen inputs by diazotrophic (N2-fixing) heterocystous cyanobacteria but the significance of heterotrophic N2 fixation has not been studied. Here, the diversity, abundance and transcription of the nifH fragment of the nitrogenase enzyme in two basins of the Baltic Sea proper was examined. N2 fixation was measured at the surface (5 m) and in anoxic water (200 m). Vertical sampling profiles of >10 and <10 μm size fractions were collected in 2007, 2008 and 2011 at the Gotland Deep and in 2011 in the Bornholm Basin. Both of these stations are characterized by permanently anoxic bottom water. The 454-pyrosequencing nifH analysis revealed a diverse assemblage of nifH genes related to alpha-, beta- and gammaproteobacteria (nifH cluster I) and anaerobic bacteria (nifH cluster III) at and below the chemocline. Abundances of genes and transcripts of seven diazotrophic phylotypes were investigated using quantitative polymerase chain reaction revealing abundances of heterotrophic nifH phylotypes of up to 2.1 × 10(7) nifH copies l(-1). Abundant nifH transcripts (up to 3.2 × 10(4) transcripts l(-1)) within nifH cluster III and co-occurring N2 fixation (0.44±0.26 nmol l(-1) day(-1)) in deep water suggests that heterotrophic diazotrophs are fixing N2 in anoxic ammonium-rich waters. Our results reveal that N2 fixation in the Baltic Sea is not limited to illuminated N-deplete surface waters and suggest that N2 fixation could also be of importance in other suboxic regions of the world's oceans.
Collapse
|
12
|
Xie JB, Bai LQ, Wang LY, Chen SF. Phylogeny of 16S rRNA and nifH genes and regulation of nitrogenase activity by oxygen and ammonium in the genus Paenibacillus. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712060173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. J Bacteriol 2012; 195:279-86. [PMID: 23144248 DOI: 10.1128/jb.01517-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fe protein (dinitrogenase reductase) activity is reversibly inactivated by dinitrogenase reductase ADP-ribosyltransferase (DraT) in response to an increase in the ammonium concentration or a decrease in cellular energy in Azospirillum brasilense, Rhodospirillum rubrum, and Rhodobacter capsulatus. The ADP-ribosyl is removed by the dinitrogenase reductase-activating glycohydrolase (DraG), promoting Fe protein reactivation. The signaling pathway leading to DraT activation by ammonium is still not completely understood, but the available evidence shows the involvement of direct interaction between the enzyme and the nitrogen-signaling P(II) proteins. In A. brasilense, two P(II) proteins, GlnB and GlnZ, were identified. We used Fe protein from Azotobacter vinelandii as the substrate to assess the activity of A. brasilense DraT in vitro complexed or not with P(II) proteins. Under our conditions, GlnB was necessary for DraT activity in the presence of Mg-ADP. The P(II) effector 2-oxoglutarate, in the presence of Mg-ATP, inhibited DraT-GlnB activity, possibly by inducing complex dissociation. DraT was also activated by GlnZ and by both uridylylated P(II) proteins, but not by a GlnB variant carrying a partial deletion of the T loop. Kinetics studies revealed that the A. brasilense DraT-GlnB complex was at least 18-fold more efficient than DraT purified from R. rubrum, but with a similar K(m) value for NAD(+). Our results showed that ADP-ribosylation of the Fe protein does not affect the electronic state of its metal cluster and prevents association between the Fe and MoFe proteins, thus inhibiting electron transfer.
Collapse
|
14
|
Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. MICROBIOLOGY-SGM 2012; 158:176-190. [PMID: 22210804 DOI: 10.1099/mic.0.049783-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.
Collapse
Affiliation(s)
- Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Marcelo Muller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, UK
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| |
Collapse
|
15
|
Ghosh D, Sobro IF, Hallenbeck PC. Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: Response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration. BIORESOURCE TECHNOLOGY 2012; 106:154-160. [PMID: 22206915 DOI: 10.1016/j.biortech.2011.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Photofermentation by the photosynthetic bacterium Rhodopseudomonas palustris has been used to convert the crude glycerol fraction from biodiesel production to hydrogen as a means of converting this large resource to useful energy. In the present study response surface methodology was applied to investigate the interactive effects among several important process parameters; light intensity, and the concentrations of crude glycerol and glutamate, on the stoichiometric conversion of crude glycerol to hydrogen. Under optimal conditions, a light intensity of 175W/m(2), 30mM glycerol, and 4.5mM glutamate, 6.69mol hydrogen/mole of crude glycerol were obtained, a yield 96% of theoretical. Determination of nitrogenase activity and expression levels showed that there was relatively little variation in levels of nitrogenase protein with changes in process variables whereas nitrogenase activity varied considerably, with maximal nitrogenase activity (228nmol of C(2)H(4)/ml/min) at the optimal central point.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
16
|
Sarkar A, Köhler J, Hurek T, Reinhold-Hurek B. A novel regulatory role of the Rnf complex of Azoarcus sp. strain BH72. Mol Microbiol 2011; 83:408-22. [DOI: 10.1111/j.1365-2958.2011.07940.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Selao TT, Edgren T, Wang H, Norén A, Nordlund S. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness. MICROBIOLOGY-SGM 2011; 157:1834-1840. [PMID: 21393366 DOI: 10.1099/mic.0.045831-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhodospirillum rubrum, a photosynthetic diazotroph, is able to regulate nitrogenase activity in response to environmental factors such as ammonium ions or darkness, the so-called switch-off effect. This is due to reversible modification of the Fe-protein, one of the two components of nitrogenase. The signal transduction pathway(s) in this regulatory mechanism is not fully understood, especially not in response to darkness. We have previously shown that the switch-off response and metabolic state differ between cells grown with dinitrogen or glutamate as the nitrogen source, although both represent poor nitrogen sources. In this study we show that pyruvate affects the response to darkness in cultures grown with glutamate as nitrogen source, leading to a response similar to that in cultures grown with dinitrogen. The effects are related to P(II) protein uridylylation and glutamine synthetase activity. We also show that pyruvate induces de novo protein synthesis and that inhibition of pyruvate formate-lyase leads to loss of nitrogenase activity in the dark.
Collapse
Affiliation(s)
- Tiago Toscano Selao
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tomas Edgren
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | - He Wang
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Wang D, Zhang Y, Welch E, Li J, Roberts GP. Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2010; 35:7377-7385. [PMID: 20652089 PMCID: PMC2905822 DOI: 10.1016/j.ijhydene.2010.04.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nitrogenase not only reduces atmospheric nitrogen to ammonia, but also reduces protons to hydrogen (H(2)). The nitrogenase system is the primary means of H(2) production under photosynthetic and nitrogen-limiting conditions in many photosynthetic bacteria, including Rhodospirillum rubrum. The efficiency of this biological H(2) production largely depends on the nitrogenase enzyme and the availability of ATP and electrons in the cell. Previous studies showed that blockage of the CO(2) fixation pathway in R. rubrum induced nitrogenase activity even in the presence of ammonium, presumably to remove excess reductant in the cell. We report here the re-characterization of cbbM mutants in R. rubrum to study the effect of Rubisco on H(2) production. Our newly constructed cbbM mutants grew poorly in malate medium under anaerobic conditions. However, the introduction of constitutively active NifA (NifA*), the transcriptional activator of the nitrogen fixation (nif) genes, allows cbbM mutants to dissipate the excess reductant through the nitrogenase system and improves their growth. Interestingly, we found that the deletion of cbbM alters the posttranslational regulation of nitrogenase activity, resulting in partially active nitrogenase in the presence of ammonium. The combination of mutations in nifA, draT and cbbM greatly increased H(2) production of R. rubrum, especially in the presence of excess of ammonium. Furthermore, these mutants are able to produce H(2) over a much longer time frame than the wild type, increasing the potential of these recombinant strains for the biological production of H(2).
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yaoping Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Emily Welch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
19
|
Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG. Proc Natl Acad Sci U S A 2009; 106:14247-52. [PMID: 19706507 DOI: 10.1073/pnas.0905906106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ADP-ribosylation is a ubiquitous regulatory posttranslational modification involved in numerous key processes such as DNA repair, transcription, cell differentiation, apoptosis, and the pathogenic mechanism of certain bacterial toxins. Despite the importance of this reversible process, very little is known about the structure and mechanism of the hydrolases that catalyze removal of the ADP-ribose moiety. In the phototrophic bacterium Rhodospirillum rubrum, dinitrogenase reductase-activating glycohydrolase (DraG), a dimanganese enzyme that reversibly associates with the cell membrane, is a key player in the regulation of nitrogenase activity. DraG has long served as a model protein for ADP-ribosylhydrolases. Here, we present the crystal structure of DraG in the holo and ADP-ribose bound forms. We also present the structure of a reaction intermediate analogue and propose a detailed catalytic mechanism for protein de-ADP-ribosylation involving ring opening of the substrate ribose. In addition, the particular manganese coordination in DraG suggests a rationale for the enzyme's preference for manganese over magnesium, although not requiring a redox active metal for the reaction.
Collapse
|
20
|
Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum. J Bacteriol 2009; 191:5526-37. [PMID: 19542280 DOI: 10.1128/jb.00585-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in Rhodospirillum rubrum and in some other photosynthetic bacteria is regulated in part by the availability of light. This regulation is through a posttranslational modification system that is itself regulated by P(II) homologs in the cell. P(II) is one of the most broadly distributed regulatory proteins in nature and directly or indirectly senses nitrogen and carbon signals in the cell. However, its possible role in responding to light availability remains unclear. Because P(II) binds ATP, we tested the hypothesis that removal of light would affect P(II) by changing intracellular ATP levels, and this in turn would affect the regulation of nitrogenase activity. This in vivo test involved a variety of different methods for the measurement of ATP, as well as the deliberate perturbation of intracellular ATP levels by chemical and genetic means. To our surprise, we found fairly normal levels of nitrogenase activity and posttranslational regulation of nitrogenase even under conditions of drastically reduced ATP levels. This indicates that low ATP levels have no more than a modest impact on the P(II)-mediated regulation of NifA activity and on the posttranslational regulation of nitrogenase activity. The relatively high nitrogenase activity also shows that the ATP-dependent electron flux from dinitrogenase reductase to dinitrogenase is also surprisingly insensitive to a depleted ATP level. These in vivo results disprove the simple model of ATP as the key energy signal to P(II) under these conditions. We currently suppose that the ratio of ADP/ATP might be the relevant signal, as suggested by a number of recent in vitro analyses.
Collapse
|
21
|
Oetjen J, Reinhold-Hurek B. Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72. J Bacteriol 2009; 191:3726-35. [PMID: 19346301 PMCID: PMC2681912 DOI: 10.1128/jb.01720-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/29/2009] [Indexed: 11/20/2022] Open
Abstract
DraT/DraG-mediated posttranslational regulation of the nitrogenase Fe protein by ADP-ribosylation has been described for a few diazotrophic bacteria belonging to the class Alphaproteobacteria. Here we present for the first time the DraT/DraG system of a betaproteobacterium, Azoarcus sp. strain BH72, a diazotrophic grass endophyte. Its genome harbors one draT ortholog and two physically unlinked genes coding for ADP-ribosylhydrolases. Northern blot analysis revealed cotranscription of draT with two genes encoding hypothetical proteins. Furthermore, draT and draG2 were expressed under all studied conditions, whereas draG1 expression was nitrogen regulated. By using Western blot analysis of deletion mutants and nitrogenase assays in vivo, we demonstrated that DraT is required for the nitrogenase Fe protein modification but not for the physiological inactivation of nitrogenase activity. A second mechanism responsible for nitrogenase inactivation must operate in this bacterium, which is independent of DraT. Fe protein demodification was dependent mainly on DraG1, corroborating the assumption from phylogenetic analysis that DraG2 might be mostly involved in processes other than the posttranslational regulation of nitrogenase. Nitrogenase in vivo reactivation was impaired in a draG1 mutant and a mutant lacking both draG alleles after anaerobiosis shifts and subsequent adjustment to microaerobic conditions, suggesting that modified dinitrogenase reductase was inactive. Our results demonstrate that the DraT/DraG system, despite some differences, is functionally conserved in diazotrophic proteobacteria.
Collapse
Affiliation(s)
- Janina Oetjen
- General Microbiology, Faculty of Biology and Chemistry, University Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | | |
Collapse
|
22
|
Oetjen J, Rexroth S, Reinhold-Hurek B. Mass spectrometric characterization of the covalent modification of the nitrogenase Fe-protein in Azoarcus sp. BH72. FEBS J 2009; 276:3618-27. [PMID: 19490119 DOI: 10.1111/j.1742-4658.2009.07081.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogenase Fe-protein modification was analyzed in the endophytic beta-proteobacterium Azoarcus sp. BH72. Application of modern MS techniques localized the modification in the peptide sequence and revealed it to be an ADP-ribosylation on Arg102 of one subunit of nitrogenase Fe-protein. A double digest with trypsin and endoproteinase Asp-N was necessary to obtain an analyzable peptide because the modification blocked the trypsin cleavage site at this residue. Furthermore, a peptide extraction protocol without trifluoroacetic acid was crucial to acquire the modified peptide, indicating an acid lability of the ADP-ribosylation. This finding was supported by the presence of a truncated version of the original peptide with Arg102 exchanged by ornithine. Site-directed mutagenesis verified that the ADP-ribosylation occurred on Arg102. With our approach, we were able to localize a labile modification within a large peptide of 31 amino acid residues. The present study provides a method suitable for the identification of so far unknown protein modifications on nitrogenases or other proteins. It represents a new tool for the MS analysis of protein mono-ADP-ribosylations.
Collapse
Affiliation(s)
- Janina Oetjen
- General Microbiology, Faculty of Biology and Chemistry, University Bremen, Germany
| | | | | |
Collapse
|
23
|
Akentieva N. Formation of a cross-linking complex of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins from Rhodospirillum rubrum chromatophores. BIOCHEMISTRY (MOSCOW) 2008; 73:171-7. [PMID: 18298373 DOI: 10.1134/s0006297908020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Association of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins of chromatophores has been investigated. The formation of a multicomponent complex between DRAG and membrane proteins was demonstrated in the presence of glutaraldehyde and EDC/NHS (N-(3-dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride/hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid sodium salt). Complex formation was observed both in native chromatophore membrane and in chromatophores treated with 0.5 M NaCl in the presence of homogeneous DRAG and glutaraldehyde in cross-reaction. The molecular weight of the complex was around 200 kD, which is consistent with the association of DRAG with three or more chromatophore membrane proteins. A specific complex with molecular weight of about 75 kD was formed only in the presence of EDC/NHS in the cross-linking reaction. It was demonstrated that ammonium transport protein and P11 protein are possible candidates for association with DRAG in chromatophore membranes.
Collapse
Affiliation(s)
- N Akentieva
- Washington University in Saint Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
24
|
Wolfe DM, Zhang Y, Roberts GP. Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. J Bacteriol 2007; 189:6861-9. [PMID: 17644595 PMCID: PMC2045211 DOI: 10.1128/jb.00759-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen regulatory protein P(II) and the ammonia gas channel AmtB are both found in most prokaryotes. Interaction between these two proteins has been observed in several organisms and may regulate the activities of both proteins. The regulation of their interaction is only partially understood, and we show that in Rhodospirillum rubrum one P(II) homolog, GlnJ, has higher affinity for an AmtB(1)-containing membrane than the other two P(II) homologs, GlnB and GlnK. This interaction strongly favors the nonuridylylated form of GlnJ and is disrupted by high levels of 2-ketoglutarate (2-KG) in the absence of ATP or low levels of 2-KG in the presence of ATP. ADP inhibits the destabilization of the GlnJ-AmtB(1) complex in the presence of ATP and 2-KG, supporting a role for P(II) as an energy sensor measuring the ratio of ATP to ADP. In the presence of saturating levels of ATP, the estimated K(d) of 2-KG for GlnJ bound to AmtB(1) is 340 microM, which is higher than that required for uridylylation of GlnJ in vitro, about 5 microM. This supports a model where multiple 2-KG and ATP molecules must bind a P(II) trimer to stimulate release of P(II) from AmtB(1), in contrast to the lower 2-KG requirement for productive uridylylation of P(II) by GlnD.
Collapse
Affiliation(s)
- David M Wolfe
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
25
|
Rey FE, Heiniger EK, Harwood CS. Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 2007; 73:1665-71. [PMID: 17220249 PMCID: PMC1828789 DOI: 10.1128/aem.02565-06] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major route for hydrogen production by purple photosynthetic bacteria is biological nitrogen fixation. Nitrogenases reduce atmospheric nitrogen to ammonia with the concomitant obligate production of molecular hydrogen. However, hydrogen production in the context of nitrogen fixation is a rather inefficient process because about 75% of the reductant consumed by the nitrogenase is used to generate ammonia. In this study we describe a selection strategy to isolate strains of purple photosynthetic bacteria in which hydrogen production is necessary for growth and independent of nitrogen fixation. We obtained four mutant strains of the photosynthetic bacterium Rhodopseudomonas palustris that produce hydrogen constitutively, even in the presence of ammonium, a condition where wild-type cells do not accumulate detectable amounts of hydrogen. Some of these strains produced up to five times more hydrogen than did wild-type cells growing under nitrogen-fixing conditions. Transcriptome analyses of the hydrogen-producing mutant strains revealed that in addition to the nitrogenase genes, 18 other genes are potentially required to produce hydrogen. The mutations that caused constitutive hydrogen production mapped to four different sites in the NifA transcriptional regulator in the four different strains. The strategy presented here can be applied to the large number of diverse species of anoxygenic photosynthetic bacteria that are known to exist in nature to identify strains for which there are fitness incentives to produce hydrogen.
Collapse
Affiliation(s)
- Federico E Rey
- Department of Microbiology, Box 357242, 1959 N. E. Pacific Street, University of Washington, Seattle, WA 98195-7242, USA
| | | | | |
Collapse
|
26
|
Mortenson LE, Seefeldt LC, Morgan TV, Bolin JT. The role of metal clusters and MgATP in nitrogenase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:299-374. [PMID: 8322617 DOI: 10.1002/9780470123133.ch4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L E Mortenson
- Center for Metalloenzyme Studies, University of Georgia, Athens
| | | | | | | |
Collapse
|
27
|
Hydrogen production by draTGB hupL double mutant of Rhodospirillum rubrum under different light conditions. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2171-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. MICROBIOLOGY-SGM 2006; 152:2075-2089. [PMID: 16804182 DOI: 10.1099/mic.0.28903-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AmtB protein transports uncharged NH(3) into the cell, but it also interacts with the nitrogen regulatory protein P(II), which in turn regulates a variety of proteins involved in nitrogen fixation and utilization. Three P(II) homologues, GlnB, GlnK and GlnJ, have been identified in the photosynthetic bacterium Rhodospirillum rubrum, and they have roles in at least four overlapping and distinct functions, one of which is the post-translational regulation of nitrogenase activity. In R. rubrum, nitrogenase activity is tightly regulated in response to addition or energy depletion (shift to darkness), and this regulation is catalysed by the post-translational regulatory system encoded by draTG. Two amtB homologues, amtB(1) and amtB(2), have been identified in R. rubrum, and they are linked with glnJ and glnK, respectively. Mutants lacking AmtB(1) are defective in their response to both addition and darkness, while mutants lacking AmtB(2) show little effect on the regulation of nitrogenase activity. These responses to darkness and appear to involve different signal transduction pathways, and the poor response to darkness does not seem to be an indirect result of perturbation of internal pools of nitrogen. It is also shown that AmtB(1) is necessary to sequester detectable amounts GlnJ to the cell membrane. These results suggest that some element of the AmtB(1)-P(II) regulatory system senses energy deprivation and a consistent model for the integration of nitrogen, carbon and energy signals by P(II) is proposed. Other results demonstrate a degree of specificity in interaction of AmtB(1) with the different P(II) homologues in R. rubrum. Such interaction specificity might be important in explaining the way in which P(II) proteins regulate processes involved in nitrogen acquisition and utilization.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M Wolfe
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary C Conrad
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Ponnuraj RK, Rubio LM, Grunwald SK, Ludden PW. NAD-, NMN-, and NADP-dependent modification of dinitrogenase reductases from Rhodospirillum rubrum and Azotobacter vinelandii. FEBS Lett 2005; 579:5751-8. [PMID: 16225869 DOI: 10.1016/j.febslet.2005.09.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/22/2005] [Accepted: 09/23/2005] [Indexed: 11/27/2022]
Abstract
Nitrogenase activity in the photosynthetic bacterium Rhodospirillum rubrum is reversibly regulated by ADP-ribosylation of a specific arginine residue of dinitrogenase reductase based on the cellular nitrogen or energy status. In this paper, we have investigated the ability of nicotinamide adenine dinucleotide, NAD (the physiological ADP-ribose donor), and its analogs to support covalent modification of dinitrogenase reductase in vitro. R. rubrum dinitrogenase reductase can be modified by DRAT in the presence of 2 mM NAD, but not with 2 mM nicotinamide mononucleotide (NMN) or nicotinamide adenine dinucleotide phosphate (NADP). We also found that the apo- and the all-ferrous forms of R. rubrum dinitrogenase reductase are not substrates for covalent modification. In contrast, Azotobacter vinelandii dinitrogenase reductase can be modified by the dinitrogenase reductase ADP-ribosyl transferase (DRAT) in vitro in the presence of either 2 mM NAD, NMN or NADP as nucleotide donors. We found that: (1) a simple ribose sugar in the modification site of the A. vinelandii dinitrogenase reductase is sufficient to inactivate the enzyme, (2) phosphoADP-ribose is the modifying unit in the NADP-modified enzyme, and (3) the NMN-modified enzyme carries two ribose-phosphate units in one modification site. This is the first report of NADP- or NMN-dependent modification of a target protein by an ADP-ribosyl transferase.
Collapse
|
30
|
Klassen G, Souza EM, Yates MG, Rigo LU, Costa RM, Inaba J, Pedrosa FO. Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein. Appl Environ Microbiol 2005; 71:5637-41. [PMID: 16151168 PMCID: PMC1214662 DOI: 10.1128/aem.71.9.5637-5641.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in several diazotrophs is switched off by ammonium and reactivated after consumption. The signaling pathway to this system in Azospirillum brasilense is not understood. We show that ammonium-dependent switch-off through ADP-ribosylation of Fe protein was partial in a glnB mutant of A. brasilense but absent in a glnB glnZ double mutant. Triggering of inactivation by anaerobic conditions was not affected in either mutant. The results suggest that glnB is necessary for full ammonium-dependent nitrogenase switch-off in A. brasilense.
Collapse
Affiliation(s)
- Giseli Klassen
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, Caixa Postal 19046 CEP-81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Pohlmann EL, Roberts GP. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J Bacteriol 2005; 187:1254-65. [PMID: 15687189 PMCID: PMC545621 DOI: 10.1128/jb.187.4.1254-1265.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme and is thought to be the primary sensor of nitrogen status in the cell. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) proteins, which in turn regulate a variety of other proteins. We report here the characterization of glnD mutants from the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum and the analysis of the roles of GlnD in the regulation of nitrogen fixation. Unlike glnD mutations in Azotobacter vinelandii and some other bacteria, glnD deletion mutations are not lethal in R. rubrum. Such mutants grew well in minimal medium with glutamate as the sole nitrogen source, although they grew slowly with ammonium as the sole nitrogen source (MN medium) and were unable to fix N(2). The slow growth in MN medium is apparently due to low glutamine synthetase activity, because a DeltaglnD strain with an altered glutamine synthetase that cannot be adenylylated can grow well in MN medium. Various mutation and complementation studies were used to show that the critical uridylyltransferase activity of GlnD is localized to the N-terminal region. Mutants with intermediate levels of uridylyltransferase activity are differentially defective in nif gene expression, the posttranslational regulation of nitrogenase, and NtrB/NtrC function, indicating the complexity of the physiological role of GlnD. These results have implications for the interpretation of results obtained with GlnD in many other organisms.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology, University of Wisconsin--Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
32
|
Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 2004; 49:469-79. [DOI: 10.1016/j.femsec.2004.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
33
|
Edgren T, Nordlund S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 2004; 186:2052-60. [PMID: 15028689 PMCID: PMC374401 DOI: 10.1128/jb.186.7.2052-2060.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.
Collapse
Affiliation(s)
- Tomas Edgren
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
34
|
Kim K, Zhang Y, Roberts GP. Characterization of altered regulation variants of dinitrogenase reductase-activating glycohydrolase from Rhodospirillum rubrum. FEBS Lett 2004; 559:84-8. [PMID: 14960312 DOI: 10.1016/s0014-5793(04)00031-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 01/07/2004] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
In Rhodospirillum rubrum, nitrogenase activity is subject to posttranslational regulation through the adenosine diphosphate (ADP)-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG). To study the posttranslational regulation of DRAG, its gene was mutagenized and colonies screened for altered DRAG regulation. Three different mutants were found and the DRAG variants displayed different biochemical properties including an altered affinity for divalent metal ions. Taken together, the results suggest that the site involved in regulation is physically near the metal binding site of DRAG.
Collapse
Affiliation(s)
- Kitai Kim
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
35
|
Yakunin AF, Hallenbeck PC. AmtB is necessary for NH(4)(+)-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 2002; 184:4081-8. [PMID: 12107124 PMCID: PMC135213 DOI: 10.1128/jb.184.15.4081-4088.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH(4)(+) addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
36
|
Martin DE, Reinhold-Hurek B. Distinct roles of P(II)-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72. J Bacteriol 2002; 184:2251-9. [PMID: 11914357 PMCID: PMC134945 DOI: 10.1128/jb.184.8.2251-2259.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P(II)-like signal transmitter proteins, found in Bacteria, Archaea, and plants, are known to mediate control of carbon and nitrogen assimilation. They indirectly regulate the activity of key metabolic enzymes and transcription factors by protein-protein interactions with signal transduction proteins. Many Proteobacteria harbor two paralogous P(II)-like proteins, GlnB and GlnK, whereas a novel third P(II) paralogue (GlnY) was recently identified in Azoarcus sp. strain BH72, a diazotrophic endophyte of grasses. In the present study, evidence was obtained that the P(II)-like proteins have distinct roles in mediating nitrogen and oxygen control of nif gene transcription and nitrogenase activity. Full repression of nif gene transcription in the presence of a combined nitrogen source or high oxygen concentrations was observed in wild-type and glnB and glnK knockout mutants, revealing that GlnB and GlnK can complement each other in mediating the repression. In contrast, in a glnBK double mutant strain in the presence of only GlnY, nif gene transcription was still detectable, albeit at a lower level, on nitrate or 20% oxygen. As another level of control, nitrogenase activity was regulated by at least three types of mechanisms in strain BH72: covalent modification of dinitrogenase reductase (NifH), probably by ADP-ribosylation, and two other, unknown means. Functional inactivation upon ammonium addition (switch-off) required the putative high-affinity ammonium transporter AmtB and GlnK, but not GlnB or GlnY. Functional inactivation in response to anaerobiosis did not depend on AmtB, GlnK, or GlnB. In contrast, covalent modification of NifH required both GlnB and GlnK and AmtB as response to ammonium addition, whereas it required either GlnB or GlnK and not AmtB when cells were shifted to anaerobiosis. In a glnBK double mutant expressing only GlnY, NifH modification was completely abolished, further revealing functional differences between the three P(II) paralogues.
Collapse
Affiliation(s)
- Dietmar E Martin
- Group Symbiosis Research, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | |
Collapse
|
37
|
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 2001; 183:6159-68. [PMID: 11591658 PMCID: PMC100091 DOI: 10.1128/jb.183.21.6159-6168.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GlnB (P(II)) protein, the product of glnB, has been characterized previously in the photosynthetic bacterium Rhodospirillum rubrum. Here we describe identification of two other P(II) homologs in this organism, GlnK and GlnJ. Although the sequences of these three homologs are very similar, the molecules have both distinct and overlapping functions in the cell. While GlnB is required for activation of NifA activity in R. rubrum, GlnK and GlnJ do not appear to be involved in this process. In contrast, either GlnB or GlnJ can serve as a critical element in regulation of the reversible ADP ribosylation of dinitrogenase reductase catalyzed by the dinitrogenase reductase ADP-ribosyl transferase (DRAT)/dinitrogenase reductase-activating glycohydrolase (DRAG) regulatory system. Similarly, either GlnB or GlnJ is necessary for normal growth on a variety of minimal and rich media, and any of the proteins is sufficient for normal posttranslational regulation of glutamine synthetase. Surprisingly, in their regulation of the DRAT/DRAG system, GlnB and GlnJ appeared to be responsive not only to changes in nitrogen status but also to changes in energy status, revealing a new role for this family of regulators in central metabolic regulation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
38
|
Klassen G, de Souza EM, Yates MG, Rigo LU, Inaba J, Pedrosa FDO. Control of nitrogenase reactivation by the GlnZ protein in Azospirillum brasilense. J Bacteriol 2001; 183:6710-3. [PMID: 11673445 PMCID: PMC95506 DOI: 10.1128/jb.183.22.6710-6713.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glnZ mutant of Azospirillum brasilense (strain 7611) showed only partial recovery (20 to 40%) after 80 min of ammonia-induced nitrogenase switch-off, whereas the wild type recovered totally within 10 min. In contrast, the two strains showed identical anoxic-induced switch-on/switch-off, indicating no cross talk between the two reactivation mechanisms.
Collapse
Affiliation(s)
- G Klassen
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-970, Curitiba, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Yakunin AF, Fedorov AS, Laurinavichene TV, Glaser VM, Egorov NS, Tsygankov AA, Zinchenko VV, Hallenbeck PC. Regulation of nitrogenase in the photosynthetic bacteriumRhodobacter sphaeroidescontainingdraTGandnifHDKgenes fromRhodobacter capsulatus. Can J Microbiol 2001. [DOI: 10.1139/w00-144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.Key words: nitrogenase regulation, nitrogenase modification, photosynthetic bacteria.
Collapse
|
40
|
Sáez LP, García P, Martínez-Luque M, Klipp W, Blasco R, Castillo F. Role for draTG and rnf genes in reduction of 2,4-dinitrophenol by Rhodobacter capsulatus. J Bacteriol 2001; 183:1780-3. [PMID: 11160111 PMCID: PMC95065 DOI: 10.1128/jb.183.5.1780-1783.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phototrophic bacterium Rhodobacter capsulatus is able to reduce 2,4-dinitrophenol (DNP) to 2-amino-4-nitrophenol enzymatically and thus can grow in the presence of this uncoupler. DNP reduction was switched off by glutamine or ammonium, but this short-term regulation did not take place in a draTG deletion mutant. Nevertheless, the target of DraTG does not seem to be the nitrophenol reductase itself since the ammonium shock did not inactivate the enzyme. In addition to this short-term regulation, ammonium or glutamine repressed the DNP reduction system. Mutants of R. capsulatus affected in ntrC or rpoN exhibited a 10-fold decrease in nitroreductase activity in vitro but almost no DNP activity in vivo. In addition, mutants affected in rnfA or rnfC, which are also under NtrC control and encode components involved in electron transfer to nitrogenase, were unable to metabolize DNP. These results indicate that NtrC regulates dinitrophenol reduction in R. capsulatus, either directly or indirectly, by controlling expression of the Rnf proteins. Therefore, the Rnf complex seems to supply electrons for both nitrogen fixation and DNP reduction.
Collapse
Affiliation(s)
- L P Sáez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Zhang Y, Pohlmann EL, Halbleib CM, Ludden PW, Roberts GP. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae. J Bacteriol 2001; 183:1610-20. [PMID: 11160092 PMCID: PMC95046 DOI: 10.1128/jb.183.5.1610-1620.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reversible ADP-ribosylation of dinitrogenase reductase, catalyzed by the dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase (DRAT-DRAG) regulatory system, has been characterized in Rhodospirillum rubrum and other nitrogen-fixing bacteria. To investigate the mechanisms for the regulation of DRAT and DRAG activities, we studied the heterologous expression of R. rubrum draTG in Klebsiella pneumoniae glnB and glnK mutants. In K. pneumoniae wild type, the regulation of both DRAT and DRAG activity appears to be comparable to that seen in R. rubrum. However, the regulation of both DRAT and DRAG activities is altered in a glnB background. Some DRAT escapes regulation and becomes active under N-limiting conditions. The regulation of DRAG activity is also altered in a glnB mutant, with DRAG being inactivated more slowly in response to NH4+ treatment than is seen in wild type, resulting in a high residual nitrogenase activity. In a glnK background, the regulation of DRAT activity is similar to that seen in wild type. However, the regulation of DRAG activity is completely abolished in the glnK mutant; DRAG remains active even after NH4+ addition, so there is no loss of nitrogenase activity. The results with this heterologous expression system have implications for DRAT-DRAG regulation in R. rubrum.
Collapse
Affiliation(s)
- Y Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Ma Y, Ludden PW. Role of the dinitrogenase reductase arginine 101 residue in dinitrogenase reductase ADP-ribosyltransferase binding, NAD binding, and cleavage. J Bacteriol 2001; 183:250-6. [PMID: 11114923 PMCID: PMC94872 DOI: 10.1128/jb.183.1.250-256.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-(32)P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-(14)C]NAD individually upon UV irradiation, but most (14)C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-(14)C]NAD suggested that Arg 101 is not absolutely required for NAD binding.
Collapse
Affiliation(s)
- Y Ma
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
43
|
Zhang Y, Kim K, Ludden P, Roberts G. Isolation and characterization of draT mutants that have altered regulatory properties of dinitrogenase reductase ADP-ribosyltransferase in Rhodospirillum rubrum. MICROBIOLOGY (READING, ENGLAND) 2001; 147:193-202. [PMID: 11160813 DOI: 10.1099/00221287-147-1-193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Rhodospirillum rubrum, dinitrogenase reductase ADP-ribosyltransferase (DRAT) is responsible for the ADP-ribosylation of dinitrogenase reductase in response to the addition of NH(+)(4) or removal from light, resulting in a decrease in nitrogenase activity. DRAT is itself subject to post-translational regulation; to investigate the mechanism for the regulation of DRAT activity, random PCR mutagenesis of draT (encoding DRAT) was performed and mutants with altered DRAT regulation were screened. Two mutants (with substitutions of K103E and N248D) were obtained in which DRAT showed activity under conditions where wild-type DRAT (DRAT-WT) did not. These mutants showed lower nitrogenase activity and a higher degree of ADP-ribosylation of dinitrogenase reductase under N(2)-fixing conditions than was seen in a wild-type control strain. DRAT-K103E was overexpressed and purified. DRAT-K103E displayed a much weaker affinity for an Affi-gel Blue matrix than did DRAT-WT, suggestive of a fairly striking biochemical change. However, there was no significant difference in kinetic constants, such as K(m) for NAD and V(max), between DRAT-K103E and DRAT-WT. Like DRAT-WT, DRAT-K103E also modified reduced dinitrogenase reductase poorly. The biochemical properties of these variants are rationalized with respect to their behaviour in vivo.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Biochemistry and Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison WI 53706, USA
| | | | | | | |
Collapse
|
44
|
Halbleib CM, Zhang Y, Roberts GP, Ludden PW. Effects of perturbations of the nitrogenase electron transfer chain on reversible ADP-ribosylation of nitrogenase Fe protein in Klebsiella pneumoniae strains bearing the Rhodospirillum rubrum dra operon. J Bacteriol 2000; 182:3681-7. [PMID: 10850982 PMCID: PMC94538 DOI: 10.1128/jb.182.13.3681-3687.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The redox state of nitrogenase Fe protein is shown to affect regulation of ADP-ribosylation in Klebsiella pneumoniae strains transformed by plasmids carrying dra genes from Rhodospirillum rubrum. The dra operon encodes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase, enzymes responsible for the reversible inactivation, via ADP-ribosylation, of nitrogenase Fe protein in R. rubrum. In bacteria containing the dra operon in their chromosomes, inactivation occurs in response to energy limitation or nitrogen sufficiency. The dra gene products, expressed at a low level in K. pneumoniae, enable transformants to reversibly ADP-ribosylate nitrogenase Fe protein in response to the presence of fixed nitrogen. The activities of both regulatory enzymes are regulated in vivo as described in R. rubrum. Genetic perturbations of the nitrogenase electron transport chain were found to affect the rate of inactivation of Fe protein. Strains lacking the electron donors to Fe protein (NifF or NifJ) were found to inactivate Fe protein more quickly than a strain with wild-type background. Deletion of nifD, which encodes a subunit of nitrogenase MoFe protein, was found to result in a slower inactivation response. No variation was found in the reactivation responses of these strains. It is concluded that the redox state of the Fe protein contributes to the regulation of the ADP-ribosylation of Fe protein.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Biological nitrogen fixation, a process found only in some prokaryotes, is catalyzed by the nitrogenase enzyme complex. Bacteria containing nitrogenase occupy an indispensable ecological niche, supplying fixed nitrogen to the global nitrogen cycle. Due to this inceptive role in the nitrogen cycle, diazotrophs are present in virtually all ecosystems, with representatives in environments as varied as aerobic soils (e.g., Azotobacter species), the ocean surface layer (Trichodesmium) and specialized nodules in legume roots (Rhizobium). In any ecosystem, diazotrophs must respond to varied environmental conditions to regulate the tremendously taxing nitrogen fixation process. All characterized diazotrophs regulate nitrogenase at the transcriptional level. A smaller set also possesses a fast-acting post-translational regulation system. Although there is little apparent variation in the sequences and structures of nitrogenases, there appear to be almost as many nitrogenase-regulating schemes as there are nitrogen-fixing species. Herein are described the paradigms of nitrogenase function, transcriptional control and post-translational regulation, as well as the variations on these schemes, described in various nitrogen-fixing bacteria. Regulation is described on a molecular basis, focusing on the functional and structural characteristics of the proteins responsible for control of nitrogen fixation.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Grunwald SK, Ryle MJ, Lanzilotta WN, Ludden PW. ADP-Ribosylation of variants of Azotobacter vinelandii dinitrogenase reductase by Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyltransferase. J Bacteriol 2000; 182:2597-603. [PMID: 10762264 PMCID: PMC111326 DOI: 10.1128/jb.182.9.2597-2603.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a number of nitrogen-fixing bacteria, nitrogenase is posttranslationally regulated by reversible ADP-ribosylation of dinitrogenase reductase. The structure of the dinitrogenase reductase from Azotobacter vinelandii is known. In this study, mutant forms of dinitrogenase reductase from A. vinelandii that are affected in various protein activities were tested for their ability to be ADP-ribosylated or to form a complex with dinitrogenase reductase ADP-ribosyltransferase (DRAT) from Rhodospirillum rubrum. R140Q dinitrogenase reductase could not be ADP-ribosylated by DRAT, although it still formed a cross-linkable complex with DRAT. Thus, the Arg 140 residue of dinitrogenase reductase plays a critical role in the ADP-ribosylation reaction. Conformational changes in dinitrogenase reductase induced by an F135Y substitution or by removal of the Fe(4)S(4) cluster resulted in dinitrogenase reductase not being a substrate for ADP-ribosylation. Through cross-linking studies it was also shown that these changes decreased the ability of dinitrogenase reductase to form a cross-linkable complex with DRAT. Substitution of D129E or deletion of Leu 127, which result in altered nucleotide binding regions of these dinitrogenase reductases, did not significantly change the interaction between dinitrogenase reductase and DRAT. Previous results showed that changing Lys 143 to Gln decreased the binding between dinitrogenase reductase and dinitrogenase (L. C. Seefeldt, Protein Sci. 3:2073-2081, 1994); however, this change did not have a substantial effect on the interaction between dinitrogenase reductase and DRAT.
Collapse
Affiliation(s)
- S K Grunwald
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | |
Collapse
|
47
|
Halbleib CM, Zhang Y, Ludden PW. Regulation of dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase by a redox-dependent conformational change of nitrogenase Fe protein. J Biol Chem 2000; 275:3493-500. [PMID: 10652344 DOI: 10.1074/jbc.275.5.3493] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitrogenase-regulating enzymes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG), from Rhodospirillum rubrum, were shown to be sensitive to the redox status of the [Fe(4)S(4)](1+/2+) cluster of nitrogenase Fe protein from R. rubrum or Azotobacter vinelandii. DRAG had <2% activity with oxidized R. rubrum Fe protein relative to activity with reduced Fe protein. The activity of DRAG with oxygen-denatured Fe protein or a low molecular weight substrate, N(alpha)-dansyl-N(omega)-(1,N(6)-etheno-ADP-ribosyl)-arginine methyl ester, was independent of redox potential. The redox midpoint potential of DRAG activation of Fe protein was -430 mV versus standard hydrogen electrode, coinciding with the midpoint potential of the [Fe(4)S(4)] cluster from R. rubrum Fe protein. DRAT was found to have a specificity opposite that of DRAG, exhibiting low (<20%) activity with 87% reduced R. rubrum Fe protein relative to activity with fully oxidized Fe protein. A mutant of R. rubrum in which the rate of oxidation of Fe protein was substantially decreased had a markedly slower rate of ADP-ribosylation in vivo in response to 10 mM NH(4)Cl or darkness stimulus. It is concluded that the redox state of Fe protein plays a significant role in regulation of the activities of DRAT and DRAG in vivo.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, Center for the Study of Nitrogen Fixation, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
48
|
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 2000; 182:983-92. [PMID: 10648524 PMCID: PMC94374 DOI: 10.1128/jb.182.4.983-992.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is tightly regulated in Rhodospirillum rubrum at two different levels: transcriptional regulation of nif expression and posttranslational regulation of dinitrogenase reductase by reversible ADP-ribosylation catalyzed by the DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase-dinitrogenase reductase-activating glycohydrolase) system. We report here the characterization of glnB, glnA, and nifA mutants and studies of their relationship to the regulation of nitrogen fixation. Two mutants which affect glnB (structural gene for P(II)) were constructed. While P(II)-Y51F showed a lower nitrogenase activity than that of wild type, a P(II) deletion mutant showed very little nif expression. This effect of P(II) on nif expression is apparently the result of a requirement of P(II) for NifA activation, whose activity is regulated by NH(4)(+) in R. rubrum. The modification of glutamine synthetase (GS) in these glnB mutants appears to be similar to that seen in wild type, suggesting that a paralog of P(II) might exist in R. rubrum and regulate the modification of GS. P(II) also appears to be involved in the regulation of DRAT activity, since an altered response to NH(4)(+) was found in a mutant expressing P(II)-Y51F. The adenylylation of GS plays no significant role in nif expression or the ADP-ribosylation of dinitrogenase reductase, since a mutant expressing GS-Y398F showed normal nitrogenase activity and normal modification of dinitrogenase reductase in response to NH(4)(+) and darkness treatments.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
49
|
Konczalik P, Moss J. Identification of critical, conserved vicinal aspartate residues in mammalian and bacterial ADP-ribosylarginine hydrolases. J Biol Chem 1999; 274:16736-40. [PMID: 10358013 DOI: 10.1074/jbc.274.24.16736] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases catalyze opposing arms of a putative ADP-ribosylation cycle. ADP-ribosylarginine hydrolases from mammalian tissues and Rhodospirillum rubrum exhibit three regions of similarity in deduced amino acid sequence. We postulated that amino acids in these consensus regions could be critical for hydrolase function. To test this hypothesis, hydrolase, cloned from rat brain, was expressed as a glutathione S-transferase fusion protein in Escherichia coli and purified by glutathione-Sepharose affinity chromatography. Conserved amino acids in each of these regions were altered by site-directed mutagenesis. Replacement of Asp-60 or Asp-61 with Ala, Gln, or Asn, but not Glu, significantly reduced enzyme activity. The double Asp-60 --> Glu/Asp-61 --> Glu mutant was inactive, as were Asp-60 --> Gln/Asp-61 --> Gln or Asp-60 --> Asn/Asp-61 --> Asn. The catalytically inactive single and double mutants appeared to retain conformation, since they bound ADP-ribose, a substrate analogue and an inhibitor of enzyme activity, with affinity similar to that of the wild-type hydrolase and with the expected stoichiometry of one. Replacing His-65, Arg-139, Asp-285, which are also located in the conserved regions, with alanine did not change specific activity. These data clearly show that the conserved vicinal aspartates 60 and 61 in rat ADP-ribosylarginine hydrolase are critical for catalytic activity, but not for high affinity binding of the substrate analogue, ADP-ribose.
Collapse
Affiliation(s)
- P Konczalik
- Pulmonary-Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1434, USA.
| | | |
Collapse
|
50
|
Yakunin AF, Laurinavichene TV, Tsygankov AA, Hallenbeck PC. The presence of ADP-ribosylated Fe protein of nitrogenase in Rhodobacter capsulatus is correlated with cellular nitrogen status. J Bacteriol 1999; 181:1994-2000. [PMID: 10094674 PMCID: PMC93609 DOI: 10.1128/jb.181.7.1994-2000.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.
Collapse
Affiliation(s)
- A F Yakunin
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|