1
|
Dual function of a tip fimbrillin of Actinomyces in fimbrial assembly and receptor binding. J Bacteriol 2011; 193:3197-206. [PMID: 21531799 DOI: 10.1128/jb.00173-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of Actinomyces oris with salivary proline-rich proteins (PRPs), which serve as fimbrial receptors, involves type 1 fimbriae. Encoded by the gene locus fimQ-fimP-srtC1, the type 1 fimbria is comprised of the fimbrial shaft FimP and the tip fimbrillin FimQ. Fimbrial polymerization requires the fimbria-specific sortase SrtC1, which catalyzes covalent linkage of fimbrial subunits. Using genetics, biochemical methods, and electron microscopy, we provide evidence that the tip fimbrillin, FimQ, is involved in fimbrial assembly and interaction with PRPs. Specifically, while deletion of fimP completely abolished the type 1 fimbrial structures, surface display of monomeric FimQ was not affected by this mutation. Surprisingly, deletion of fimQ significantly reduced surface assembly of the type 1 fimbriae. This defect was rescued by recombinant FimQ ectopically expressed from a plasmid. In agreement with the role of type 1 fimbriae in binding to PRPs, aggregation of A. oris with PRP-coated beads was abrogated in cells lacking srtC1 or fimP. This aggregation defect of the ΔfimP mutant was mainly due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed in a strain lacking fimQ. Increasing expression of FimQ in the ΔfimP mutant enhanced aggregation, while overexpression of FimP in the ΔfimQ mutant did not. Furthermore, recombinant FimQ, not FimP, bound surface-associated PRPs in a dose-dependent manner. Thus, not only does FimQ function as the major adhesin of the type 1 fimbriae, it also plays an important role in fimbrial assembly.
Collapse
|
2
|
|
3
|
Delisle AL, Donkersloot JA. Relationships amongActinomyces naeslundii (A. viscosus)Bacteriophages Isolated from Sewage and the Oral Cavity. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609509140089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Allan L. Delisle
- Department of Microbiology, School of Dentistry, University of Maryland at Baltimore, Baltimore, MD, 21201, USA
| | - Jacob A. Donkersloot
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Mishra A, Das A, Cisar JO, Ton-That H. Sortase-catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J Bacteriol 2007; 189:3156-65. [PMID: 17277070 PMCID: PMC1855841 DOI: 10.1128/jb.01952-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two types of adhesive fimbriae are expressed by Actinomyces; however, the architecture and the mechanism of assembly of these structures remain poorly understood. In this study we characterized two fimbrial gene clusters present in the genome of Actinomyces naeslundii strain MG-1. By using immunoelectron microscopy and biochemical analysis, we showed that the fimQ-fimP-srtC1-fimR gene cluster encodes a fimbrial structure (designated type 1) that contains a major subunit, FimP, forming the shaft and a minor subunit, FimQ, located primarily at the tip. Similarly, the fimB-fimA-srtC2 gene cluster encodes a distinct fimbrial structure (designated type 2) composed of a shaft protein, FimA, and a tip protein, FimB. By using allelic exchange, we constructed an in-frame deletion mutant that lacks the SrtC2 sortase. This mutant produces abundant type 1 fimbriae and expresses the monomeric FimA and FimB proteins, but it does not assemble type 2 fimbriae. Thus, SrtC2 is a fimbria-specific sortase that is essential for assembly of the type 2 fimbriae. Together, our experiments pave the way for several lines of molecular investigation that are necessary to elucidate the fimbrial assembly pathways in Actinomyces and their function in the pathogenesis of different biofilm-related oral diseases.
Collapse
Affiliation(s)
- Arunima Mishra
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
5
|
Marraffini LA, Dedent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 2006; 70:192-221. [PMID: 16524923 PMCID: PMC1393253 DOI: 10.1128/mmbr.70.1.192-221.2006] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Department of Microbiology, Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
6
|
Affiliation(s)
- Hung Ton-That
- Committee on Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
7
|
Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. ACTA ACUST UNITED AC 2003; 14:331-44. [PMID: 14530302 DOI: 10.1177/154411130301400504] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review will focus on the impact of molecular genetic approaches on elucidating the bacterial etiology of oral diseases from an historical perspective. Relevant results from the pre- and post-recombinant DNA periods will be highlighted, including the roles of gene cloning, mutagenesis, and nucleotide sequencing in this area of research. Finally, the impact of whole-genome sequencing on deciphering the virulence mechanisms of oral pathogens, along with new approaches to control these organisms, will be discussed.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
8
|
Wu H, Fives-Taylor PM. Molecular strategies for fimbrial expression and assembly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:101-15. [PMID: 11345521 DOI: 10.1177/10454411010120020101] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fimbriae or pili are long, filamentous, multimeric macromolecules found on the bacterial cell surface. Bacteria express a diverse array of fimbriae or pili that are involved in bacterial adherence and invasion. Fimbriae can be categorized based on their modes of expression and assembly. Type I fimbriae and P pili are distributed peritrichously and translocated to the cell surface by a chaperone/usher pathway. Type 4 pili are located at the pole of the cell and assembled via the type II secretion system. Curli fimbriae are coiled surface structures assembled by an extracellular nucleation/precipitation pathway. Fimbriae of oral gram-negative and gram-positive bacteria have not been well-studied as compared with the fimbriae of enteric pathogens. Oral pathogens, such as Eikenella corrodens, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis, possess fimbriae that have been implicated in bacterial adhesion and invasion. These fimbriae are potential virulence factors in oral infectious processes. A. actinomycetemcomitans and E. corrodens have Type 4-like fimbriae, whereas P. gingivalis displays a unique type of fimbriae. To date, fimbriae of the oral primary colonizers, Actinomyces naeslundii and Streptococcus parasanguis, represent the only fimbriae characterized for any gram-positive bacteria. The putative major fimbrial subunits, FimA and FimP of A. naeslundii and Fap1 of S. parasanguis, contain a signal sequence and cell-wall-sorting signal. The presence of extensive dipeptide repeats in Fap1 makes it unique among fimbrial molecules. Based on experimental data, a nucleation/precipitation pathway is proposed for fimbrial biogenesis of both S. parasanguis and A. naeslundii, although we cannot rule out an alternative covalent linkage model. The model systems described in this review served as a framework for hypotheses for how the known molecular factors of fimbriae on oral bacteria may be expressed and assembled.
Collapse
Affiliation(s)
- H Wu
- Department of Medicine, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
9
|
Bergeron LJ, Burne RA. Roles of fructosyltransferase and levanase-sucrase of Actinomyces naeslundii in fructan and sucrose metabolism. Infect Immun 2001; 69:5395-402. [PMID: 11500409 PMCID: PMC98649 DOI: 10.1128/iai.69.9.5395-5402.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Accepted: 05/23/2001] [Indexed: 11/20/2022] Open
Abstract
The ability of Actinomyces naeslundii to convert sucrose to extracellular homopolymers of fructose and to catabolize these types of polymers is suspected to be a virulence trait that contributes to the initiation and progression of dental caries and periodontal diseases. Previously, we reported on the isolation and characterization of the gene, ftf, encoding the fructosyltransferase (FTF) of A. naeslundii WVU45. Allelic exchange mutagenesis was used to inactivate ftf, revealing that FTF-deficient stains were completely devoid of the capacity to produce levan-type (beta2,6-linked) polysaccharides. A polyclonal antibody was raised to a histidine-tagged, purified A. naeslundii FTF, and the antibody was used to localize the enzyme in the supernatant fluid. A sensitive technique was developed to detect levan formation by proteins that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the method was used to confirm that the levan-synthesizing activity of A. naeslundii existed predominantly in a cell-free form, that a small amount of the activity was cell associated, and that the ftf mutant was unable to produce levans. By using the nucleotide sequence of the levanase gene of a genospecies 2 A. naeslundii, formerly Actinomyces viscosus, a portion of a homologue of this gene (levJ) was amplified by PCR and inserted into a suicide vector, and the resulting construct was used to inactivate the levJ gene in the genospecies 1 strain WVU45. A variety of physiologic and biochemical studies were performed on the wild-type and LevJ-deficient strains to demonstrate that (i) this enzyme was the dominant levanase and sucrase of A. naeslundii; (ii) that LevJ was inducible by growth in sucrose; (iii) that the LevJ activity was found predominantly (>90%) in a cell-associated form; and (iv) that there was a second, fructose-inducible fructan hydrolase activity produced by these strains. The data provide the first detailed molecular analysis of fructan production and catabolism in this abundant and important oral bacterium.
Collapse
Affiliation(s)
- L J Bergeron
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
10
|
Abstract
Oral microbial-plaque communities are biofilms composed of numerous genetically distinct types of bacteria that live in close juxtaposition on host surfaces. These bacteria communicate through physical interactions called coaggregation and coadhesion, as well as other physiological and metabolic interactions. Streptococci and actinomyces are the major initial colonizers of the tooth surface, and the interactions between them and their substrata help establish the early biofilm community. Fusobacteria play a central role as physical bridges that mediate coaggregation of cells and as physiological bridges that promote anaerobic microenvironments which protect coaggregating strict anaerobes in an aerobic atmosphere. New technologies for investigating bacterial populations with 16S rDNA probes have uncovered previously uncultured bacteria and have offered an approach to in situ examination of the spatial arrangement of the participant cells in oral-plaque biofilms. Flow cells with saliva-coated surfaces are particularly useful for studies of biofilm formation and observation. The predicted sequential nature of colonization of the tooth surface by members of different genera can be investigated by using these new technologies and imaging the cells in situ with confocal scanning laser microscopy. Members of at least seven genera now can be subjected to genetic studies owing to the discovery of gene-transfer systems in these genera. Identification of contact-inducible genes in streptococci offers an avenue to explore bacterial responses to their environment and leads the way toward understanding communication among inhabitants of a multispecies biofilm.
Collapse
Affiliation(s)
- P E Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
11
|
Bergeron LJ, Morou-Bermudez E, Burne RA. Characterization of the fructosyltransferase gene of Actinomyces naeslundii WVU45. J Bacteriol 2000; 182:3649-54. [PMID: 10850978 PMCID: PMC94534 DOI: 10.1128/jb.182.13.3649-3654.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral actinomycetes produce fructosyltransferase (FTF) enzymes which convert sucrose into polymers of D-fructose, known as levans, and these polymers are thought to contribute to the persistence and virulence of the organisms. A gene encoding FTF was isolated from Actinomyces naeslundii WVU45; the deduced amino acid sequence showed significant similarity to known levansucrases of gram-negative environmental isolates but was less similar to FTFs from gram-positive bacteria. A transcriptional start site was mapped by primer extension 70 bp 5' from the putative start codon. Promoter fusions to a chloramphenicol acetyltransferase gene were used to confirm that there was a functional promoter driving ftf expression and to show that sequences located 86 to 218 bp upstream of the transcription initiation site were required for optimal ftf expression. Quantitative slot blot analysis against total RNA from cells grown on different sugars or from different growth phases revealed that ftf was constitutively transcribed. Thus, the A. naeslundii FTF is more similar in primary sequence and the regulation of expression to levansucrases of gram-negative bacteria than gram-positive bacteria.
Collapse
Affiliation(s)
- L J Bergeron
- Center for Oral Biology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
12
|
Yeung MK. Molecular and genetic analyses of Actinomyces spp. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:120-38. [PMID: 10759417 DOI: 10.1177/10454411990100020101] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the genus Actinomyces are predominant primary colonizers of the oral cavity and play an important role in initiating plaque development. These bacteria have evolved unique mechanisms that favor colonization and persistence in this micro-environment. The expression of cell-surface fimbriae is correlated with the ability of these bacteria to adhere to specific receptors on the tooth and mucosal surfaces, and to interact with other plaque bacteria. The elaboration of sialidase is thought to enhance fimbriae-mediated adherence by unmasking the fimbrial receptors on mammalian cells. The presence of certain cell-associated or extracellular enzymes, including those involved in sucrose or urea metabolism, may provide the means for these bacteria to thrive under conditions when other growth nutrients are not available. Moreover, these enzyme activities may influence the distribution of other plaque bacteria and promote selection for Actinomyces spp. in certain ecological niches. The recent development of a genetic transfer system for Actinomyces spp. has allowed for studies the results of which demonstrate the existence of multiple genes involved in fimbriae synthesis and function, and facilitated the construction of allelic replacement mutants at each gene locus. Analyses of these mutants have revealed a direct correlation between the synthesis of assembled fimbriae and the observed adherence properties. Further genetic analysis of the various enzyme activities detected from strains of Actinomyces should allow for an assessment of the role of these components in microbial ecology, and their contribution to the overall success of Actinomyces spp. as a primary colonizer and a key player in oral health and disease.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, 78284, USA
| |
Collapse
|
13
|
Morou-Bermudez E, Burne RA. Genetic and physiologic characterization of urease of Actinomyces naeslundii. Infect Immun 1999; 67:504-12. [PMID: 9916052 PMCID: PMC96348 DOI: 10.1128/iai.67.2.504-512.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1998] [Accepted: 11/04/1998] [Indexed: 11/20/2022] Open
Abstract
Ammonia production from urea by ureolytic oral bacteria is believed to have a significant impact on oral health and the ecological balance of oral microbial populations. In this study we cloned and characterized the urease gene cluster of Actinomyces naeslundii, which is one of the pioneer organisms in the oral cavity and a significant constituent of supragingival and subgingival dental plaque in children and adults. An internal fragment of the ureC gene of A. naeslundii WVU45 was initially amplified by PCR with degenerate primers derived from conserved amino acid sequences of the large catalytic subunit of urease in bacteria and plants. The PCR product was then used as a probe to identify recombinant bacteriophages carrying the A. naeslundii urease gene cluster and roughly 30 kbp of flanking DNA. Nucleotide sequence analysis demonstrated that the gene cluster was comprised of seven contiguously arranged open reading frames with significant homologies at the protein and nucleotide sequence levels to the ureABCEFGD genes from other organisms. By using primer extension, a putative transcription initiation site was mapped at 66 bases 5' to the start codon of ureA. A urease-deficient strain was constructed by insertion of a kanamycin resistance determinant within the ureC gene via allelic replacement. In contrast to the wild-type organism, the isogenic mutant was unable to grow in a semidefined medium supplemented with urea as the nitrogen source and was not protected by the addition of urea against killing in moderately acidic environments. These data indicated that urea can be effectively utilized as a nitrogen source by A. naeslundii via a urease-dependent pathway and that ureolysis can protect A. naeslundii against environmental acidification at physiologically relevant pH values. Therefore, urease could confer to A. naeslundii critical selective advantages over nonureolytic organisms in dental plaque, constituting an important determinant of plaque ecology.
Collapse
Affiliation(s)
- E Morou-Bermudez
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
14
|
Klier CM, Roble AG, Kolenbrander PE. Actinomyces serovar WVA963 coaggregation-defective mutant strain PK2407 secretes lactose-sensitive adhesin that binds to coaggregation partner Streptococcus oralis 34. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:337-40. [PMID: 9872108 DOI: 10.1111/j.1399-302x.1998.tb00688.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Actinomyces serovar WVA963 strain PK1259 mediates intergeneric coaggregation with several oral streptococci. These lactose-inhibitable coaggregations appear to involve a 95-kDa putative actinomyces adhesin in complex with type 2 fimbriae. A coaggregation-defective strain PK2407 lacking type 2 fimbriae synthesizes the putative adhesin but appears unable to present it properly on its surface. Antiserum was raised against surface sonicates of PK2407 and was absorbed with a different coaggregation-defective mutant PK3092 that synthesizes type 2 fimbriae but no adhesin. This absorbed antiserum specifically blocked lactose-inhibitable coaggregation of wild-type strain PK1259 and Streptococcus oralis 34 and identified a 95-kDa protein in ammonium sulfate precipitates of culture supernatant of the coaggregation-defective mutant PK2407. The 95-kDa secreted protein was bound to the streptococcal partner cells and to lactose-agarose affinity beads and was released by lactose from both the affinity beads and partner, indicating that the secreted and precipitated protein is biochemically active and may mediate coaggregation with streptococci.
Collapse
Affiliation(s)
- C M Klier
- Oral Infection and Immunity Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA
| | | | | |
Collapse
|
15
|
Hallberg K, Holm C, Ohman U, Strömberg N. Actinomyces naeslundii displays variant fimP and fimA fimbrial subunit genes corresponding to different types of acidic proline-rich protein and beta-linked galactosamine binding specificity. Infect Immun 1998; 66:4403-10. [PMID: 9712794 PMCID: PMC108532 DOI: 10.1128/iai.66.9.4403-4410.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to beta-linked galactosamine (GalNAcbeta) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcbeta, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcbeta, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcbeta1-3Galalpha-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcbeta specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity.
Collapse
Affiliation(s)
- K Hallberg
- Department of Cariology, Faculty of Odontology, University of Umeâ, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
16
|
Hamada S, Amano A, Kimura S, Nakagawa I, Kawabata S, Morisaki I. The importance of fimbriae in the virulence and ecology of some oral bacteria. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:129-38. [PMID: 10093527 DOI: 10.1111/j.1399-302x.1998.tb00724.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cumulative evidence indicates that bacterial adherence to mucosal and tooth surfaces as well as bacterial coaggregation are essential steps for colonization of various oral bacterial species. Bacterial fimbriae have been shown to play an important role in the interaction between bacteria and host cells or among bacterial cells. The properties of fimbriae from selected species of oral bacteria are discussed in terms of virulence traits and ecological significance. Among others, Porphyromonas gingivalis fimbriae have been most extensively studied. The fimbrial structure is composed of 41-kDa fimbrillin proteins. DNA sequencing of the fimbrillin gene (fimA) from nine strains of P. gingivalis suggests intraspecies variation in the structure of fimA, while retaining common immunochemical specificities. P. gingivalis fimbriae exhibit a wide variety of biological activities including immunogenicity, binding to various host proteins, stimulation of cytokine production and promotion of bone resorption, Actinobacillus actinomycetemcomitans also possesses fimbriae; however, little is known concerning their chemical, genetical, and biological properties. Fimbriae of Prevotella intermedia are shown to induce hemagglutination reaction, while those of Prevotella loescheii are found to cause coaggregation with other bacteria, i.e., Actinomyces viscosus and sanguis streptococci. Fimbriae from gram-positive oral bacteria such as oral Actinomyces and sanguis streptococci are described. These fimbriae may participate in coaggregation, binding to saliva-coated hydroxyapatite or glycoprotein of the surface layer of oral epithelial cells. Taken together, fimbriae are key components in cell-to-surface and cell-to-cell adherence of oral bacteria and pathogenesis of some oral and systemic diseases.
Collapse
Affiliation(s)
- S Hamada
- Department of Oral Microbiology, Osaka University Faculty of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Yeung MK, Donkersloot JA, Cisar JO, Ragsdale PA. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect Immun 1998; 66:1482-91. [PMID: 9529071 PMCID: PMC108078 DOI: 10.1128/iai.66.4.1482-1491.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nucleotide sequence of the Actinomyces naeslundii T14V type 2 fimbrial structural subunit gene, fimA, and the 3' flanking DNA region was determined. The fimA gene encoded a 535-amino-acid precursor subunit protein (FimA) which included both N-terminal leader and C-terminal cell wall sorting sequences. A second gene, designated orf365, that encoded a 365-amino-acid protein which contained a putative transmembrane segment was identified immediately 3' to fimA. Mutants in which either fimA or orf365 was replaced with a kanamycin resistance gene did not participate in type 2 fimbriae-mediated coaggregation with Streptococcus oralis 34. Type 2 fimbrial antigen was not detected in cell extracts of the fimA mutant by Western blotting with anti-A. naeslundii type 2 fimbrial antibody, but the subunit protein was detected in extracts of the orf365 mutant. The subunit protein detected in this mutant also was immunostained by an antibody raised against a synthetic peptide representing the C-terminal 20 amino acid residues of the predicted FimA. The antipeptide antibody reacted with FimA isolated from the recombinant Escherichia coli clone containing fimA but did not react with purified type 2 fimbriae in extracts of the wild-type strain. These results indicate that synthesis of type 2 fimbriae in A. naeslundii T14V may involve posttranslational cleavage of both the N-terminal and C-terminal peptides of the precursor subunit and also the expression of orf365.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, 78284, USA.
| | | | | | | |
Collapse
|
18
|
Yeung MK, Ragsdale PA. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect Immun 1997; 65:2629-39. [PMID: 9199430 PMCID: PMC175372 DOI: 10.1128/iai.65.7.2629-2639.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleotide sequence of the chromosomal DNA flanking the Actinomyces naeslundii (formerly A. viscosus) T14V type 1 fimbrial structural subunit gene (fimP) was determined. Six open reading frames (ORFs), in the order 5' ORF3, ORF2, ORF1,fimP, ORF4, ORF5, ORF6 3', were identified. ORF1 encoded a protein of 408 amino acid residues (Mr = 39,270) and had significant sequence homology with the A. naeslundii T14V type 1 and A. naeslundii WVU45 type 2 fimbrial structural subunits. An in-frame fusion of ORF1 to the malE gene of the expression vector, pMAL-c2, yielded a protein that was immunostained with antibodies raised against the maltose binding protein and A. naeslundii T14V whole bacteria. Digestion of the fusion protein with factor Xa released a protein (apparent molecular mass of 34 kDa) that was immunostained only with the antibody directed against A. naeslundii T14V whole bacterial cells. Integration plasmids carrying a kanamycin resistance gene (kan) that was used to substitute for ORF1 or for DNA fragments internal to the coding region of the other five ORFs were used to transform A. naeslundii T14V. Neither type 1 fimbriae nor the 65-kDa fimbrial structural subunit was detected in mutants obtained by allelic replacement of ORF1 or ORF2. Mutants obtained by allelic replacement of ORF3 or ORF4 expressed only the 65-kDa fimbrial structural subunit. These mutants did not bind, in vitro, to proline-rich proteins that serve as the receptors for Actinomyces type 1 fimbriae. In contrast, a mutant in which the integration plasmid DNA had been inserted at a site close to the carboxyl terminus of ORF6 expressed type 1 fimbriae and had adherence properties similar to those observed in the wild-type strain. These results demonstrate the existence of additional genes near fimP that are likely to be involved in the synthesis and function of cell surface fimbriae of A. naeslundii T14V.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, 78284, USA.
| | | |
Collapse
|
19
|
Cisar JO, Takahashi Y, Ruhl S, Donkersloot JA, Sandberg AL. Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface. Adv Dent Res 1997; 11:168-75. [PMID: 9524453 DOI: 10.1177/08959374970110010801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oral surfaces are bathed in secretory antibodies and other salivary macromolecules that are potential inhibitors of specific microbial adhesion. Indigenous Gram-positive bacteria that colonize teeth, including viridans streptococci and actinomyces, may avoid inhibition of adhesion by host secretory molecules through various strategies that involve the structural design and binding properties of bacterial adhesins and receptors. Further studies to define the interactions of these molecules within the host environment may suggest novel approaches for the control of oral biofilm formation.
Collapse
Affiliation(s)
- J O Cisar
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Klier CM, Kolenbrander PE, Roble AG, Marco ML, Cross S, Handley PS. Identification of a 95 kDa putative adhesin from Actinomyces serovar WVA963 strain PK1259 that is distinct from type 2 fimbrial subunits. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):835-846. [PMID: 9084167 DOI: 10.1099/00221287-143-3-835] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The species Actinomyces serovar WVA963 is among the 20 bacteria most frequently isolated from human subgingival plaque. The interactions of this species with streptococci are inhibited by lactose, a function associated with type 2 fimbrial surface structures in Actinomyces naeslundii. Type 1 fimbriae mediate binding of cells to salivary proline-rich proteins. Specific polyclonal antisera against type 1 and type 2 fimbriae of A. naeslundii T14V revealed both types of fimbriae on Actinomyces serovar WVA963 strain PK1259. To investigate the role of type 2 fimbriae of strain PK1259 in Actinomyces-Streptococcus lactose-inhibitable coaggregations, spontaneous coaggregation-defective (Cog-) mutants that failed to coaggregate with streptococci were isolated; three were chosen for study. All three mutant strains synthesized type 1 fimbriae and a 59 kDa protein; mutant strains PK2415 and PK3092 synthesized type 2 fimbriae and a 57 kDa protein. In contrast, the Cog- strain PK2407 did not agglutinate with anti-type 2 antibodies or show the 57 kDa band, suggesting that the 57 kDa protein was the type 2 fimbrial subunit. Polyclonal antiserum raised against the Actinomyces serovar WVA963 strain PK2399, an antibiotic-resistant derivative of wild-type PK1259, blocked coaggregation between this strain and streptococci. Anti-PK2399 serum absorbed with mutant strain PK3092 bearing type 2 fimbriae retained its blocking ability. Surface sonicates of the parent and mutant strains were adsorbed to streptococcal cells and to lactose-agarose beads. Lactose eluates from both the streptococcal cells and the affinity beads were characterized by SDS-PAGE and corresponding immunoblots using anti-PK2399 serum absorbed with Cog- mutant PK3092. These blots revealed a 95 kDa putative adhesin in the parent strain PK2399 that was absent in the Cog- mutant strain PK3092. These results suggest the presence of a putative 95 kDa actinomyces adhesin distinct from the 57 kDa type 2 fimbrial subunit and that this adhesin mediates lactose-inhibitable coaggregation with streptococci.
Collapse
Affiliation(s)
- Christiane M Klier
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health,Bethesda, MD 20892,USA
| | - Paul E Kolenbrander
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health,Bethesda, MD 20892,USA
| | - Arlene G Roble
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health,Bethesda, MD 20892,USA
| | - Maria L Marco
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health,Bethesda, MD 20892,USA
| | - Sharon Cross
- Microbiology Research Group, School of Biological Sciences, Stopford Building, Manchester University,Oxford Road, Manchester M13 9PT,UK
| | - Pauline S Handley
- Microbiology Research Group, School of Biological Sciences, Stopford Building, Manchester University,Oxford Road, Manchester M13 9PT,UK
| |
Collapse
|
21
|
Abstract
Adherence to a surface is a key element for colonization of the human oral cavity by the more than 500 bacterial taxa recorded from oral samples. Three surfaces are available: teeth, epithelial mucosa, and the nascent surface created as each new bacterial cell binds to existing dental plaque. Oral bacteria exhibit specificity for their respective colonization sites. Such specificity is directed by adhesin-receptor cognate pairs on genetically distinct cells. Colonization is successful when adherent cells grow and metabolically participate in the oral bacterial community. The potential roles of adherence-relevant molecules are discussed in the context of the dynamic nature of the oral econiche.
Collapse
Affiliation(s)
- C J Whittaker
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1994; 5:203-48. [PMID: 7703323 DOI: 10.1177/10454411940050030201] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Saliva is thought to have a significant impact on the colonization of microorganisms in the oral cavity. Salivary components may participate in this process by one of four general mechanisms: binding to microorganisms to facilitate their clearance from the oral cavity, serving as receptors in oral pellicles for microbial adhesion to host surfaces, inhibiting microbial growth or mediating microbial killing, and serving as microbial nutritional substrates. This article reviews information pertinent to the molecular interaction of salivary components with bacteria (primarily the oral streptococci and Actinomyces) and explores the implications of these interactions for oral bacterial colonization and dental plaque formation. Knowledge of the molecular mechanisms controlling bacterial colonization of the oral cavity may suggest methods to prevent not only dental plaque formation but also serious medical infections that may follow microbial colonization of the oral cavity.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214, USA
| |
Collapse
|
23
|
Kehoe MA. Chapter 11 Cell-wall-associated proteins in Gram-positive bacteria. BACTERIAL CELL WALL 1994. [DOI: 10.1016/s0167-7306(08)60414-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Andersen RN, Ganeshkumar N, Kolenbrander PE. Cloning of the Streptococcus gordonii PK488 gene, encoding an adhesin which mediates coaggregation with Actinomyces naeslundii PK606. Infect Immun 1993; 61:981-7. [PMID: 8432618 PMCID: PMC302829 DOI: 10.1128/iai.61.3.981-987.1993] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coaggregation between Streptococcus gordonii PK488 and Actinomyces naeslundii PK606 is mediated by a 38-kDa streptococcal protein, designated ScaA. The gene, scaA, which encodes this protein has been cloned into Escherichia coli. A genomic S. gordonii PK488 library (in Lambda ZAP II) was screened with anti-S. gordonii immunoglobulin G absorbed with S. gordonii PK1804, an isogenic coaggregation-defective mutant of strain PK488. A positive recombinant phage was isolated, and a phagemid designated pRA1 was obtained which contained a 6.6-kb insert. Expression of scaA from pRA1 and from a subcloned internal 2.1-kb fragment was observed. The absorbed antiserum cross-reacted with a 34.7-kDa protein, SsaB, from S. sanguis 12, also a coaggregation partner of A. naeslundii PK606. Absorbed antiserum to S. gordonii PK488 and antiserum to SsaB both reacted with 38-kDa proteins in supernatants from mildly sonicated preparations from 11 other coaggregation partners of A. naeslundii PK606. Putative adhesin genes were identified in each of these coaggregation partners by Southern analysis of their genomic DNA with the cloned 2.1-kb fragment as a probe. A 30-base oligonucleotide probe based on the sequence of ssaB of S. sanguis 12 hybridized in an identical manner. These data extend the notion that most of the viridans streptococci that coaggregate with actinomyces are capable of expressing ScaA-related proteins.
Collapse
Affiliation(s)
- R N Andersen
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | |
Collapse
|
25
|
Yeung MK. Conservation of an Actinomyces viscosus T14V type 1 fimbrial subunit homolog among divergent groups of Actinomyces spp. Infect Immun 1992; 60:1047-54. [PMID: 1347285 PMCID: PMC257592 DOI: 10.1128/iai.60.3.1047-1054.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type 1 fimbrial subunit gene of the human Actinomyces viscosus T14V was used as a DNA probe in Southern analyses to detect related DNA sequences in 16 of 30 strains of Actinomyces spp. under conditions of high stringency. The organisms with homology to the DNA probe included two human and six nonhuman A. viscosus, three human and three nonhuman A. naeslundii, and two A. bovis isolates. Homologous DNA sequences were not detected in strains of A. odontolyticus and A. israelii examined in this study. Northern (RNA) blot analysis revealed expression of a transcript from each of the A. viscosus and A. naeslundii strains and from one A. bovis strain that was comparable in size to that detected from A. viscosus T14V. Cell surface fimbriae were observed on a majority of the strains that expressed the transcript. Various degrees of cross-immunoreactivities between these strains and antibodies specific for type 1 fimbriae of A. viscosus T14V were also observed by colony immunoassay. Thus, the data clearly demonstrate the existence in, and expression by, divergent Actinomyces groups of genomic sequences that are closely related to the type 1 fimbriae of A. viscosus T14V.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284
| |
Collapse
|
26
|
|
27
|
Haber J, Grinnell CM, Beem JE, Clark WB. Genetic control of serum antibody responses of inbred mice to type 1 and type 2 fimbriae from Actinomyces viscosus T14V. Infect Immun 1991; 59:2364-9. [PMID: 1675628 PMCID: PMC258019 DOI: 10.1128/iai.59.7.2364-2369.1991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Antibodies reactive with type 1 and type 2 fimbriae from Actinomyces viscosus T14V specifically inhibit the adherence of A. viscosus T14V to salivary pellicle-coated tooth surfaces and other bacteria, and these antibodies are thought to modulate colonization by this microorganism. These studies were done to determine whether previously noted differences in the antibody responses of inbred mice to type 1 and type 2 fimbriae might be under genetic control. The serum immunoglobulin G (IgG) and IgM antibody responses of inbred, F1 hybrid, and H-2 congenic mice, immunized with A. viscosus T14V cells, were analyzed by enzyme-linked immunosorbent assays for antibodies reactive with A. viscosus T14V whole-cell type 1 and type 2 fimbriae. The results confirmed earlier findings and indicated striking variations in the amounts of IgG anti-type 1 (23-fold) and anti-type 2 (48-fold) fimbria antibodies elicited. The responses of the 17 inbred strains tested showed a relatively continuous distribution from high to low, as well as marked differences in the responses of H-2 and Igh-C identical strain pairs. An analysis of the responses of F1 hybrid and H-2 congenic mice indicated dominance of the low-responder gene(s) and control by H-2-linked genes. Antisera from two high-responder strains inhibited in vitro bacterial adherence to a much greater degree than antisera from a low-responding strain. These data suggest polygenic control of the magnitude of the IgG anti-type 1 and anti-type 2 fimbria antibody responses by H-2-linked genes as well as background genes not associated with H-2 or Igh-C loci.
Collapse
Affiliation(s)
- J Haber
- Department of Oral Pathology, School of Dental Medicine, Tufts University, Boston, Massachusetts 02111
| | | | | | | |
Collapse
|
28
|
Ebersole JL. Systemic humoral immune responses in periodontal disease. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1990; 1:283-331. [PMID: 2129631 DOI: 10.1177/10454411900010040601] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J L Ebersole
- Department of Periodontics, University of Texas Health Science Center, San Antonio 78284-7894
| |
Collapse
|
29
|
Sandberg AL, Cisar JO, Siraganian RP, Mudrick LL, Armstrong MW. Complement activation by individual and combinations of monoclonal antibodies to Actinomyces viscosus T14V fimbriae: a probe for epitope distribution on these polymeric proteins. Mol Immunol 1990; 27:787-94. [PMID: 1698258 DOI: 10.1016/0161-5890(90)90088-h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The spatial requirements for IgG activation of the classical complement pathway has provided a basis for utilizing complement consumption by individual and pairs of monoclonal antibodies (mAbs) to compare the repeating epitope patterns of the type 1 and type 2 fimbriae of Actinomyces viscosus T14V and to examine the co-operative effects of mAbs against these polymeric proteins. Three of five mAbs specific for the type 1 fimbriae consumed complement when assayed individually. Four patterns of complement consumption were detected with pairs of these mAbs: inhibition, addition, enhancement or synergy. Inhibition occurred when both members of a pair reacted with the same epitope but only one consumed complement. A strictly additive effect was observed if both mAbs consumed complement and, in addition, recognized the same epitope. Complement consumption by mAbs against certain epitopes was enhanced by non-complement consuming mAbs that reacted with different epitopes. Synergy was observed with extremely low concentrations of two mAbs each of which reacted with a different epitope and consumed complement. In contrast to the anti-type 1 mAbs, only one of seven mAbs against the type 2 fimbriae consumed more than 20% of the available complement. Pairs of anti-type 2 mAbs exhibited only inhibition or synergy. The latter effect was particularly striking as pairs containing mAbs that reacted with different epitopes and failed to consume complement or were minimally active when assayed individually were extremely efficient. These data indicated that the spatial arrangements of individual mAbs bound to repeating epitopes in the type 1, but not the type 2, fimbriae were appropriate for activation of complement. Thus, the repeating epitope patterns of the two types of fimbriae apparently differ.
Collapse
Affiliation(s)
- A L Sandberg
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
30
|
Macrina FL, Dertzbaugh MT, Halula MC, Krah ER, Jones KR. Genetic approaches to the study of oral microflora: a review. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1990; 1:207-27. [PMID: 2129626 DOI: 10.1177/10454411900010030401] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the study of oral microorganisms intensified almost 2 decades ago, the application of genetic techniques resulted in important contributions to the understanding of this clinically and ecologically important group of bacteria. The isolation and characterization of mutants of cariogenic streptococci helped to focus attention on traits that were important in colonization and virulence. Such classic genetic approaches gave way to molecular genetic techniques, including recombinant DNA methodology in the late 1970s. Gene cloning systems and methods to move DNA into cells have been developed for oral streptococci. Many streptococcal genes thought to be important in colonization and virulence have since been cloned and their nucleotide sequence determined. Mutant strains have been constructed using defective copies of cloned genes in order to create specific genetic lesions on the bacterial chromosome. By testing such mutants in animal models, a picture of the cellular and molecular basis of dental caries is beginning to emerge. These modern genetic methodologies also are being employed to develop novel and efficacious cell-free or whole cell vaccines against this infection. Genetic approaches and analyses are now being used to dissect microorganisms important in periodontal disease as well. Such systems should be able to exploit advances made in genetically manipulating related anaerobes, such as the intestinal Bacteroides. Gene cloning techniques in oral anaerobes, Actinomyces and Actinobacillus, are already beginning to pay dividends in helping understand gene structure and expression. Additional effort is needed to develop facile systems for genetic manipulation of these important groups of microorganisms.
Collapse
Affiliation(s)
- F L Macrina
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678
| | | | | | | | | |
Collapse
|
31
|
Yeung MK, Cisar JO. Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J Bacteriol 1990; 172:2462-8. [PMID: 1970561 PMCID: PMC208884 DOI: 10.1128/jb.172.5.2462-2468.1990] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleotide sequencing of the type 1 fimbrial subunit gene of Actinomyces viscosus T14V revealed a consensus ribosome-binding site followed by an open reading frame of 1,599 nucleotides. The encoded protein of 533 amino acids (Mr = 56,899) was predominantly hydrophilic except for an amino-terminal signal peptide and a carboxy-terminal region identified as a potential membrane-spanning segment. Edman degradation of the cloned protein expressed in Escherichia coli and the type 1 fimbriae of A. viscosus T14V showed that both began with alanine at position 31 of the deduced amino acid sequence. The amino acid compositions of the cloned protein and fimbriae also were comparable and in close agreement with the composition of the deduced protein. The amino acid sequence of the A. viscosus T14V type 1 fimbrial subunit showed no significant global homology with various other proteins, including the pilins of gram-negative bacteria. However, 34% amino acid sequence identity was noted between the type 1 fimbrial subunit of strain T14V and the type 2 fimbrial subunit of Actinomyces naeslundii WVU45 (M. K. Yeung and J. O. Cisar, J. Bacteriol. 170:3803-3809, 1988). This homology included several different conserved sequences of up to eight identical amino acids that were distributed in both the amino- and carboxy-terminal thirds of each Actinomyces fimbrial subunit. These findings indicate that the different types of fimbriae on these gram-positive bacteria share a common ancestry.
Collapse
Affiliation(s)
- M K Yeung
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | |
Collapse
|
32
|
Collett MS. The development of biosynthetic vaccines. ADVANCES IN VETERINARY SCIENCE AND COMPARATIVE MEDICINE 1989; 33:109-72. [PMID: 2648773 DOI: 10.1016/b978-0-12-039233-9.50008-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M S Collett
- Molecular Genetics, Inc., Minnetonka, Minnesota
| |
Collapse
|
33
|
Kolenbrander PE. Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. Crit Rev Microbiol 1989; 17:137-59. [PMID: 2692602 DOI: 10.3109/10408418909105746] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Cisar JO, Vatter AE, Clark WB, Curl SH, Hurst-Calderone S, Sandberg AL. Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae. Infect Immun 1988; 56:2984-9. [PMID: 2902012 PMCID: PMC259681 DOI: 10.1128/iai.56.11.2984-2989.1988] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutants of Actinomyces viscosus T14V lacking type 1 or type 2 fimbriae or both were selected by their failure to react with rabbit antibodies against either or both fimbrial antigens. Immunospecific double labeling with iron dextran and ferritin-conjugated antibodies showed two types of fimbriae on individual cells of the parent organism, a single type on mutant strains with type 1+2- and type 1-2+ fimbriae and no labeled or unlabeled fimbriae on a type 1-2- fimbria-deficient strain. The mutational loss of one fimbrial antigen did not appear to affect expression of the other, since bacteria with one or two types of fimbriae bound similar amounts of a monoclonal antibody directed against the fimbrial antigen present on both bacterial phenotypes. The strong adsorption of strains with type 1+2+ or 1+2- fimbriae to saliva-treated hydroxyapatite and weak adsorption of those with type 1-2+ or no fimbriae was consistent with the known involvement of type 1 fimbriae in this attachment process. Similarly, the A. viscosus lectin was clearly associated with the expression of type 2 fimbriae, since only the strains with type 1+2+ or 1-2+ fimbriae participated in lactose-sensitive coaggregations with Streptococcus sanguis 34. Further studies using the fimbria-deficient mutant strains showed that aggregation of A. viscosus T14V in the presence of sialidase-treated human saliva involved both types of fimbriae, whereas neither type was required for the lactose-resistant coaggregation of the organism with certain streptococcal strains.
Collapse
Affiliation(s)
- J O Cisar
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
35
|
Yeung MK, Cisar JO. Cloning and nucleotide sequence of a gene for Actinomyces naeslundii WVU45 type 2 fimbriae. J Bacteriol 1988; 170:3803-9. [PMID: 2900829 PMCID: PMC211374 DOI: 10.1128/jb.170.9.3803-3809.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A genomic library of Actinomyces naeslundii WVU45 DNA in Escherichia coli was screened for antigen expression with rabbit antibody against A. naeslundii fimbriae. Western blotting (immunoblotting) of one recombinant clone carrying a 13.8-kilobase-pair insert revealed a 59-kilodalton (kDa) immunoreactive protein. A protein of similar electrophoretic mobility was detected from the isolated fimbrial antigen. Expression of the 59-kDa cloned protein in E. coli was directed by a promoter from the insert. The DNA sequence of the subunit gene was determined, and an open reading frame of 1,605 nucleotides was identified which was preceded by a putative ribosome-binding site and followed by two inverted repeats of 14 and 17 nucleotides, respectively. The reading frame encoded a protein of 534 amino acids (calculated molecular weight, 57,074), and the N-terminal sequence resembled that of a signal peptide. The presence of a 32-amino-acid signal peptide was indicated by amino-terminal sequencing of the fimbriae from A. naeslundii. The sequence, as determined by Edman degradation, was identical to that deduced from the DNA sequence beginning at predicted residue 33 of the latter sequence. Moreover, the amino acid composition of the predicted mature protein was similar to that of the isolated fimbriae from A. naeslundii. Thus, the cloned gene encodes a subunit of A. naeslundii fimbriae.
Collapse
Affiliation(s)
- M K Yeung
- Laboratory of Microbiology and Immunology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | |
Collapse
|
36
|
Delisle AL, Donkersloot JA, Kolenbrander PE, Tylenda CA. Use of lytic bacteriophage for Actinomyces viscosus T14V as a probe for cell surface components mediating intergeneric coaggregation. Infect Immun 1988; 56:54-9. [PMID: 3335409 PMCID: PMC259233 DOI: 10.1128/iai.56.1.54-59.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A lytic bacteriophage for Actinomyces viscosus T14V (the reference strain for actinomyces coaggregation group A) was isolated from raw sewage. This phage, designated BF307, also lysed the T14V-derived nonfimbriated mutant PK455-2 as well as A. viscosus MG-1 and T14AV but not the other serotype 2 or serotype 1 strains of this species that were tested or any of nine Actinomyces naeslundii isolates. Phages BF307 belonged to Bradley morphological group C and was similar in appearance to the A. viscosus MG-1 phages Av-1 and Av-3, which do not productively infect A. viscosus T14V. A. viscosus MG-1 mutants selected for resistance to phage BF307, Av-3, or CT7 (a human dental plaque isolate with the same host range as BF307) were coresistant to the other two phages but sensitive to Av-1. These results indicate that the receptors on A. viscosus MG-1 for phages BF307, Av-3, and CT7 are identical or share a common precursor and that the receptor for phage Av-1 is distinct. Comparison of the genomes of BF307, Av-3, and CT7 revealed that their DNAs were similar in size but distinguishable by restriction analysis. Two altered coaggregation phenotypes were identified among the phage BF307-resistant mutants of strains MG-1, T14V, T14AV, and PK455-2. Class I mutants had lost the ability to interact with coaggregation group 1 streptococci, and class II mutants did not coaggregate with either group 1 or group 2 streptococci. These results are consistent with the proposal that the phage BF307 receptor on these A. viscosus strains is related to one of the structures that mediates coaggregation with oral streptococci. A model to delineate the various coaggregation mediators on the surface of actinomyces coaggregation group A cells is presented, and the use of these phages to probe surface components of human oral actinomyces strains is discussed.
Collapse
Affiliation(s)
- A L Delisle
- Department of Microbiology, School of Dentistry, University of Maryland, Baltimore 21201
| | | | | | | |
Collapse
|
37
|
Sandberg AL, Mudrick LL, Cisar JO, Metcalf JA, Malech HL. Stimulation of superoxide and lactoferrin release from polymorphonuclear leukocytes by the type 2 fimbrial lectin of Actinomyces viscosus T14V. Infect Immun 1988; 56:267-9. [PMID: 2891619 PMCID: PMC259267 DOI: 10.1128/iai.56.1.267-269.1988] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polymorphonuclear leukocyte (PMN)-dependent destruction of Actinomyces viscosus T14V is initiated by the recognition of galactose-containing receptors on sialidase-treated PMNs by the lectin associated with the type 2 fimbriae of these bacteria. A. viscosus T14V also stimulates the respiratory burst in PMNs as well as the release of contents of the secondary granules, as determined by the presence of lactoferrin in the culture supernatants. Under the experimental conditions employed, these bacteria do not induce the release of beta-glucuronidase, a constituent of primary granules. None of the three PMN responses studied occurs in cultures containing a mutant of A. viscosus T14V that lacks fimbriae. Activation of the PMNs is mediated by the lectin associated with the type 2 fimbriae, as demonstrated by the finding that beta-linked galactosides inhibit stimulation of the respiratory burst. Thus, the interaction of the Actinomyces fimbrial lectin with its complementary receptors on PMNs results not only in killing of these bacteria but also in the release of reactive oxygen intermediates and enzymes that may be detrimental to surrounding host tissues.
Collapse
Affiliation(s)
- A L Sandberg
- Laboratory of Microbiology and Immunology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
38
|
Yeung MK, Chassy BM, Cisar JO. Cloning and expression of a type 1 fimbrial subunit of Actinomyces viscosus T14V. J Bacteriol 1987; 169:1678-83. [PMID: 2881922 PMCID: PMC211999 DOI: 10.1128/jb.169.4.1678-1683.1987] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The type 1 fimbriae of Actinomyces viscosus mediate the adherence of this organism to saliva-treated hydroxyapatite. The gene encoding a putative subunit of this fimbrial adhesin was cloned in Escherichia coli, and its product was examined. A. viscosus T14V chromosomal DNA was partially restricted with Sau3AI and cloned into E. coli JM109 by using the plasmid vector pUC13. Two clones, each containing a different DNA insert with a common 4.1-kilobase region, reacted in colony immunoassays with specific polyclonal as well as monoclonal antibodies directed against A. viscosus T14V type 1 fimbriae. Western blot analysis revealed the expression of a 65-kilodalton protein that migrated slightly behind an antigenically similar protein from native type 1 fimbriae. Deletion analysis showed that the gene encoding the cloned protein was localized on a 1.9-kilobase PstI-BamHI fragment and that transcription was dependent on the lac promoter of the vector. The cloned fimbrial protein was purified from the E. coli cytoplasmic fraction by ion-exchange, immunoaffinity, and gel permeation chromatography. Rabbit antibodies prepared against the cloned protein and against purified A. viscosus type 1 fimbriae gave similar patterns with partially dissociated type 1 fimbriae after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The data therefore provide evidence that the gene cloned encodes a subunit of this fimbrial adhesin.
Collapse
|
39
|
Fives-Taylor PM, Macrina FL, Pritchard TJ, Peene SS. Expression of Streptococcus sanguis antigens in Escherichia coli: cloning of a structural gene for adhesion fimbriae. Infect Immun 1987; 55:123-8. [PMID: 2878882 PMCID: PMC260289 DOI: 10.1128/iai.55.1.123-128.1987] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chromosomal DNA from Streptococcus sanguis FW213 was partially digested with EcoRI and ligated into the positive-selection cloning vector pOP203(A2+). The ligation mixture was used to transform Escherichia coli K-12, and 4,500 transformants were examined. The tetracycline-resistant colonies had inserts averaging 3.2 kilobases. The entire colony bank was screened by colony immunoassay with polyclonal rabbit serum raised against S. sanguis FW213 whole cells. Thirty recombinant colonies produced stable positive reactions of various intensities, indicating that S. sanguis antigens could be expressed in E. coli. Restriction endonuclease digestion of these clones suggested that 26 of the clones were unique. Only two clones, VT616 and VT618, gave positive reactions with fimbria-specific antisera. That the gene coding for the antigen was located on the plasmid was confirmed by demonstrating that the presence of the plasmid was linked to antigen production. Western immunoblot analyses of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that both clones produced a fimbrial peptide of Mr 30,000. The two recombinant plasmids were shown by Southern analysis and restriction mapping to contain the same 6-kilobase EcoRI fragment inserted in opposite orientations. Southern hybridization confirmed that this fragment is present in S. sanguis genomic DNA. The Mr 30,000 protein gene was expressed in both orientations, suggesting that the fimbrial promoter is located on the 6-kilobase fragment. These results show that at least one streptococcal fimbrial gene can be cloned and expressed in E. coli.
Collapse
|
40
|
Morris EJ, Ganeshkumar N, Song M, McBride BC. Identification and preliminary characterization of a Streptococcus sanguis fibrillar glycoprotein. J Bacteriol 1987; 169:164-71. [PMID: 3793716 PMCID: PMC211748 DOI: 10.1128/jb.169.1.164-171.1987] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell surface fibrils could be released from Streptococcus sanguis 12 but not from strains 12na or N by freeze-thawing followed by brief homogenization. Fibrils were isolated from the homogenate by ultracentrifugation or ammonium sulfate precipitation. Electron microscopy demonstrated the presence of dense masses of aggregated fibrils in these preparations. Under nondenaturing conditions, no proteins were seen in polyacrylamide gel electrophoresis (PAGE). Sodium dodecyl sulfate (SDS)-PAGE analysis revealed a single band stained with Coomassie blue and periodic acid Schiff stain with a molecular weight in excess of 300,000. The protein has been given the name long-fibril protein (LFP). The molecule was susceptible to digestion with subtilisin, pronase, papain, and trypsin, but was unaffected by chymotrypsin or muramidases. Attempts to dissociate the protein into smaller subunits with urea, guanidine, sodium thiocyanate, and HCl were unsuccessful. Gel filtration on a column of Sephacryl S-400 in the presence of 2% SDS resulted in elution of the protein at the void volume. Antibody raised against the LFP excised from an SDS-PAGE gel reacted with long fibrils on the surface of strain 12 and with isolated fibrils by an immunogold labeling technique. Monoclonal antibody reactive with LFP in SDS-PAGE also reacted with fibrils present on the cell. Antisera raised against the fibrils inhibited adherence to saliva-coated hydroxyapatite.
Collapse
|
41
|
Kagermeier A, London J. Identification and preliminary characterization of a lectinlike protein from Capnocytophaga gingivalis (emended). Infect Immun 1986; 51:490-4. [PMID: 3943898 PMCID: PMC262361 DOI: 10.1128/iai.51.2.490-494.1986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A polypeptide believed to be the monomeric form of the lectin responsible for the coaggregation of Capnocytophaga gingivalis (emended) and Actinomyces israelii has been identified. Denaturing polyacrylamide gel electrophoresis and immunoblot analyses were used to distinguish the protein from other proteins in the outer membrane of C. gingivalis. The subunit of the putative lectin has a pI of 8.6 and a molecular weight of 155,000.
Collapse
|