1
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
2
|
da Silva ACB, Cruz JDS, Sampaio FC, de Araújo DAM. Detection of oral streptococci in dental biofilm from caries-active and caries-free children. Braz J Microbiol 2008; 39:648-51. [PMID: 24031282 PMCID: PMC3768466 DOI: 10.1590/s1517-83822008000400009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/25/2008] [Accepted: 10/22/2008] [Indexed: 11/30/2022] Open
Abstract
This work correlated the presence of oral streptococci in dental biofilm with clinical indexes of caries and oral hygiene in caries-active and caries-free children. S. mutans and/or S. sobrinus in the dental biofilm does not indicate a direct risk for developing dental caries.
Collapse
Affiliation(s)
- Andréa Cristina Barbosa da Silva
- Departamento de Odontologia Clínica e Social, Universidade Federal da Paraíba , João Pessoa, PB , Brasil ; Departamento de Biologia Molecular, Universidade Federal da Paraíba , João Pessoa, PB , Brasil
| | | | | | | |
Collapse
|
3
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
4
|
Rego FGM, Pedrosa FO, Chubatsu LS, Yates MG, Wassem R, Steffens MBR, Rigo LU, Souza EM. The expression ofnifBgene fromHerbaspirillum seropedicaeis dependent upon the NifA and RpoN proteins. Can J Microbiol 2006; 52:1199-207. [PMID: 17473889 DOI: 10.1139/w06-085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a –24/–12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.Key words: Herbaspirillum seropedicae, nif, nitrogen fixation, NifA, RpoN.
Collapse
Affiliation(s)
- Fabiane G M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Potrich DP, Bressel TA, Schrank IS, Passaglia LM. Sequencing and promoter analysis of the nifENXorf3orf5fdxAnifQ operon from Azospirillum brasilense Sp7. Braz J Med Biol Res 2001; 34:1379-95. [PMID: 11668346 DOI: 10.1590/s0100-879x2001001100003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 40-kb DNA region containing the major cluster of nif genes has been isolated from the Azospirillum brasilense Sp7 genome. In this region three nif operons have been identified: nifHDKorf1Y, nifENXorf3orf5fdxAnifQ and orf2nifUSVorf4. The operons containing nifENX and nifUSV genes are separated from the structural nifHDKorf1Y operon by about 5 kb and 10 kb, respectively. The present study shows the sequence analysis of the 6045-bp DNA region containing the nifENX genes. The deduced amino acid sequences from the open reading frames were compared to the nif gene products of other diazotrophic bacteria and indicate the presence of seven ORFs, all reading in the same direction as that of the nifHDKorf1Y operon. Consensus sigma54 and NifA-binding sites are present only in the promoter region upstream of the nifE gene. This promoter is activated by NifA protein and is approximately two-times less active than the nifH promoter, as indicated by the beta-galactosidase assays. This result suggests the differential expression of the nif genes and their respective products in Azospirillum.
Collapse
Affiliation(s)
- D P Potrich
- Departamento de Genética, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Benito Gonçalves, 9500 Prédio 43421, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
6
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
7
|
Teixeira KÃR, Wülling M, Morgan T, Galler R, Zellermann EM, Baldani JI, Kennedy C, Meletzus D. Molecular analysis of the chromosomal region encoding thenifAandnifBgenes ofAcetobacter diazotrophicus. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13676.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Siddavattam D, Nickles A, Herterich S, Steibl HD, Kreutzer R, Klingmüller W. Site-specific mutagenesis in Enterobacter agglomerans: construction of nif B mutants and analysis of the gene's structure and function. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:526-32. [PMID: 8544818 DOI: 10.1007/bf00290578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel technique was developed which may be generally well suited to the site-specific construction of mutations in Enterobacter agglomerans. The method is based on the observation that E. agglomerans can be cured of a plasmid of the incompatibility group IncQ by cultivation on citrate-containing medium. To test the applicability of this technique, we inserted a kanamycin cassette into the cloned nifB gene, transferred it into E. agglomerans, and selected for recombinants in which the wild-type nifB was replaced by the mutated gene by growing transformants on citrate medium with kanamycin. The nifB- mutants with the kanamycin cassette inserted in either orientation showed a nif- phenotype. Further, we determined the nucleotide sequence of nifB. A typical sigma 54-dependent promoter and a consensus NifA binding site were found upstream of nifB. Activation of this promoter by both heterologous and homologous NifA proteins was observed in vivo. The predicted amino acid sequence of the NifB protein showed strong similarity to the NifB sequences of other diazotrophic bacteria. The typical clustering of cysteine residues at the N-terminal end indicates its involvement in Fe-Mo cofactor biosynthesis.
Collapse
Affiliation(s)
- D Siddavattam
- Institute for Genetics, University of Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Harriott OT, Hosted TJ, Benson DR. Sequences of nifX, nifW, nifZ, nifB and two ORF in the Frankia nitrogen fixation gene cluster. Gene 1995; 161:63-7. [PMID: 7642138 DOI: 10.1016/0378-1119(95)00300-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The actinomycete Frankia alni fixes N2 in root nodules of several non-leguminous plants. It is one of the few known N2-fixing members of the high-GC Gram+ lineage of prokaryotes. Thus, we have undertaken a study of its nitrogen fixation gene (nif) organization to compare with that of the more extensively characterized proteobacteria. A cosmid (pFN1) containing the nif region of Fa CpI1 was isolated from a cosmid library using the nifHDK genes of Fa CpI1 as a probe. A 4.5-kb BamHI fragment that mapped downstream from the previously characterized nifHDK genes was cloned and sequenced. Based on nt and aa sequence similarities to nif from other N2-fixing bacteria, eight ORF were identified and designated nifX, orf3, orf1, nifW, nifZ, nifB, orf2 and nifU. A region that hybridized to Rhizobium meliloti and Klebsiella pneumoniae nifA did not appear to contain a nifA-like gene. We have revised the map of the Fa nif region to reflect current information.
Collapse
Affiliation(s)
- O T Harriott
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268-3044, USA
| | | | | |
Collapse
|
10
|
Menéndez C, Igloi G, Henninger H, Brandsch R. A pAO1-encoded molybdopterin cofactor gene (moaA) of Arthrobacter nicotinovorans: characterization and site-directed mutagenesis of the encoded protein. Arch Microbiol 1995; 164:142-51. [PMID: 8588735 DOI: 10.1007/bf02525320] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A gene homologous to moaA, the gene responsible for the expression of a protein involved in an early step in the synthesis of the molybdopterin cofactor of Escherichia coli, was found to be located 2.7-kb upstream of the nicotine dehydrogenase (ndh) operon on the catabolic plasmid pAO1 of Arthrobacter nicotinovorans. The MoaA protein, containing 354 amino acids, migrated on an SDS-polyacrylamide gel with an apparent molecular weight of 40,000, in good agreement with the predicted molecular weight of 38,880. The pAO1-encoded moaA gene from A. nicotinovorans was expressed in E. coli as an active protein that functionally complemented moaA mutants. Its deduced amino acid sequence shows 43% identity to the E. coli MoaA, 44% to the NarAB gene product from Bacillus subtilis, and 42% to the gene product of two contiguous ORFs from Methanobacterium formicicum. N-terminal sequences, including the motif CxxxCxYC, are conserved among the MoaA and NarAB proteins. This motif is also present in proteins involved in PQQ cofactor synthesis in almost all the NifB proteins reported so far and in the fixZ gene product from Rhizobium leguminosarum. Mutagenesis of any of these three conserved cysteine residues to serine abolished the biological activity of MoaA, while substitution of the tyrosine by either serine, phenylalanine, or alanine did not alter the capacity of the protein to complement the moaA mutation in E. coli. A second Cys-rich domain with the motif FCxxC(13x)C is found close to the C-terminus of MoaA and NarAB proteins. These two Cys-rich sequences may be involved in the coordination of a metal ions. The pAO1 copy of moaA may not be unique in the A. nicotinovorans genome since the molybdopterin cofactor oxidation products were detected in cell extracts from a plasmidless strain.
Collapse
Affiliation(s)
- C Menéndez
- Biochemisches Institut, Universität Freiburg, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
12
|
Allen RM, Chatterjee R, Madden MS, Ludden PW, Shah VK. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Crit Rev Biotechnol 1994; 14:225-49. [PMID: 7954845 DOI: 10.3109/07388554409079834] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase is a unique molybdenum-containing prosthetic group that has been proposed to form an integral part of the active site of dinitrogenase. In Klebsiella pneumoniae, at least six nif (nitrogen fixation) gene products are required for the biosynthesis of FeMo-co, including NIFB, NIFNE, NIFH, NIFQ, and NIFV. An in vitro system for the synthesis of FeMo-co, which requires MgATP, molybdate, homocitrate, and at least the products of nifN, E, B, and H, has provided an enzymatic assay for the purification of many of the gene products required for FeMo-co biosynthesis. Although the structure of the cofactor has been solved recently, much about the biosynthetic pathway remains unknown. This article reviews what is known about the various components required for FeMo-co biosynthesis.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
| | | | | | | | | |
Collapse
|
13
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
14
|
Siddavattam D, Singh M, Klingmüller W. Structure of the nifQ gene from Enterobacter agglomerans 333 and its overexpression in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:435-40. [PMID: 8316214 DOI: 10.1007/bf00276942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nifQ gene, involved in early stages of iron-molybdenum cofactor (FeMo-co) biosynthesis, was identified downstream of the nifB and nifF genes of Enterobacter agglomerans. This gene was cloned and its nucleotide sequence determined. The amino acid sequence, as deduced from the nucleotide sequence, revealed an accumulation of cysteine amino acid residues at the C-terminal end of the protein. The cysteine cluster showed the following consensus sequence Cys-X4-Cys-X2-Cys-X5-Cys, which is a typical characteristic of metal-binding proteins. Further, the nifQ gene was cloned downstream of strong transcriptional (bacteriophage lambda PLPR) and translational (atpE) signals of the expression vector pCYTEXP1 and expressed as an unfused, soluble protein in Escherichia coli. The molecular mass of 19 kDa, as deduced by SDS-PAGE, is in good agreement with the molecular mass deduced from the nucleotide sequence. The availability of high-level expression clones should facilitate purification of large quantities of the recombinant NifQ protein and elucidation of its properties.
Collapse
Affiliation(s)
- D Siddavattam
- Lehrstuhl für Genetik, Universität Bayreuth, Germany
| | | | | |
Collapse
|
15
|
Rodríguez-Quiñones F, Bosch R, Imperial J. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 1993; 175:2926-35. [PMID: 8491713 PMCID: PMC204610 DOI: 10.1128/jb.175.10.2926-2935.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity.
Collapse
Affiliation(s)
- F Rodríguez-Quiñones
- Institut d'Estudis Avançats, Consejo Superior de Investigaciones Cientificas, Universitat de les Illes Balears, Ctra. de Valldemossa, Palma de Mallorca, Spain
| | | | | |
Collapse
|
16
|
Avichezer D, Katcoff D, Garber N, Gilboa-Garber N. Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50050-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Masepohl B, Kutsche M, Riedel KU, Schmehl M, Klipp W, Pühler A. Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:33-41. [PMID: 1603075 DOI: 10.1007/bf00587558] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Rhizobium meliloti fdxN gene, which is part of the nifA-nifB-fdxN operon, is absolutely required for symbiotic nitrogen fixation. The deduced sequence of the FdxN protein is characterized by two cysteine motifs typical of bacterial-type ferredoxins. The Fix-phenotype of an R. meliloti fdxN::[Tc] mutant could be rescued by the R. leguminosarum fdxN gene, whereas no complementation was observed with nif-associated genes encoding ferredoxins from Bradyrhizobium japonicum, Azotobacter vinelandii, A. chroococcum and Rhodobacter capsulatus. In addition to these heterologous genes, several R. meliloti fdxN mutant genes constructed by site-directed mutagenesis were analyzed. Not only a cysteine residue within the second cysteine motif (position 42), which is known to coordinate the Fe-S cluster in homologous proteins, but also a cysteine located down-stream of this motif (position 61), was found to be essential for the activity of the R. meliloti FdxN protein. Changing the amino acid residue proline in position 56 into methionine resulted in a FdxN mutant protein with decreased activity, whereas changes in positions 35 (Asp35Glu) and 45 (Gly45Glu) had no significant effect on the function of the FdxN mutant proteins. In contrast to bacterial-type ferredoxins, which contain two identical cysteine motifs of the form C-X2-C-X2-C-X3-C, nif-associated ferredoxins, including R. meliloti FdxN, are characterized by two different cysteine motifs. Six "additional" amino acids separate the second (Cys42) and the third cysteine (Cys51) in the C-terminal motif (C-X2-C-X8-C-X3-C).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Masepohl
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, FRG
| | | | | | | | | | | |
Collapse
|
18
|
Hoover TR, Santero E, Porter S, Kustu S. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11-22. [PMID: 2208275 DOI: 10.1016/0092-8674(90)90284-l] [Citation(s) in RCA: 312] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regulatory protein NIFA activates transcription of nitrogen fixation (nif) operons by the sigma 54 holoenzyme form of RNA polymerase. NIFA from Klebsiella pneumoniae activates transcription from the nifH promoter in vitro; in addition, the integration host factor, IHF, binds between the nifH promoter and an upstream binding site for NIFA. We demonstrate here that IHF greatly stimulates NIFA-mediated activation of nifH transcription in vitro and thus that the two factors are functionally synergistic. Electron micrographs indicate that IHF bends the DNA in the nifH promoter regulatory region. Although IHF binds close to the nifH promoter, it does not directly stimulate binding of sigma 54 holoenzyme. Rather, the IHF-induced bend may facilitate productive contacts between NIFA and sigma 54 holoenzyme that lead to the formation of open complexes. IHF binds to nif promoter regulatory regions from a variety of organisms within the phylum "purple bacteria," suggesting a general ability to stimulate NIFA-mediated activation of nif transcription.
Collapse
Affiliation(s)
- T R Hoover
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
19
|
Abstract
Bacteria which can grow in different environments have developed regulatory systems which allow them to exploit specific habitats to their best advantage. In the facultative anaerobe Escherichia coli two transcriptional regulators controlling independent networks of oxygen-regulated gene expression have been identified. One is a two-component sensor-regulator system (ArcB-A), which represses a wide variety of aerobic enzymes under anaerobic conditions. The other is FNR, the transcriptional regulator which is essential for expressing anaerobic respiratory processes. The purpose of this review is to summarize what is known about FNR. The fnr gene was initially defined by the isolation of some pleiotropic mutants which characteristically lacked the ability to use fumarate and nitrate as reducible substrates for supporting anaerobic growth and several other anaerobic respiratory functions. Its role as a transcriptional regulator emerged from genetic and molecular studies in which its homology with CRP (the cyclic AMP receptor protein which mediates catabolite repression) was established and has since been particularly important in identifying the structural basis of its regulatory specificities. FNR is a member of a growing family of CRP-related regulatory proteins which have a DNA-binding domain based on the helix-turn-helix structural motif, and a characteristic beta-roll that is involved in nucleotide-binding in CRP. The FNR protein has been isolated in a monomeric form (Mr 30,000) which exhibits a high but as yet non-specific affinity for DNA. Nevertheless, the DNA-recognition site and important residues conferring the functional specificity of FNR have been defined by site-directed mutagenesis. A consensus for the sequences that are recognized by FNR in the promoter regions of FNR-regulated genes, has likewise been identified. The basic features of the genes and operons regulated by FNR are reviewed, and examples in which FNR functions negatively as an anaerobic repressor as well as positively as an anaerobic activator, are included. Less is known about the way in which FNR senses anoxia and is thereby transformed into its 'active' form, but it seems likely that cysteine residues and possibly a metal ion are involved. Four of the five cysteine residues of FNR are clustered in an essential N-terminal 'domain' which is conserved in FNR and the HlyX protein of Actinobacillus pleuropneumoniae, but not in CRP or the FixK protein of Rhizobium meliloti. The relationships between FNR and other oxygen-related systems in E. coli are discussed, as well as parallel systems in other organisms.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Spiro
- Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| | | |
Collapse
|
20
|
de Philip P, Batut J, Boistard P. Rhizobium meliloti Fix L is an oxygen sensor and regulates R. meliloti nifA and fixK genes differently in Escherichia coli. J Bacteriol 1990; 172:4255-62. [PMID: 2115865 PMCID: PMC213249 DOI: 10.1128/jb.172.8.4255-4262.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Rhizobium meliloti, nif and fix genes, involved in nitrogen fixation during symbiosis with alfalfa, are under the control of two transcriptional regulators encoded by nifA and fixK. Expression of nifA and fixK is under the control of FixL/J, a two-component regulatory system. We showed, using Escherichia coli as a heterologous host, that FixL/J controls nifA and fixK expression in response to microaerobiosis. Furthermore, expression of the sensor gene fixL and of the activator gene fixJ under the control of two different promoters allowed us to show that FixL mediates microaerobic induction of nifA when the level of FixJ is low and aerobic repression of nifA when the level of FixJ is high. Similarly, activation of fixK occurred in microaerobiosis when the FixJ level was low in the presence of FixL. In contrast to nifA, fixK expression was not affected by FixL in aerated cultures when the level of FixJ was high. We conclude that R. meliloti FixL senses oxygen in the heterologous host E. coli consistent with the microaerobic induction of nifA and fixK in R. meliloti and that nifA and fixK promoters are differentially activated by FixJ in response to the oxygen signal.
Collapse
Affiliation(s)
- P de Philip
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, Castanet-Toulosan, France
| | | | | |
Collapse
|
21
|
Sharma SB, Signer ER. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev 1990; 4:344-56. [PMID: 2159937 DOI: 10.1101/gad.4.3.344] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tn5-gusA promoter/probe transposons have been constructed that fuse the Escherichia coli gusA reporter gene transcriptionally or translationally with a target promoter. These have been used to monitor expression of Rhizobium meliloti symbiotic genes within alfalfa nodules. Fusions in all 11 nod genes studied show the same pattern of expression: first on the root surface, then throughout the developing nodule, then mainly in the nodule meristem, falling off progressively through the central region, and then disappearing. In contrast, fusions in all five nif genes studied, all four fix genes, and syrM show a second, different pattern: expression beginning later, first throughout the nodule except for the meristem, strongest just behind the meristem, and falling off progressively through the central region. Novel features revealed by these studies include nod expression in the meristem, regulated in planta expression of control genes nodD1 and nodD3, disappearance of nod expression late in organogenesis, and properties of syrM.
Collapse
Affiliation(s)
- S B Sharma
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
22
|
Trageser M, Spiro S, Duchêne A, Kojro E, Fahrenholz F, Guest JR, Unden G. Isolation of intact FNR protein (Mr 30,000) of Escherichia coli. Mol Microbiol 1990; 4:21-7. [PMID: 2181237 DOI: 10.1111/j.1365-2958.1990.tb02011.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
FNR, the activator of anaerobic respiratory genes of Escherichia coli, has previously only been isolated as a protein of Mr 29,000, which lacks nine N-terminal amino acid residues. The underlying proteolytic events have been studied with the aim of isolating intact FNR and determining whether cleavage is the result of a physiologically significant intracellular processing mechanism or proteolytic degradation during isolation. The FNR protein was present in aerobically and anaerobically grown bacteria as the intact protein (Mr 30,000). Proteolysis only occurred during and shortly after disruption of the bacteria. The production of FNR (Mr 29,000) must therefore be regarded as an isolation artefact. The proteolysis was caused by a protease which is located outside the cytoplasmic membrane or activated upon disruption of the membrane. Protease inhibitors directed against serine, cysteine or metalloproteases failed to prevent cleavage of FNR. In E. coli strain CAG627, proteolysis was greatly reduced making it possible to isolate FNR of Mr 30,000. The N-terminal sequence of FNR (Mr 30,000) was identical to that predicted from the fnr gene starting with the initiating methionine residue and including a four-cysteine cluster (16)Cys-X3-Cys-X2-Cys-X5-Cys(29).
Collapse
Affiliation(s)
- M Trageser
- Institut für Mikrobiologie, J.W. Goethe-Universität, Frankfurt, FRG
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- S M Hinton
- Exxon Corporate Research Company, Annandale, New Jersey
| | | |
Collapse
|
24
|
Iismaa SE, Ealing PM, Scott KF, Watson JM. Molecular linkage of the nif/fix and nod gene regions in Rhizobium leguminosarum biovar trifolii. Mol Microbiol 1989; 3:1753-64. [PMID: 2622339 DOI: 10.1111/j.1365-2958.1989.tb00161.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleotide sequence analysis of a 2.5kb region downstream of the nifA gene from Rhizobium leguminosarum biovar trifolii has resulted in linkage, at the DNA sequence level, of the nifEN, nifHDK, fixABCX, nifA gene cluster with the nodEF, nodD, nodABCIJ genes. Four genes have been identified within this intervening region. Immediately 3' to the nifA gene is the nifB gene and the nifB-linked ferredoxin-encoding fdxN gene. Downstream of fdxN in R. leguminosarum bv. trifolii and in Rhizobium meliloti, we have identified an open reading frame which has not been described previously and which we propose to designate fixU. Downstream of fixU in R. leguminosarum bv. trifolii is a nod gene, nodT, which is contiguous with nodJ (B. Surin et al., manuscript in preparation). As a result of this study, the linkage relationships of 22 symbiotic genes spanning a 24 kb region of the symbiotic plasmid from R. leguminosarum bv. trifolii are now known.
Collapse
Affiliation(s)
- S E Iismaa
- CSIRO Division of Plant Industry, Canberra City, ACT, Australia
| | | | | | | |
Collapse
|
25
|
|
26
|
Roelvink PW, Hontelez JG, van Kammen A, van den Bos RC. Nucleotide sequence of the regulatory nifA gene of Rhizobium leguminosarum PRE: transcriptional control sites and expression in Escherichia coli. Mol Microbiol 1989; 3:1441-7. [PMID: 2693897 DOI: 10.1111/j.1365-2958.1989.tb00127.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the sequence of the regulatory nifA gene of Rhizobium leguminosarum PRE. The transcription initiation and termination sites of nifA were mapped and a potential promoter and a rho-independent terminator identified. The nifA gene has two possible translation start sites, both of which are used in an Escherichia coli background, resulting in proteins with apparent molecular weights of 58 kD and 57 kD; initiation at the second site is preferred over initiation at the first. The nifA-nifB intergenic region contains an rpoN-dependent promoter for the nifB gene but no consensus upstream activator sequence (UAS). A potential DNA-binding domain, consisting of two alpha-helices separated by a four-amino-acid linker, is located at the C-terminal end of the NifA amino acid sequence.
Collapse
Affiliation(s)
- P W Roelvink
- Department of Molecular Biology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
27
|
Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups inRhizobium meliloti. J Genet 1989. [DOI: 10.1007/bf02927852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Iismaa SE, Watson JM. The nifA gene product from Rhizobium leguminosarum biovar trifolii lacks the N-terminal domain found in other NifA proteins. Mol Microbiol 1989; 3:943-55. [PMID: 2552256 DOI: 10.1111/j.1365-2958.1989.tb00244.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nifA gene has been identified between the fixX and nifB genes in the clover microsymbiont Rhizobium leguminosarum biovar trifolii (R.I. bv. trifolii) strain ANU843. Expression of the nifA gene is induced in the symbiotic state and site-directed mutagenesis experiments indicate that nifA expression is essential for symbiotic nitrogen fixation. Interestingly, the predicted R.I. bv. trifolii NifA protein lacks an N-terminal domain that is present in the homologous proteins from R.I. bv. viciae, Rhizobium meliloti, Bradyrhizobium japonicum, Klebsiella pneumoniae and all other documented NifA proteins. This indicates that this N-terminal domain is not essential for NifA function in R.I. bv. trifolii.
Collapse
Affiliation(s)
- S E Iismaa
- CSIRO Division of Plant Industry, Canberra City, Australia
| | | |
Collapse
|
29
|
Moreno-Vivian C, Hennecke S, Pühler A, Klipp W. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus. J Bacteriol 1989; 171:2591-8. [PMID: 2708314 PMCID: PMC209938 DOI: 10.1128/jb.171.5.2591-2598.1989] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit.
Collapse
Affiliation(s)
- C Moreno-Vivian
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | |
Collapse
|
30
|
Klipp W, Reiländer H, Schlüter A, Krey R, Pühler A. The Rhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed with nifA and nifB. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:293-302. [PMID: 2747618 DOI: 10.1007/bf00334368] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sequencing of the Rhizobium meliloti DNA region downstream of nifA revealed the existence of nifB, fdxN and ORF3. The molecular weight of the fdxN protein (Mr 6830) and the distribution of cysteine residues in its deduced amino acid sequence is typical for low molecular weight bacterial ferredoxins. Interposon insertion and plasmid integration mutagenesis demonstrated that FdxN is essential for nitrogen fixation in R. meliloti, whereas the predicted translation product of ORF3 (Mr 8708) is not necessary for this process. In contrast, ferredoxin-like proteins, which are encoded by nifB-associated genes, are not required for nitrogen fixation in all other organisms analysed so far. Plasmid integration mutagenesis additionally revealed that nifA, nifB and fdxN form one transcriptional unit. This result was confirmed by complementation analysis of polar interposon insertion mutants of nifA, nifB and fdxN and by complementation of a non-polar nifA deletion mutant. A DNA sequence resembling a typical nif consensus promoter, which is preceded by two putative NifA-binding sites, is located in front of nifB. This nifB promoter can be activated in Escherichia coli by the nifA gene product of Klebsiella pneumoniae to the same level as that of the R. meliloti nifH promoter. In contrast, R. meliloti NifA stimulates the nifH promoter more efficiently than the nifB promoter. This low-level activation of the nifB promoter may be the reason why transcription of nifB and fdxN is initiated primarily at a promoter in front of nifA.
Collapse
Affiliation(s)
- W Klipp
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
31
|
Moreno-Vivian C, Schmehl M, Masepohl B, Arnold W, Klipp W. DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:353-63. [PMID: 2747620 DOI: 10.1007/bf00334376] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rhodobacter capsulatus genes homologous to Klebsiella pneumoniae nifE, nifN and nifX were identified by DNA sequence analysis of a 4282 bp fragment of nif region A. Four open reading frames coding for a 51,188 (NifE), a 49,459 (NifN), a 17,459 (NifX) and a 17,472 (ORF4) dalton protein were detected. A typical NifA activated consensus promoter and two imperfect putative NifA binding sites were located in the 377 bp sequence in front of the nifE coding region. Comparison of the deduced amino acid sequences of R. capsulatus NifE and NifN revealed homologies not only to analogous gene products of other organisms but also to the alpha and beta subunits of the nitrogenase iron-molybdenum protein. In addition, the R. capsulatus nifE and nifN proteins shared considerable homology with each other. The map position of nifX downstream of nifEN corresponded in R. capsulatus and K. pneumoniae and the deduced molecular weights of both proteins were nearly identical. Nevertheless, R. capsulatus NifX was more related to the C-terminal end of NifY from K. pneumoniae than to NifX. A small domain of approximately 33 amino acid residues showing the highest degree of homology between NifY and NifX was also present in all nifB proteins analyzed so far. This homology indicated an evolutionary relationship of nifX, nifY and nifB and also suggested that NifX and NifY might play a role in maturation and/or stability of the iron-molybdenum cofactor. The open reading frame (ORF4) downstream of nifX in R. capsulatus is also present in Azotobacter vinelandii but not in K. pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Moreno-Vivian
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
32
|
Jacobson MR, Brigle KE, Bennett LT, Setterquist RA, Wilson MS, Cash VL, Beynon J, Newton WE, Dean DR. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 1989; 171:1017-27. [PMID: 2644218 PMCID: PMC209696 DOI: 10.1128/jb.171.2.1017-1027.1989] [Citation(s) in RCA: 298] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.
Collapse
Affiliation(s)
- M R Jacobson
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch PR, Batut J. Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol 1989; 171:929-39. [PMID: 2536685 PMCID: PMC209684 DOI: 10.1128/jb.171.2.929-939.1989] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present genetic and structural analyses of a fix operon conserved among rhizobia, fixGHI from Rhizobium meliloti. The nucleotide sequence of the operon suggests it may contain a fourth gene, fixS. Adjacent open reading frames of this operon showed an overlap between TGA stop codons and ATG start codons in the form of an ATGA motif suggestive of translational coupling. All four predicted gene products contained probable transmembrane sequences. FixG contained two cysteine clusters typical of iron-sulfur centers and is predicted to be involved in a redox process. FixI was found to be homologous with P-type ATPases, particularly with K+ pumps from Escherichia coli and Streptococcus faecalis but also with eucaryotic Ca2+, Na+/K+, H+/K+, and H+ pumps, which implies that FixI is a pump of a specific cation involved in symbiotic nitrogen fixation. Since prototrophic growth of fixI mutants appeared to be unimpaired, the predicted FixI cation pump probably has a specifically symbiotic function. We suggest that the four proteins FixG, FixH, FixI, and FixS may participate in a membrane-bound complex coupling the FixI cation pump with a redox process catalyzed by FixG.
Collapse
Affiliation(s)
- D Kahn
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- S R Long
- Department of Biological Sciences, Stanford University, California 94305
| |
Collapse
|
35
|
Abstract
The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant.
Collapse
Affiliation(s)
- R J Watson
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario, K1A 0C6 Canada
| |
Collapse
|
36
|
Arnold W, Rump A, Klipp W, Priefer UB, Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 1988; 203:715-38. [PMID: 3062178 DOI: 10.1016/0022-2836(88)90205-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The complete nucleotide sequence (24,206 base-pairs) of the Klebsiella pneumoniae gene region for nitrogen fixation (nif) is presented. Coding regions corresponding to the 19 known nif genes (including nifW and nifZ) could be identified. An additional open reading frame of 216 base-pairs, called nifT, was detected between nifK and nifY. Search for transcriptional signal structures revealed some unusual features: (1) several possible NifA-binding motifs are present in the intergenic regions between nifJ and nifH as well as between nifX and nifU; (2) a perfect NifA-binding motif, preceding the nifENX promoter, is located within an inverted repeat structure; (3) structures resembling the consensus nif promoter are found within the coding regions of nifW and nifZ and, together with a NifA-binding motif, in nifN. Typical rho-independent termination structures were detected only downstream from the nifHDKTY and the nifBQ operons. Analysis of the deduced amino acid sequences revealed the presence of two Cys-X2-Cys-X2-Cys-X3-Cys-Pro clusters in the pyruvate-flavodoxin oxidoreductase NifJ. This arrangement of cysteine residues is normally present only in ferredoxins. A high degree of homology between the two gene products (NifE and NifN) involved in iron-molybdenum cofactor biosynthesis and the two nitrogenase component I structural proteins (NifD and NifK) was found. All four proteins are characterized by the conserved motif His-Gly-X2-Gly-Cys, which may play a role in binding the iron-molybdenum cofactor.
Collapse
Affiliation(s)
- W Arnold
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
37
|
Simonet P, Normand P, Bardin R. Heterologous hybridization ofFrankiaDNA toRhizobium melilotiandKlebsiella pneumoniae nifgenes. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb13923.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Mulligan ME, Buikema WJ, Haselkorn R. Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium Anabaena sp. strain PCC 7120 and Rhizobium meliloti. J Bacteriol 1988; 170:4406-10. [PMID: 2842320 PMCID: PMC211462 DOI: 10.1128/jb.170.9.4406-4410.1988] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide sequence of a region located downstream of the nifB gene, both in the cyanobacterium Anabaena sp. strain PCC 7120 and in Rhizobium meliloti, has been determined. This region contains a gene (fdxN) whose predicted polypeptide product strongly resembles typical bacterial ferredoxins. Cyanobacteria have not previously been shown to contain bacterial-type ferredoxins. The presence of this gene suggests that nitrogen-fixing cyanobacteria have at least four distinct ferredoxins.
Collapse
Affiliation(s)
- M E Mulligan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
39
|
David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 1988; 54:671-83. [PMID: 2842062 DOI: 10.1016/s0092-8674(88)80012-6] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the discovery of two genes from Rhizobium meliloti, fixL and fixJ, which are positive regulators of symbiotic expression of diverse nitrogen fixation (nif and fix) genes. nif gene regulation is shown to consist of a cascade: the fixLJ genes activate nifA, which in turn activates nifHDK and fixABCX. Like nifA, fixN can be induced in free-living microaerobic cultures of R. meliloti, indicating a major physiological role for oxygen in nif and fix gene regulation. Microaerobic expression of fixN and nifA depends on fixL and fixJ. The FixL and FixJ proteins belong to a family of two-component regulatory systems widely spread among prokaryotes and responsive to the cell environment. We propose that FixL, which has features of a transmembrane protein, senses an environmental signal and transduces it to FixJ, a transcriptional activator of nif and fix genes.
Collapse
Affiliation(s)
- M David
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes CNRS-INRA, BP27, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bennett LT, Cannon F, Dean DR. Nucleotide sequence and mutagenesis of the nifA gene from Azotobacter vinelandii. Mol Microbiol 1988; 2:315-21. [PMID: 2840552 DOI: 10.1111/j.1365-2958.1988.tb00034.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleotide sequence of the nifA gene from Azotobacter vinelandii was determined. This gene encodes an Mr = 58,100 polypeptide that shares significant sequence identity when compared to nifA-encoded products from other organisms. Interspecies comparisons of nifA-encoded products reveal that they all have a consensus ATP binding site and a consensus DNA binding site in highly conserved regions of the respective polypeptides. The nifA gene immediately precedes the nifB-nifQ gene region but is unlinked to the major nif gene cluster from A. vinelandii. A potential regulatory gene precedes and is apparently cotranscribed with nifA. Mutant strains that have a deletion or a deletion plus an insertion within nifA are incapable of diazotrophic growth and they fail to accumulate nitrogenase structural gene products.
Collapse
Affiliation(s)
- L T Bennett
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | |
Collapse
|
41
|
Virts EL, Stanfield SW, Helinski DR, Ditta GS. Common regulatory elements control symbiotic and microaerobic induction of nifA in Rhizobium meliloti. Proc Natl Acad Sci U S A 1988; 85:3062-5. [PMID: 2834732 PMCID: PMC280143 DOI: 10.1073/pnas.85.9.3062] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have previously demonstrated that the nifA promoter (nifAp) of Rhizobium meliloti is inducible under microaerobic conditions in the absence of alfalfa. Here we show that microaerobic activation of nifAp involves both cis- and trans-acting regulatory controls identical to those used symbiotically. The start site for nifA mRNA synthesis was found to be the same during symbiosis and microaerobiosis, and a deletion analysis of nifAp demonstrated that DNA between positions -62 and -45 is essential for induction. Mutants isolated as being unable to induce nifA microaerobically also were found to be defective in symbiotic nitrogen fixation with alfalfa. Such mutants form nodules that are equivalent cytologically to those induced by nifA::Tn5 mutants. Genetic and structural studies have localized the mutations to a cluster of fix genes 200 kilobases distant from the nod-nif region on the pSym megaplasmid [Renalier, M.-H., Batut, J., Ghai, J., Terzaghi, B., Gherardi, M., David, M., Garnerone, A.-M., Vasse, J., Truchet, G., Huguet, T. & Boistard, P. (1987) J. Bacteriol. 169, 2231-2238].
Collapse
Affiliation(s)
- E L Virts
- Biology Department, University of California at San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
42
|
Masepohl B, Klipp W, Pühler A. Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:27-37. [PMID: 2836706 DOI: 10.1007/bf00322441] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A DNA region showing homology to Klebsiella pneumoniae nifA and nifB is duplicated in Rhodobacter capsulatus. The two copies of this region are called nifA/nifB copy I and nifA/nifB copy II. Deletion mutagenesis demonstrated that either of the two copies is sufficient for growth in nitrogen-free medium. In contrast, a double deletion mutant turned out to be deficient in nitrogen fixation. The complete nucleotide sequence of a 4838 bp fragment containing nifA/nifB copy I was determined. Two open reading frames coding for a 59,653 (NifA) and a 49,453 (NifB) dalton protein could be detected. Comparison of the amino acid sequences revealed that the R. capsulatus nifA and nifB gene products are more closely related to the NifA and NifB proteins of Rhizobium meliloti and Rhizobium leguminosarum than to those of K. pneumoniae. A rho-independent termination signal and a typical nif promoter region containing a putative NifA binding site and a consensus nif promoter are located within the region between the R. capsulatus nifA and nifB genes. The nifB sequence is followed by an open reading frame (ORF1) coding for a 27721 dalton protein in nifA/nifB copy I. DNA sequence analysis of nifA/nifB copy II showed that both copies differ in the DNA region downstream of nifB and in the noncoding sequence in front of nifA. All other regions compared, i.e. the 5' part of nifA, the intergenic region and the 3' part of nifB, are identical in both copies.
Collapse
Affiliation(s)
- B Masepohl
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | |
Collapse
|
43
|
Ebeling S, Noti JD, Hennecke H. Identification of a new Bradyrhizobium japonicum gene (frxA) encoding a ferredoxinlike protein. J Bacteriol 1988; 170:1999-2001. [PMID: 3350797 PMCID: PMC211070 DOI: 10.1128/jb.170.4.1999-2001.1988] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An open reading frame of 74 codons was identified downstream of the nifB gene of Bradyrhizobium japonicum 110. The predicted amino acid sequence shared 63% similarity with the Rhodopseudomonas palustris ferredoxin I sequence. We propose to name the gene frxA. The frxA gene was found to be cotranscribed with the nifB gene. An insertion mutation within frxA hardly affected nitrogen fixation activity.
Collapse
Affiliation(s)
- S Ebeling
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Joerger RD, Bishop PE. Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol 1988; 170:1475-87. [PMID: 2450865 PMCID: PMC210991 DOI: 10.1128/jb.170.4.1475-1487.1988] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A 3.8-kilobase-pair EcoRI fragment which corrects the mutations carried by the NifB- Azotobacter vinelandii strains CA30 and UW45 was cloned, and its nucleotide sequence was determined. Four complete open reading frames (ORFs) and two partial ORFs were found. The translation product of the first partial ORF is the carboxy-terminal end of a protein homologous to the nifA gene product from Klebsiella pneumoniae. A 285-base-pair sequence containing a potential nif promoter and nif regulatory sites separates this nifA gene from the first complete ORF which encodes a protein homologous to nifB gene products from K. pneumoniae and Rhizobium species. The Tn5 insertion in strain CA30 and the nif-45 mutation of strain UW45 are located within this nifB gene. The ORF downstream from nifB predicts an amino acid sequence with a cysteine residue pattern that is characteristic of ferredoxins. No similarities were found between the translation product of the third complete ORF and those of nif genes from other organisms. At the carboxy-terminal end of the predicted translation product of the fourth complete ORF, 30 of 60 amino acid residues were identical with the sequence of the nifQ gene product from K. pneumoniae. The partial ORF located at the end of the fragment encodes the N-terminal part of a potential protein with an unknown function. Northern (RNA) blot analysis indicated that transcripts from the region containing the four complete ORFs were NH4+ repressible and that the transcription products were identical in cells derepressed under conditions of Mo sufficiency or Mo deficiency or in the presence of vanadium. In contrast to the NifB- strain CA30, which is Nif- under all conditions, mutants that carry mutations affecting the C-terminal end of nifB or genes located immediately downstream from nifB, grew under all N2-fixing conditions. However, in the presence of Mo, most of the strains required 1,000 times the amount of molybdate that is sufficient for maximal growth of the wild-type strain CA under N2-fixing conditions. Growth data from strain CA37, which carries a Kanr insertion in nifQ, indicate that nifQ in A. vinelandii is not required for N2 fixation in the presence of V2O5 or under Mo-deficient conditions. Growth studies and acetylene reduction assays performed on two nifEN deletion strains showed that nifE and nifN are required for N2 fixation under Mo sufficiency, as previously observed (K. E. Brigle, M. C. Weiss, W. E. Newton, and D. R. Dean, J. Bacteriol. 169:1547-1553, 1987), but not under conditions of Mo deficiency or in the presence of 50 nM V2O5.
Collapse
Affiliation(s)
- R D Joerger
- Department of Microbiology, North Carolina State University, Raleigh 27695-7615
| | | |
Collapse
|
45
|
Klipp W, Masepohl B, Pühler A. Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: duplication of a nifA-nifB region. J Bacteriol 1988; 170:693-9. [PMID: 2828320 PMCID: PMC210710 DOI: 10.1128/jb.170.2.693-699.1988] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rhodobacter capsulatus mutants unable to fix nitrogen were isolated by random transposon Tn5 mutagenesis. The Tn5 insertion sites of 30 Nif- mutants were mapped within three unlinked chromosomal regions designated A, B, and C. The majority of Tn5 insertions (21 mutants) map within nif region A, characterized by two ClaI fragments of 2.5 and 25 kilobases (kb). The 17-kb ClaI fragment of nif region B contains six nif::Tn5 insertions, and the three remaining mutations are located on a 32-kb ClaI fragment of nif region C. Hybridization experiments using all 17 Klebsiella pneumoniae nif genes individually as probes revealed homology to nifE, nifS, nifA, and nifB in nif region A. The nifHDK genes were localized in nif region B. About 2 kb away from this operon, a second copy of the DNA fragments homologous to nifA and nifB, originally found in nif region A, was identified.
Collapse
Affiliation(s)
- W Klipp
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | |
Collapse
|
46
|
Szeto WW, Nixon BT, Ronson CW, Ausubel FM. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol 1987; 169:1423-32. [PMID: 2881918 PMCID: PMC211963 DOI: 10.1128/jb.169.4.1423-1432.1987] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We show here that Rhizobium meliloti, the nitrogen-fixing endosymbiont of alfalfa (Medicago sativa), has a regulatory gene that is structurally homologous to previously characterized ntrC genes in enteric bacteria. DNA sequence analysis showed that R. meliloti ntrC is homologous to previously sequenced ntrC genes from Klebsiella pneumoniae and Bradyrhizobium sp. (Parasponia) and that an ntrB-like gene is situated directly upstream from R. meliloti ntrC. Similar to its counterparts in K. pneumoniae and Escherichia coli, R. meliloti ntrC is expressed when the cells are grown in nitrogen-limiting media. In addition, R. meliloti ntrC is required for growth on media containing nitrate as the sole nitrogen source and for the ex planta transcription of several R. meliloti nif genes. On the other hand, root nodules elicited by R. meliloti ntrC mutants fix nitrogen as well as nodules elicited by wild-type R. meliloti. These latter results indicate that R. meliloti has separate regulatory pathways for activating nif gene expression ex planta and during symbiotic nitrogen fixation.
Collapse
|
47
|
Hirsch AM, Smith CA. Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol 1987; 169:1137-46. [PMID: 3818542 PMCID: PMC211911 DOI: 10.1128/jb.169.3.1137-1146.1987] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ineffective alfalfa nodules were examined at the light and electron microscope level after inoculation with Rhizobium meliloti strains with mutations in nif and fix genes. All the mutant strains induced nodules that contained elongated bacteroids within the host cells, but the bacteroids quickly senesced. The nodules were small and numerous, and the host cells also exhibited symptoms of an ineffective symbiosis. nifB, fixA, and fixB bacteroids appeared to be completely differentiated (by ultrastructural criteria), i.e., as bacteroids developed, they increased in diameter and length and their cytoplasm underwent a change from homogeneous and electron dense to heterogeneous and electron transparent after enlargement. In contrast, nifA bacteroids rarely matured to this state. The bacteroids degenerated at an earlier stage of development and did not become electron transparent.
Collapse
|
48
|
Earl CD, Ronson CW, Ausubel FM. Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol 1987; 169:1127-36. [PMID: 3029021 PMCID: PMC211910 DOI: 10.1128/jb.169.3.1127-1136.1987] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The fixA, fixB, fixC, and fixX genes of Rhizobium meliloti 1021 constitute an operon and are required for nitrogen fixation in alfalfa nodules. DNA homologous to the R. meliloti fixABC genes is present in all other Rhizobium and Bradyrhizobium species examined, but fixABC-homologous sequences were found in only one free-living diazotroph, Azotobacter vinelandii. To determine whether the fixABCX genes share sequence homology with any of the 17 Klebsiella pneumoniae nif genes, we determined the entire nucleotide sequence of the fixA, fixB, fixC, and fixX genes and defined four open reading frames that code for polypeptides of molecular weights 31,146, 37,786, 47,288, and 10,937, respectively. Neither DNA nor amino acid sequence homology to the R. meliloti fixA, -B, -C, and -X genes was found in the K. pneumoniae nif operon. The fixX gene contains a cluster of cysteine residues characteristic of ferredoxins and is highly homologous to an Azotobacter ferredoxin which has been shown to donate electrons to nitrogenase. The fixABC operon contains a promoter region that is highly homologous to other nifA-activated promoters. We also found a duplication of the 5' end of the fixABCX operon; a 250-bp region located 520 bp upstream of the fixABCX promoter bears more than 65% homology to the 5' end of the transcribed region, including the first 32 codons of fixA.
Collapse
|