1
|
Kpebe A, Guendon C, Payne N, Ros J, Khelil Berbar M, Lebrun R, Baffert C, Shintu L, Brugna M. An essential role of the reversible electron-bifurcating hydrogenase Hnd for ethanol oxidation in Solidesulfovibrio fructosivorans. Front Microbiol 2023; 14:1139276. [PMID: 37051519 PMCID: PMC10084766 DOI: 10.3389/fmicb.2023.1139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The tetrameric cytoplasmic FeFe hydrogenase Hnd from Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans) catalyses H2 oxidation and couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin by using a flavin-based electron-bifurcating mechanism. Regarding its implication in the bacterial physiology, we previously showed that Hnd, which is non-essential when bacteria grow fermentatively on pyruvate, is involved in ethanol metabolism. Under these conditions, it consumes H2 to produce reducing equivalents for ethanol production as a fermentative product. In this study, the approach implemented was to compare the two S. fructosivorans WT and the hndD deletion mutant strains when grown on ethanol as the sole carbon and energy source. Based on the determination of bacterial growth, metabolite consumption and production, gene expression followed by RT-q-PCR, and Hnd protein level followed by mass spectrometry, our results confirm the role of Hnd hydrogenase in the ethanol metabolism and furthermore uncover for the first time an essential function for a Desulfovibrio hydrogenase. Hnd is unequivocally required for S. fructosivorans growth on ethanol, and we propose that it produces H2 from NADH and reduced ferredoxin generated by an alcohol dehydrogenase and an aldehyde ferredoxin oxidoreductase catalyzing the conversion of ethanol into acetate. The produced H2 could then be recycled and used for sulfate reduction. Hnd is thus a reversible hydrogenase that operates in H2-consumption by an electron-bifurcating mechanism during pyruvate fermentation and in H2-production by an electron-confurcating mechanism when the bacterium uses ethanol as electron donor.
Collapse
Affiliation(s)
| | | | - Natalie Payne
- CNRS, Aix-Marseille Univ, BIP, Marseille, France
- CNRS, Aix-Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | - Julien Ros
- CNRS, Aix-Marseille Univ, BIP, Marseille, France
| | - Manel Khelil Berbar
- CNRS, Aix-Marseille Univ, Plate-forme Protéomique de l’IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | - Régine Lebrun
- CNRS, Aix-Marseille Univ, Plate-forme Protéomique de l’IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | | | - Laetitia Shintu
- CNRS, Aix-Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | - Myriam Brugna
- CNRS, Aix-Marseille Univ, BIP, Marseille, France
- *Correspondence: Myriam Brugna,
| |
Collapse
|
2
|
Payne N, Kpebe A, Guendon C, Baffert C, Maillot M, Haurogné T, Tranchida F, Brugna M, Shintu L. NMR-based metabolomic analysis of the physiological role of the electron-bifurcating FeFe-hydrogenase Hnd in Solidesulfovibrio fructosivorans under pyruvate fermentation. Microbiol Res 2023; 268:127279. [PMID: 36592576 DOI: 10.1016/j.micres.2022.127279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans), an anaerobic sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of hydrogen gas (H2) into protons and electrons. One of these, named Hnd, was demonstrated to be an electron-bifurcating hydrogenase Hnd (Kpebe et al., 2018). It couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 and whose function has been recently shown to be involved in ethanol production under pyruvate fermentation (Payne 2022). To understand further the physiological role of Hnd in S. fructosivorans, we compared the mutant deleted of part of the hnd gene with the wild-type strain grown on pyruvate without sulfate using NMR-based metabolomics. Our results confirm that Hnd is profoundly involved in ethanol metabolism, but also indirectly intervenes in global carbon metabolism and additional metabolic processes such as the biosynthesis of branched-chain amino acids. We also highlight the metabolic reprogramming induced by the deletion of hndD that leads to the upregulation of several NADP-dependent pathways.
Collapse
Affiliation(s)
- Natalie Payne
- Aix Marseille Univ, CNRS, BIP, Marseille, France; Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | | | | | | | | | - Fabrice Tranchida
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France.
| |
Collapse
|
3
|
Response to substrate limitation by a marine sulfate-reducing bacterium. THE ISME JOURNAL 2022; 16:200-210. [PMID: 34285365 PMCID: PMC8692349 DOI: 10.1038/s41396-021-01061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.
Collapse
|
4
|
Tang WT, Hao TW, Chen GH. Comparative metabolic modeling of multiple sulfate-reducing prokaryotes reveals versatile energy conservation mechanisms. Biotechnol Bioeng 2021; 118:2676-2693. [PMID: 33844295 DOI: 10.1002/bit.27787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
Sulfate-reducing prokaryotes (SRPs) are crucial participants in the cycling of sulfur, carbon, and various metals in the natural environment and in engineered systems. Despite recent advances in genetics and molecular biology bringing a huge amount of information about the energy metabolism of SRPs, little effort has been made to link this important information with their biotechnological studies. This study aims to construct multiple metabolic models of SRPs that systematically compile genomic, genetic, biochemical, and molecular information about SRPs to study their energy metabolism. Pan-genome analysis was conducted to compare the genomes of SRPs, from which a list of orthologous genes related to central and energy metabolism was obtained. Twenty-four SRP metabolic models via the inference of pan-genome analysis were efficiently constructed. The metabolic model of the well-studied model SRP Desulfovibrio vulgaris Hildenborough (DvH) was validated via flux balance analysis (FBA). The DvH model predictions matched reported experimental growth and energy yields, which demonstrated that the core metabolic model worked successfully. Further, steady-state simulation of SRP metabolic models under different growth conditions showed how the use of different electron transfer pathways leads to energy generation. Three energy conservation mechanisms were identified, including menaquinone-based redox loop, hydrogen cycling, and proton pumping. Flavin-based electron bifurcation (FBEB) was also demonstrated to be an essential mechanism for supporting energy conservation. The developed models can be easily extended to other species of SRPs not examined in this study. More importantly, the present work develops an accurate and efficient approach for constructing metabolic models of multiple organisms, which can be applied to other critical microbes in environmental and industrial systems, thereby enabling the quantitative prediction of their metabolic behaviors to benefit relevant applications.
Collapse
Affiliation(s)
- Wen-Tao Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tian-Wei Hao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
5
|
Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water–gas shift platform for H2 production. ACTA ACUST UNITED AC 2019; 46:993-1002. [DOI: 10.1007/s10295-019-02173-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Abstract
Biological H2 production has potential to address energy security and environmental concerns if produced from renewable or waste sources. The purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS produces H2 while oxidizing CO, a component of synthesis gas (Syngas). CO-linked H2 production is facilitated by an energy-converting hydrogenase (Ech), while a subsequent H2 oxidation reaction is catalyzed by a membrane-bound hydrogenase (MBH). Both hydrogenases contain [NiFe] active sites requiring 6 maturation factors (HypA-F) for assembly, but it is unclear which of the two annotated sets of hyp genes are required for each in R. gelatinosus CBS. Herein, we report correlated expression of hyp1 genes with Ech genes and hyp2 expression with MBH genes. Moreover, we find that while Ech H2 evolving activity is only delayed when hyp1 is deleted, hyp2 deletion completely disrupts MBH H2 uptake, providing a platform for a biologically driven water–gas shift reaction to produce H2 from CO.
Collapse
|
6
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
7
|
Franco LC, Steinbeisser S, Zane GM, Wall JD, Fields MW. Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris. Appl Microbiol Biotechnol 2018; 102:2839-2850. [PMID: 29429007 PMCID: PMC5847207 DOI: 10.1007/s00253-017-8724-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
Desulfovibrio spp. are capable of heavy metal reduction and are well-studied systems for understanding metal fate and transport in anaerobic environments. Desulfovibrio vulgaris Hildenborough was grown under environmentally relevant conditions (i.e., temperature, nutrient limitation) to elucidate the impacts on Cr(VI) reduction on cellular physiology. Growth at 20 °C was slower than 30 °C and the presence of 50 μM Cr(VI) caused extended lag times for all conditions, but once growth resumed the growth rate was similar to that without Cr(VI). Cr(VI) reduction rates were greatly diminished at 20 °C for both 50 and 100 μM Cr(VI), particularly for the electron acceptor limited (EAL) condition in which Cr(VI) reduction was much slower, the growth lag much longer (200 h), and viability decreased compared to balanced (BAL) and electron donor limited (EDL) conditions. When sulfate levels were increased in the presence of Cr(VI), cellular responses improved via a shorter lag time to growth. Similar results were observed between the different resource (donor/acceptor) ratio conditions when the sulfate levels were normalized (10 mM), and these results indicated that resource ratio (donor/acceptor) impacted D. vulgaris response to Cr(VI) and not merely sulfate limitation. The results suggest that temperature and resource ratios greatly impacted the extent of Cr(VI) toxicity, Cr(VI) reduction, and the subsequent cellular health via Cr(VI) influx and overall metabolic rate. The results also emphasized the need to perform experiments at lower temperatures with nutrient limitation to make accurate predictions of heavy metal reduction rates as well as physiological states in the environment.
Collapse
Affiliation(s)
- Lauren C Franco
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA
| | - Sadie Steinbeisser
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA
| | - Grant M Zane
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Judy D Wall
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA.,ENIGMA, Berkeley, CA, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA. .,ENIGMA, Berkeley, CA, USA, .
| |
Collapse
|
8
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
9
|
Morais-Silva FO, Santos CI, Rodrigues R, Pereira IAC, Rodrigues-Pousada C. Roles of HynAB and Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas. J Bacteriol 2013; 195:4753-60. [PMID: 23974026 PMCID: PMC3807438 DOI: 10.1128/jb.00411-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022] Open
Abstract
Sulfate-reducing bacteria are characterized by a high number of hydrogenases, which have been proposed to contribute to the overall energy metabolism of the cell, but exactly in what role is not clear. Desulfovibrio spp. can produce or consume H2 when growing on organic or inorganic substrates in the presence or absence of sulfate. Because of the presence of only two hydrogenases encoded in its genome, the periplasmic HynAB and cytoplasmic Ech hydrogenases, Desulfovibrio gigas is an excellent model organism for investigation of the specific function of each of these enzymes during growth. In this study, we analyzed the physiological response to the deletion of the genes that encode the two hydrogenases in D. gigas, through the generation of ΔechBC and ΔhynAB single mutant strains. These strains were analyzed for the ability to grow on different substrates, such as lactate, pyruvate, and hydrogen, under respiratory and fermentative conditions. Furthermore, the expression of both hydrogenase genes in the three strains studied was assessed through quantitative reverse transcription-PCR. The results demonstrate that neither hydrogenase is essential for growth on lactate-sulfate, indicating that hydrogen cycling is not indispensable. In addition, the periplasmic HynAB enzyme has a bifunctional activity and is required for growth on H2 or by fermentation of pyruvate. Therefore, this enzyme seems to play a dominant role in D. gigas hydrogen metabolism.
Collapse
Affiliation(s)
- Fabio O Morais-Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
10
|
Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 2012; 11:115. [PMID: 22925149 PMCID: PMC3443015 DOI: 10.1186/1475-2859-11-115] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/03/2012] [Indexed: 01/25/2023] Open
Abstract
Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community.Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III) have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.
Collapse
Affiliation(s)
- Simon Rittmann
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| |
Collapse
|
11
|
Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription. J Bacteriol 2012; 194:5783-93. [PMID: 22904289 DOI: 10.1128/jb.00749-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The carbon monoxide-sensing transcriptional factor CooA has been studied only in hydrogenogenic organisms that can grow using CO as the sole source of energy. Homologs for the canonical CO oxidation system, including CooA, CO dehydrogenase (CODH), and a CO-dependent Coo hydrogenase, are present in the sulfate-reducing bacterium Desulfovibrio vulgaris, although it grows only poorly on CO. We show that D. vulgaris Hildenborough has an active CO dehydrogenase capable of consuming exogenous CO and that the expression of the CO dehydrogenase, but not that of a gene annotated as encoding a Coo hydrogenase, is dependent on both CO and CooA. Carbon monoxide did not act as a general metabolic inhibitor, since growth of a strain deleted for cooA was inhibited by CO on lactate-sulfate but not pyruvate-sulfate. While the deletion strain did not accumulate CO in excess, as would have been expected if CooA were important in the cycling of CO as a metabolic intermediate, global transcriptional analyses suggested that CooA and CODH are used during normal metabolism.
Collapse
|
12
|
Keller KL, Wall JD. Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio. Front Microbiol 2011; 2:135. [PMID: 21747813 PMCID: PMC3129016 DOI: 10.3389/fmicb.2011.00135] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/10/2011] [Indexed: 11/25/2022] Open
Abstract
Progress in the genetic manipulation of the Desulfovibrio strains has provided an opportunity to explore electron flow pathways during sulfate respiration. Most bacteria in this genus couple the oxidation of organic acids or ethanol with the reduction of sulfate, sulfite, or thiosulfate. Both fermentation of pyruvate in the absence of an alternative terminal electron acceptor, disproportionation of fumarate and growth on H2 with CO2 during sulfate reduction are exhibited by some strains. The ability to produce or consume H2 provides Desulfovibrio strains the capacity to participate as either partner in interspecies H2 transfer. Interestingly the mechanisms of energy conversion, pathways of electron flow and the parameters determining the pathways used remain to be elucidated. Recent application of molecular genetic tools for the exploration of the metabolism of Desulfovibrio vulgaris Hildenborough has provided several new datasets that might provide insights and constraints to the electron flow pathways. These datasets include (1) gene expression changes measured in microarrays for cells cultured with different electron donors and acceptors, (2) relative mRNA abundances for cells growing exponentially in defined medium with lactate as carbon source and electron donor plus sulfate as terminal electron acceptor, and (3) a random transposon mutant library selected on medium containing lactate plus sulfate supplemented with yeast extract. Studies of directed mutations eliminating apparent key components, the quinone-interacting membrane-bound oxidoreductase (Qmo) complex, the Type 1 tetraheme cytochrome c3 (Tp1-c3), or the Type 1 cytochrome c3:menaquinone oxidoreductase (Qrc) complex, suggest a greater flexibility in electron flow than previously considered. The new datasets revealed the absence of random transposons in the genes encoding an enzyme with homology to Coo membrane-bound hydrogenase. From this result, we infer that Coo hydrogenase plays an important role in D. vulgaris growth on lactate plus sulfate. These observations along with those reported previously have been combined in a model showing dual pathways of electrons from the oxidation of both lactate and pyruvate during sulfate respiration. Continuing genetic and biochemical analyses of key genes in Desulfovibrio strains will allow further clarification of a general model for sulfate respiration.
Collapse
Affiliation(s)
- Kimberly L Keller
- Department of Biochemistry, University of Missouri Columbia, MO, USA
| | | |
Collapse
|
13
|
Chartrain M, Zeikus JG. Microbial ecophysiology of whey biomethanation: intermediary metabolism of lactose degradation in continuous culture. Appl Environ Microbiol 2010; 51:180-7. [PMID: 16346969 PMCID: PMC238836 DOI: 10.1128/aem.51.1.180-187.1986] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intermediary carbon and electron flow routes for lactose degradation during whey biomethanation were studied in continuous culture. The chemostat was operated under lactose-limited conditions with a 100-h retention time. The carbon balance observed for lactose degradation was 4.65 mmol of CH(4), 4.36 mmol of CO(2) and 1.15 mmol of cellular carbon per mmol of lactose consumed, with other intermediary metabolites (i.e., acetate, lactate, etc.) accounting for less than 2% of the lactose consumed. The carbon and electron recoveries for this biomethanation were 87 and 90%, respectively. C tracer studies demonstrated that lactose biomethanation occurred in three distinct but simultaneous phases. Lactose was metabolized primarily into lactate, ethanol, acetate, formate, and carbon dioxide. During this hydrolytic phase, 82% of the lactose was transformed into lactate. These metabolites were transformed into acetate and H(2)-CO(2) in a second, acetogenic, phase. Finally, the direct methane precursors were transformed during the methanogenic phase, with acetate accounting for 81% of the methane formed. A general scheme is proposed for the exact carbon and electron flow route during lactose biomethanation, which predicts the prevalent microbial populations in this ecosystem.
Collapse
Affiliation(s)
- M Chartrain
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Michigan Biotechnology Institute and the Departments of Biochemistry and Microbiology, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
14
|
Phelps TJ, Conrad R, Zeikus JG. Sulfate-Dependent Interspecies H(2) Transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during Coculture Metabolism of Acetate or Methanol. Appl Environ Microbiol 2010; 50:589-94. [PMID: 16346878 PMCID: PMC238673 DOI: 10.1128/aem.50.3.589-594.1985] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was </=2 mumol/liter. The fractions of CO(2) produced from [C]methanol and 2-[C]acetate increased from 0.26 and 0.16, respectively, in pure culture to 0.59 and 0.33, respectively, in coculture. Under these conditions, approximately 42% of the available electron equivalents derived from methanol or acetate were transferred and were utilized by D. vulgaris to reduce approximately 33 mumol of sulfate per 100 mumol of substrate consumed. As a direct consequence, methane formation in cocultures was two-thirds that observed in pure cultures. The addition of 5.0 mM sodium molybdate or exogenous H(2) decreased the effects of D. vulgaris on the metabolism of M. barkeri. An analysis of growth and carbon and electron flow patterns demonstrated that sulfate-dependent interspecies H(2) transfer from M. barkeri to D. vulgaris resulted in less methane production, increased CO(2) formation, and sulfide formation from substrates not directly utilized by the sulfate reducer as electron donors for energy metabolism and growth.
Collapse
Affiliation(s)
- T J Phelps
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and Michigan Biotechnology Institute and Departments of Biochemistry and Microbiology, Michigan State University, East Lansing, Michigan 48824
| | | | | |
Collapse
|
15
|
Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie van Leeuwenhoek 2007; 93:347-62. [DOI: 10.1007/s10482-007-9212-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
16
|
Carepo M, Baptista JF, Pamplona A, Fauque G, Moura JJG, Reis MAM. Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)--comparative study with D. vulgaris and D. gigas species. Anaerobe 2007; 8:325-32. [PMID: 16887677 DOI: 10.1016/s1075-9964(03)00007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Revised: 12/10/2002] [Accepted: 12/20/2002] [Indexed: 10/27/2022]
Abstract
This article aims to study hydrogen production/consumption in Desulfovibrio (D.) desulfuricans strain New Jersey, a sulfate reducer isolated from a medium undergoing active biocorrosion and to compare its hydrogen metabolism with two other Desulfovibrio species, D. gigas and D. vulgaris Hildenborough. Hydrogen production was followed during the growth of these three bacterial species under different growth conditions: no limitation of sulfate and lactate, sulfate limitation, lactate limitation, pyruvate/sulfate medium and in the presence of molybdate. Hydrogen production/consumption by D. desulfuricans shows a behavior similar to that of D. gigas but a different one from that of D. vulgaris, which produces higher quantities of hydrogen on lactate/sulfate medium. The three species are able to increase the hydrogen production when the sulfate became limiting. Moreover, in a pyruvate/sulfate medium hydrogen production was lower than on lactate/sulfate medium. Hydrogen production by D. desulfuricans in presence of molybdate is extremely high. Hydrogenases are key enzymes on production/consumption of hydrogen in sulfate reducing organisms. The specific activity, number and cellular localization of hydrogenases vary within the three Desulfovibrio species used in this work, which could explain the differences observed on hydrogen utilization.
Collapse
Affiliation(s)
- M Carepo
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Cheong DY, Hansen CL. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 2006; 72:635-43. [PMID: 16525779 DOI: 10.1007/s00253-006-0313-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/19/2005] [Accepted: 12/24/2005] [Indexed: 10/24/2022]
Abstract
Methodology was evaluated to selectively enrich hydrogen-producing species present in biological sludge produced during organic wastewater treatment. The influence of bacterial stress enrichment on anaerobic hydrogen-producing microorganisms was investigated in batch tests using serum bottles. Enrichment conditions investigated included application of acute physical and chemical stresses: wet heat, dry heat and desiccation, use of a methanogen inhibitor, freezing and thawing, and chemical acidification with and without preacidification of the sludge at pH 3. For each enrichment sample, cultivation pH value was set at an initial value of 7. After application of selective enrichment (by bacterial stress), hydrogen production was significantly higher than that of untreated original sludge. Hydrogen production from the inocula with bacterial stress enrichment was 1.9-9.8 times greater when compared with control sludge. Chemical acidification using perchloric acid showed the best hydrogen production potential, irrespective of preacidification. Enhancement is due to the selective capture of hydrogen-producing sporeformers, which induces altered anaerobic fermentative metabolism.
Collapse
Affiliation(s)
- Dae-Yeol Cheong
- Department of Biological and Irrigation Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
| | | |
Collapse
|
18
|
Guiral M, Leroy G, Bianco P, Gallice P, Guigliarelli B, Bruschi M, Nitschke W, Giudici-Orticoni MT. Interaction and electron transfer between the high molecular weight cytochrome and cytochrome c3 from Desulfovibrio vulgaris Hildenborough: Kinetic, microcalorimetric, EPR and electrochemical studies. Biochim Biophys Acta Gen Subj 2005; 1723:45-54. [PMID: 15780995 DOI: 10.1016/j.bbagen.2005.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/26/2022]
Abstract
The complex formation between the tetraheme cytochrome c3 and hexadecaheme high molecular weight cytochrome c (Hmc), the structure of which has recently been resolved, has been characterized by cross-linking experiments, EPR, electrochemistry and kinetic analysis, and some key parameters of the interaction were determined. The analysis of electron transfer between [Fe] hydrogenase, cytochrome c3 and Hmc demonstrates a redox-shuttling role of cytochrome c3 in the pathway from hydrogenase to Hmc, and shows an effect of redox state on the interaction between the two cytochromes. The role of polyheme cytochromes in electron transfer from periplasmic hydrogenase to membrane redox proteins is assessed. A model with cytochrome c3 as an intermediate between hydrogenase and various polyheme cytochromes is proposed and its physiological consequences are discussed.
Collapse
Affiliation(s)
- Marianne Guiral
- Bioénergétique et Ingénierie des Protéines, CNRS, IBSM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Casalot L, Valette O, De Luca G, Dermoun Z, Rousset M, de Philip P. Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans. FEMS Microbiol Lett 2002; 214:107-12. [PMID: 12204380 DOI: 10.1111/j.1574-6968.2002.tb11332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Desulfovibrio fructosovorans possesses two periplasmic hydrogenases (a nickel-iron and an iron hydrogenase) and a cytoplasmic NADP-dependent hydrogenase. The hydAB genes encoding the periplasmic iron hydrogenase were replaced, in the wild-type strain as well as in single mutants depleted of one of the other two hydrogenases, by the acc1 gene encoding resistance to gentamycin. Molecular characterization and remaining activity measurements of the resulting single and double mutants were performed. All mutated strains exhibited similar growth when H(2) was the electron donor but they grew differently on fructose, lactate or pyruvate as electron donors. Our results indicate that the loss of one enzyme might be compensated by another even though hydrogenases have different localization in the cells.
Collapse
Affiliation(s)
- Laurence Casalot
- Laboratoire de Microbiologie, IRD, ESIL, Case 925, F-13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
20
|
Casalot L, De Luca G, Dermoun Z, Rousset M, de Philip P. Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 2002; 184:853-6. [PMID: 11790758 PMCID: PMC139505 DOI: 10.1128/jb.184.3.853-856.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A strain devoid of the three hydrogenases characterized for Desulfovibrio fructosovorans was constructed using marker exchange mutagenesis. As expected, the H(2)-dependent methyl viologen reduction activity of the strain was null, but physiological studies showed no striking differences between the mutated and wild-type strains. The H(+)-D(2) exchange activity measured in the mutated strain indicates the presence of a fourth hydrogenase in D. fructosovorans.
Collapse
Affiliation(s)
- Laurence Casalot
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
21
|
Brugna M, Giudici-Orticoni M, Spinelli S, Brown K, Tegoni M, Bruschi M. Kinetics and interaction studies between cytochrome c3 and Fe-only hydrogenase fromDesulfovibrio vulgaris hildenborough. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19981201)33:4<590::aid-prot11>3.0.co;2-i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Noguera DR, Brusseau GA, Rittmann BE, Stahl DA. A unified model describing the role of hydrogen in the growth of desulfovibrio vulgaris under different environmental conditions. Biotechnol Bioeng 1998; 59:732-46. [PMID: 10099394 DOI: 10.1002/(sici)1097-0290(19980920)59:6<732::aid-bit10>3.0.co;2-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A unified model for the growth of Desulfovibrio vulgaris under different environmental conditions is presented. The model assumes the existence of two electron transport mechanisms functioning simultaneously. One mechanism results in the evolution and consumption of hydrogen, as in the hydrogen-cycling model. The second mechanism assumes a direct transport of electrons from the donor to the acceptor, without the participation of H2. A combination of kinetic and thermodynamic conditions control the flow of electrons through each pathway. The model was calibrated using batch experiments with D. vulgaris grown on lactate, in the presence and absence of sulfate, and was verified using additional batch experiments under different conditions. The model captured the general trends of consumption of substrates and accumulation of products, including the transient accumulation and consumption of H2. Furthermore, the model estimated that 48% of the electrons transported from lactate to sulfate involved H2 production, indicating that hydrogen cycling is a fundamental process in D. vulgaris. The presence of simultaneous electron transport mechanisms might provide D. vulgaris with important ecological advantages, because it facilitates a rapid response to changes in environmental conditions. This model increases our ability to study the microbial ecology of anaerobic environments and the role of Desulfovibrio species in a variety of environments. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- DR Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1691, USA
| | | | | | | |
Collapse
|
23
|
Desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex): new structural and functional aspects of the membranous enzyme. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06143-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Pieulle L, Magro V, Hatchikian EC. Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J Bacteriol 1997; 179:5684-92. [PMID: 9294422 PMCID: PMC179454 DOI: 10.1128/jb.179.18.5684-5692.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that the pyruvate-ferredoxin oxidoreductase (POR) of the sulfate-reducing bacterium Desulfovibrio africanus is a homodimer that contains one thiamine pyrophosphate and three [4Fe-4S]2+/1+ centers/subunit. Interestingly, the enzyme isolated from a strictly anaerobic bacterium is highly stable in the presence of oxygen, in contrast to the other PORs characterized in anaerobic organisms (L. Pieulle, B. Guigliarelli, M. Asso, F. Dole, A. Bernadac, and E. C. Hatchikian, Biochim. Biophys. Acta 1250:49-59, 1995). We report here the determination of the nucleotide sequence of the por gene encoding the D. africanus POR. The amino acid sequence deduced from this nucleotide sequence corresponds to the first primary structure of a homodimeric POR from strictly anaerobic bacteria. The subunit of the D. africanus POR contains two ferredoxin-type [4Fe-4S] cluster binding motifs (CX2CX2CX3CP) and four additional highly conserved cysteines belonging to a nontypical motif. These 12 cysteine residues may coordinate the three Fe-S centers present in D. africanus POR. The thiamine pyrophosphate binding domain is located in the C-terminal part of the protein close to the four conserved cysteine residues. The D. africanus enzyme sequence appears homologous to the other POR sequences. However, the enzyme differs from all other PORs by a C-terminal extension of about 60 residues of its polypeptide chain. The two cysteine residues located in this additional region may be involved in the formation of a disulfide bridge associated with the activation process of the catalytic activity. The por gene has been expressed, for the first time, in anaerobically grown Escherichia coli behind the isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter, resulting in the production of POR in its active form. The recombinant enzyme is stable toward oxygen during several days, and initial characterization of the recombinant POR showed that its activity increased in the presence of dithioerythritol. These properties indicate that the recombinant POR behaves like the native D. africanus enzyme. The study of carboxy-terminal deletion mutants strongly suggests that deletions in the C-terminal region of D. africanus enzyme can have dramatic effects on the stability of the enzyme toward oxygen.
Collapse
Affiliation(s)
- L Pieulle
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Biologie Structurale et Microbiologie CNRS, Marseille, France
| | | | | |
Collapse
|
25
|
Pieulle L, Guigliarelli B, Asso M, Dole F, Bernadac A, Hatchikian EC. Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1250:49-59. [PMID: 7612653 DOI: 10.1016/0167-4838(95)00029-t] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the first purification and characterization of a pyruvate-ferredoxin oxidoreductase (POR) from a sulfate-reducing bacterium, Desulfovibrio africanus. The enzyme as isolated is highly stable in the presence of oxygen and exhibits a specific activity of 14 U/mg. D. africanus POR is a 256 kDa homodimer which contains thiamine pyrophosphate (TPP) and iron-sulfur clusters. EPR spectroscopic study of the enzyme indicates the presence of three [4Fe-4S]2+/1- centers/subunits. The midpoint potentials of the three centers are -390 mV, -515 mV and -540 mV. The catalytic mechanism of POR involves a free radical intermediate which disappears when coenzyme A is added. This behaviour is discussed in terms of an electron-transport chain from TPP to the acceptor. The enzyme activated by dithioerythritol shows an exceptionally high activity compared with other mesophile PORs and becomes very sensitive to oxygen in contrast to the enzyme before activation. The comparison of EPR spectra given by the as isolated and activated enzymes shows that neither the nature, nor the arrangement of FeS centers are affected by the activation process. D. africanus ferredoxins I and II are involved as the physiological electron carriers of the enzyme. POR was shown to be located in the cytoplasm by immunogold labelling.
Collapse
Affiliation(s)
- L Pieulle
- Unité de Bioénergétique et Ingénierie des Protéines, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Belaich JP. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 1995; 177:2628-36. [PMID: 7751270 PMCID: PMC176931 DOI: 10.1128/jb.177.10.2628-2636.1995] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A genomic DNA fragment from Desulfovibrio fructosovorans, which strongly hybridized with the hydAB genes from Desulfovibrio vulgaris Hildenborough, was cloned and sequenced. This fragment was found to contain four genes, named hndA, hndB, hndC, and hndD. Analysis of the sequence homologies indicated that HndA shows 29, 21, and 26% identity with the 24-kDa subunit from Bos taurus complex I, the 25-kDa subunit from Paracoccus denitrificans NADH dehydrogenase type I, and the N-terminal domain of HoxF subunit of the NAD-reducing hydrogenase from Alcaligenes eutrophus, respectively. HndB does not show any significant homology with any known protein. HndC shows 37 and 33% identity with the C-terminal domain of HoxF and the 51-kDa subunit from B. taurus complex I, respectively, and has the requisite structural features to be able to bind one flavin mononucleotide, one NAD, and three [4Fe-4S] clusters. HndD has 40, 42, and 48% identity with hydrogenase I from Clostridium pasteurianum and HydC and HydA from D. vulgaris Hildenborough, respectively. The 4.5-kb length of the transcripts expressed in D. fructosovorans and in Escherichia coli (pSS13) indicated that all four genes were present on the same transcription unit. The sizes of the four polypeptides were measured by performing heterologous expression of hndABCD in E. coli, using the T7 promoter/polymerase system. The products of hndA, hndB, hndC, and hndD were 18.8, 13.8, 52, and 63.4 kDa, respectively. One hndC deletion mutant, called SM3, was constructed by performing marker exchange mutagenesis. Immunoblotting studies carried out on cell extracts from D. fructosovorans wild-type and SM3 strains, using antibodies directed against HndC, indicated that the 52-kDa protein was recognized in extracts from the wild-type strain only. In soluble extracts from D. fructosovorans wild type, a 10-fold induction of NADP reduction was observed when H(2) was present, but no H(2)-dependent NAD reduction ever occurred. This H(2)-dependent NADP reductase activity disappeared completely in extracts from SM3. These results indicate that the hnd operon actually encodes an NAdP-reducing hydrogenase in D. fructosovorans.
Collapse
Affiliation(s)
- S Malki
- Centre National de la Recherche Scientifique, Marseilles, France
| | | | | | | | | | | |
Collapse
|
27
|
Hatchikian EC, Forget N, Bernadac A, Alazard D, Ollivier B. Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species. Res Microbiol 1995; 146:129-41. [PMID: 7652207 DOI: 10.1016/0923-2508(96)80891-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Various sulphate-reducing bacteria differing in the number of genes encoding hydrogenase were shown to ferment lactate in coculture with Methanospirillum hungatei, in the absence of sulphate. The efficiency of interspecies H2 transfer carried out by these species of sulphate-reducing bacteria does not appear to correlate with the distribution of genes coding for hydrogenase. Desulfovibrio vulgaris Groningen, which possesses only the gene for [NiFe] hydrogenase, oxidizes hydrogen in the presence of sulphate and produces some hydrogen during fermentation of pyruvate without electron acceptor. The hydrogenase of D. vulgaris was purified and characterized. It exhibits a molecular mass of 87 kDa and is composed of two different subunits (60 and 28 kDa). D. vulgaris hydrogenase contains 10.6 iron atoms, 0.9 nickel atom and 12 acid-labile sulphur atoms/molecule, and the absorption spectrum of the enzyme is characteristic of an iron-sulphur protein. Maximal H2 uptake and H2 evolution activities were 332 and 230 units/mg protein, respectively. D. vulgaris cells contain exclusively the [NiFe] hydrogenase, whatever the growth conditions, as shown by biochemical and immunological studies. Immunocytolocalization in ultrathin frozen sections of cells grown on lactate and sulphate, on H2 and sulphate and on pyruvate showed that the [NiFe] hydrogenase was located in the periplasmic space. Labelling was enhanced in cells grown on H2 and sulphate and on pyruvate. The results enable us to conclude that D. vulgaris Groningen contains a single hydrogenase of the [NiFe] type, located in the periplasmic space like that described for D. gigas. This enzyme appears to be involved in both H2 uptake and H2 production, depending on the growth conditions.
Collapse
Affiliation(s)
- E C Hatchikian
- Unité de Bioénergétique et Ingéniérie des Protéines, CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
28
|
Le Gall J, Payne WJ, Chen L, Liu MY, Xavier AV. Localization and specificity of cytochromes and other electron transfer proteins from sulfate-reducing bacteria. Biochimie 1994; 76:655-65. [PMID: 7893817 DOI: 10.1016/0300-9084(94)90142-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently data have accumulated concerning the electron transfer chains of sulfate-reducing bacteria in general and of the genus Desulfovibrio in particular. Because of the ever growing number of newly discovered individual redox proteins, it has become essential to try to assign them to physiologically relevant chains. This work presents some new data concerning the localization of these proteins within the bacterial cell and the specificity of electron transfer between the three types of hydrogenases which have been found so far in Desulfovibrio, namely the iron-only, the iron-nickel and the iron-nickel-selenium enzymes. The iron-only hydrogenase reduces cytochromes which have bis-histidinyl heme ligation or histidinyl-methionyl heme ligation. In contrast, the iron-nickel and iron-nickel-selenium hydrogenases cannot reduce cytochromes having a His-Met heme ligation, but are very active toward the cytochromes having a bis-histidinyl ligand. This observation has been used to demonstrate that the tetraheme cytochrome c3 can exchange electrons with the monoheme cytochrome c553. No clear specificity has been established for the reaction of hydrogenases toward the hexadecaheme cytochromes from either D vulgaris or D gigas.
Collapse
Affiliation(s)
- J Le Gall
- Department of Biochemistry, University of Georgia, Athens 30602-7229
| | | | | | | | | |
Collapse
|
29
|
Rousset M, Dermoun Z, Chippaux M, Bélaich JP. Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans. Mol Microbiol 1991; 5:1735-40. [PMID: 1943706 DOI: 10.1111/j.1365-2958.1991.tb01922.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A strain of Desulfovibrio fructosovorans deleted from the hydN [NiFe]hydrogenase structural gene was constructed. A plasmid carrying a 7 kb DNA fragment on which the hydN gene had been replaced by the npt reporter gene (kanamycin-resistant, KnR) was introduced into D. fructosovorans by electroporation. Southern analysis of one KnR clone demonstrated that the hydN gene had been eliminated by marker exchange. This mutant, which was devoid of the [NiFe]hydrogenase gene, still showed a 10% residual hydrogenase activity. Its ability to grow efficiently with H2 as sole energy source is discussed. This is the first report, in a member of the sulphate-reducing bacteria, of a successful transformation and concomitant homologous recombination leading to a fully controlled genotype.
Collapse
Affiliation(s)
- M Rousset
- Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
| | | | | | | |
Collapse
|
30
|
|
31
|
van den Berg WA, van Dongen WM, Veeger C. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism. J Bacteriol 1991; 173:3688-94. [PMID: 1711025 PMCID: PMC207996 DOI: 10.1128/jb.173.12.3688-3694.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To establish the function of the periplasmic Fe-only hydrogenase in the anaerobic sulfate reducer Desulfovibrio vulgaris (Hildenborough), derivatives with a reduced content of this enzyme were constructed by introduction of a plasmid that directs the synthesis of antisense RNA complementary to hydrogenase mRNA. It was demonstrated that the antisense RNA technique allowed specific suppression of the synthesis of this hydrogenase in D. vulgaris by decreasing the amount of hydrogenase mRNA but did not result in the complete elimination of the enzyme, as is usual with most conventional mutagenesis techniques. The hydrogenase content in these antisense RNA-producing D. vulgaris clones was two- to threefold lower than in the parental strain when the strains were grown in batch cultures with lactate as a substrate and sulfate as a terminal electron acceptor. Under these conditions, several differences in growth parameters were measured between the hydrogenase-suppressed clones and wild-type D. vulgaris: growth rates of the clones decreased two- to threefold, and at excess lactate, growth yields were reduced by 20%. Furthermore, the amount of hydrogen measured in the culture headspaces was reduced three- to fivefold for the clones. These observations indicate that this hydrogenase has an important function during growth on lactate and is involved in hydrogen production from protons and electrons originating from at least one of the two oxidation reactions in the conversion of lactate to acetate. The implications for the energy metabolism of D. vulgaris are discussed.
Collapse
Affiliation(s)
- W A van den Berg
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | |
Collapse
|
32
|
|
33
|
Czechowski MH, Chatelus C, Fauque G, Libert-Coquempot MF, Lespinat PA, Berlier Y, LeGall J. Utilization of cathodically-produced hydrogen from mild steel byDesulfovibrio species with different types of hydrogenases. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf01575866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Rousset M, Dermoun Z, Hatchikian CE, Bélaich JP. Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans. Gene 1990; 94:95-101. [PMID: 2227457 DOI: 10.1016/0378-1119(90)90473-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genetic locus encoding the periplasmic [NiFe]hydrogenase (Hyd) from Desulfovibrio fructosovorans was cloned and sequenced. The genes of this two-subunit enzyme have an operon organization in which the 0.94-kb gene encoding the small subunit precedes the 1.69-kb gene encoding the large subunit. A Shine-Dalgarno sequence is centered at -9 bp from the ATG of both subunits. The possible presence of another open reading frame downstream from the large-subunit-encoding gene is considered. The N-terminal sequence of the large 61-kDa subunit deduced from the nucleotide sequence is in perfect agreement with the results of the amino acid (aa) sequence determined by Edman degradation. A 50-aa leader peptide precedes the small 28-kDa subunit. The aa sequence of the enzyme shows nearly 65% homology with the [NiFe]Hyd aa sequence of Desulfovibrio gigas. Comparisons with a large range of Hyds from various bacterial species indicate the presence of highly conserved Cys residues, the implications of which are discussed from the point of view of nickel atom and cluster accommodation.
Collapse
Affiliation(s)
- M Rousset
- Laboratoire de Chimie Bacterienne, CNRS, Marseille, France
| | | | | | | |
Collapse
|
35
|
Ney U, Macario AJ, Conway de Macario E, Aivasidis A, Schoberth SM, Sahm H. Quantitative Microbiological Analysis of Bacterial Community Shifts in a High-Rate Anaerobic Bioreactor Treating Sulfite Evaporator Condensate. Appl Environ Microbiol 1990; 56:2389-98. [PMID: 16348253 PMCID: PMC184739 DOI: 10.1128/aem.56.8.2389-2398.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial population of a high-rate, anaerobic, fixed-bed loop reactor treating sulfite evaporator condensate from the pulp industry was studied over a 14-month period. This period was divided into seven cycles that included a startup at the beginning of each cycle. Some 82% of the total biomass was immobilized on and between the porous glass rings filling the reactor. The range of the total number of microorganisms in these biofilms was 2 × 10
9
to 7 × 10
9
cells per ml. Enumeration and characterization by microbiological methods and by phase-contrast, epifluorescence, and electron microscopy showed that the samples consisted mainly of the following methanogens: a
Methanobacterium
sp., a
Methanosarcina
sp., a
Methanobrevibacter
sp., and a
Methanothrix
sp., as well as furfural-degrading sulfate-reducing bacteria resembling
Desulfovibrio furfuralis.
Viable counts of hydrogenotrophic methanogens were relatively stable (mostly within the range of 3.2 × 10
8
to 7.5 × 10
8
cells per ml), but
Methanobrevibacter
cells increased from <5 to 30% of the total hydrogenotrophic count after transfer of the fixed bed into a second reactor vessel. Acetotrophic methanogens reached their highest numbers of 1.3 × 10
8
to 2.6 × 10
8
cells per ml in the last fermentation cycles. They showed a morphological shift from sarcinalike packets in early samples to single coccoid forms in later phases of the fermentation. Furfural-degrading sulfate reducers reached counts of 1 × 10
7
to 5.8 × 10
7
cells per ml. The distribution of the chief metabolic groups between free fluid and biofilms was analyzed in the fifth fermentation cycle: 4.5 times more furfural degraders were found in the free fluid than in the biofilms. In contrast, 5.8 times more acetotrophic and 16.6 times more hydrogenotrophic methanogens were found in the biofilms than in the free liquid. The data concerning time shifts of morphotypes among the trophic groups of methanogens corroborated the trends observed by using immunological assays on the same samples.
Collapse
Affiliation(s)
- U Ney
- Institut für Biotechnologie der Kernforschungsanlage Jülich, D-5170 Jülich, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
36
|
Rohde M, Fürstenau U, Mayer F, Przybyla AE, Peck HD, Le Gall J, Choi ES, Menon NK. Localization of membrane-associated (NiFe) and (NiFeSe) hydrogenases of Desulfovibrio vulgaris using immunoelectron microscopic procedures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:389-96. [PMID: 1696542 DOI: 10.1111/j.1432-1033.1990.tb19134.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intracellular location of membrane-associated (NiFe) and (NiFeSe) hydrogenases of Desulfovibrio vulgaris was determined using pre-embedding and post-embedding immunoelectron microscopic procedures. Polyclonal antisera directed against the purified (NiFe) and (NiFeSe) hydrogenases were raised in rabbits. One-day-old cultures of D. vulgaris, grown on a lactate/sulfate medium, were used for all experiments in these studies. For post-embedding labeling studies cells were fixed with 0.2% glutaraldehyde and 0.3% formaldehyde, dehydrated with methanol, and embedded in the low-temperature resin Lowicryl K4M. Our post-embedding studies using antibody-gold or protein-A-gold as electron-dense markers revealed the location of the two hydrogenases exclusively at the cell periphery; the precise membrane location was then demonstrated by pre-embedding labeling. Spheroplasts were incubated with the polyclonal antisera against (NiFe) and (NiFeSe) hydrogenase followed by ferritin-linked secondary antibodies prior to embedding and sectioning. The observed labeling pattern unequivocally revealed that the antigenic reactive sites of the (NiFe) hydrogenase are located in the near vicinity of the cytoplasmic membrane facing into the periplasmic space, whereas the (NiFeSe) hydrogenase is associated with the cytoplasmic side of the cytoplasmic membrane.
Collapse
Affiliation(s)
- M Rohde
- Gesellschaft für Biotechnologische Forschung, Bereich Mikrobiologie, Braunschweig, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- A D Moodie
- Department of Biochemistry and Microbiology, University of St Andrews, UK
| | | |
Collapse
|
38
|
A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch Microbiol 1989. [DOI: 10.1007/bf00425175] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Fauque G, Peck HD, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 1988; 4:299-344. [PMID: 3078655 DOI: 10.1111/j.1574-6968.1988.tb02748.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Fauque
- Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, Saint-Paul-Lez-Durance, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species. Arch Microbiol 1988. [DOI: 10.1007/bf00407795] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch Microbiol 1988. [DOI: 10.1007/bf00409713] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Cord-Ruwisch R, Seitz HJ, Conrad R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 1988. [DOI: 10.1007/bf00411655] [Citation(s) in RCA: 381] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Bott M, Thauer RK. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 168:407-12. [PMID: 2822415 DOI: 10.1111/j.1432-1033.1987.tb13434.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell suspensions of methanogenic bacteria (Methanosarcina barkeri, Methanospirillum hungatei, Methano-brevibacter arboriphilus, and Methanobacterium thermoautotrophicum) were found to form CO from CO2 and H2 according to the reaction: CO2 + H2----CO + H2O; delta G0 = +20 kJ/mol. Up to 15,000 ppm CO in the gas phase were reached which is significantly higher than the equilibrium concentration calculated from delta G0 (95 ppm under the experimental conditions). This indicated that CO2 reduction with H2 to CO is energy-driven and indeed the cells only generated CO when forming CH4. The coupling of the two reactions was studied in more detail with acetate-grown cells of M. barkeri using methanogenic substrates. The effects of the protonophore tetrachlorosalicylanilide (TCS) and of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide (cHxN)2C were determined. TCS completely inhibited CO formation from CO2 and H2 without affecting methanogenesis from CH3OH and H2. In the presence of the protonophore the proton motive force delta p and the intracellular ATP concentration were very low. (cHxN)2C, which partially inhibited methanogenesis from CH3OH and H2, had no effect on CO2 reduction to CO. In the presence of (cHxN)2C delta p was high and the intracellular ATP content was low. These findings suggest that the endergonic formation of CO from CO2 and H2 is coupled to the exergonic formation of CH4 from CH3OH and H2 via the proton motive force and not via ATP. CO formation was not stimulated by the addition of sodium ions.
Collapse
Affiliation(s)
- M Bott
- Philipps-Universität Marburg, Fachbereich Biologie, Mikrobiologie, Marburg/Lahn, Federal Republic of Germany
| | | |
Collapse
|
44
|
Odom JM, Wall JD. Properties of a hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774. J Bacteriol 1987; 169:1335-7. [PMID: 3818548 PMCID: PMC211941 DOI: 10.1128/jb.169.3.1335-1337.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A mutant of Desulfovibrio desulfuricans ATCC 27774 has been obtained which is incapable of sulfate respiration with molecular hydrogen but which grows normally on lactate plus sulfate under argon. Growth characteristics of the mutant suggest that the defect is involved in electron transfer to sulfate or nitrate but not thiosulfate.
Collapse
|
45
|
Peck HD, LeGall J, Lespinat PA, Berlier Y, Fauque G. A direct demonstration of hydrogen cycling byDesulfovibrio vulgarisemploying membrane-inlet mass spectrometry. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02042.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Identification of a membrane-bound hydrogenase of Desulfovibrio vulgaris (Hildenborough). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90248-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Pankhania I, Gow L, Hamilton W. Extraction of periplasmic hydrogenase fromDesulfovibrio vulgaris(Hildenborough). FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01488.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol Rev 1985; 49:140-57. [PMID: 2989673 PMCID: PMC373027 DOI: 10.1128/mr.49.2.140-157.1985] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|