1
|
Rismondo J, Große C, Nies DH. The Sensory Histidine Kinase CusS of Escherichia coli Senses Periplasmic Copper Ions. Microbiol Spectr 2023; 11:e0029123. [PMID: 36916932 PMCID: PMC10100754 DOI: 10.1128/spectrum.00291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR) are often associated with transenvelope efflux systems, which export transition metal cations from the periplasm directly out of the cell. Although much work has been done in this field, more evidence is needed for the hypothesis that the respective two-component regulatory systems are indeed sensing periplasmic ions. If so, a regulatory circuit between the concentration of periplasmic metal cations, sensing of these metals, and control of expression of the genes for transenvelope efflux systems that remove periplasmic cations can be assumed. Escherichia coli possesses only one transenvelope efflux system for metal cations, the Cus system for export of Cu(I) and Ag(I). It is composed of the transenvelope efflux system CusCBA, the periplasmic copper chaperone CusF, and the two-component regulatory system CusS (HK) and CusR (RR). Using phoA- and lacZ-reporter gene fusions, it was verified that an assumed periplasmic part of CusS is located in the periplasm. CusS was more important for copper resistance in E. coli under anaerobic conditions than under aerobic conditions and in complex medium more than in mineral salts medium. Predicted copper-binding sites in the periplasmic part of CusS were identified that, individually, were not essential for copper resistance but were in combination. In summary, evidence was obtained that the two-component regulatory system CusSR that controls expression of cusF and cusCBA does indeed sense periplasmic copper ions. IMPORTANCE Homeostasis of essential-but-toxic transition metal cations such as Zn(II) and Cu(II)/Cu(I) is an important contributor to the fitness of environmental bacteria and pathogenic bacteria during their confrontation with an infected host. Highly efficient removal of threatening concentrations of these metals can be achieved by the combined actions of an inner membrane with a transenvelope efflux system, which removes periplasmic ions after their export from the cytoplasm to this compartment. To understand the resulting metal cation homeostasis in the periplasm, it is important to know if a regulatory circuit exists between periplasmic metal cations, their sensing, and the subsequent control of the expression of the transenvelope efflux system. This publication adds evidence to the hypothesis that two-component regulatory systems in control of the expression of genes for transenvelope efflux systems do indeed sense metal cations in the periplasm.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Institute for Biology/Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Institute for Biology/Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H. Nies
- Institute for Biology/Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2022. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Gangola S, Sharma A, Joshi S, Bhandari G, Prakash O, Govarthanan M, Kim W, Bhatt P. Novel mechanism and degradation kinetics of pesticides mixture using Bacillus sp. strain 3C in contaminated sites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:104996. [PMID: 35082044 DOI: 10.1016/j.pestbp.2021.104996] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 05/20/2023]
Abstract
The present study has investigated the potential of Bacillus sp. strain 3C able to degrade mixture of pesticides from the environment. It showed maximum tolerance up to 450 mg·L-1 for cypermethrin, fipronil, imidacloprid and sulfosulfuron. The strain 3C was able to degrade up to the 94% of mixture of pesticides (20 mg·L-1) within 15 days of experiment. The Box-Behnken design of Response Surface Methodology (RSM) determined the optimized conditions as; inoculum size 3.0 × 107 CFU·mL-1, shaking speed 120 rpm, and pesticides concentration 80 mg·L-1. In soil-based bioremediation with strain 3C after 15 days degradation pattern was; 99, 94, 92, 92 and 7% for the imidacloprid, sulfosulfuron, fipronil, cypermethrin and control respectively. The novel intermediate metabolites for cypermethrin degradation were investigated as decyl isobutyl ester, phthalic acid, cyclopropane carboxylic acid tri dec-2-ynyl ester, 9- octadecanal, tridecane, propanoic acid, cyclohexene, bicyclo[2.2.1] heptan-2-ol, and acetic acid were identified using Gas chromatography Mass Spectrometry (GC-MS) with strain 3C. Moreover, the results of the laccase based enzymatic kinetics suggested that the rate of production was maximum in pesticides stress (94 μg·μL-1) whereas, in normal condition 51 μg·μL-1. The Km value found to be decreased in pesticides stress condition 12.25 and increment in Km 13.58 mM was observed without stress. Furthermore, aldehyde dehydrogenase (ALDH) and laccase encoding genes were amplified and linked with mixture of pesticides bioremediation. The efficiency of bacterial strain 3C, could be used for bioremediation of mixture of pesticides, and other xenobiotic compounds from the contaminated environments.
Collapse
Affiliation(s)
- Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal 263136, India.
| | - Anita Sharma
- Department of Microbiology, GB Pant University of Agriculture and Technology, Pantnagar 263139, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal 263136, India
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Om Prakash
- Department of Chemistry, GB Pant University of Agriculture and Technology, Pantnagar 263139, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Pankaj Bhatt
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Hadley RC, Zhitnitsky D, Livnat-Levanon N, Masrati G, Vigonsky E, Rose J, Ben-Tal N, Rosenzweig AC, Lewinson O. The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery. J Biol Chem 2022; 298:101445. [PMID: 34822841 PMCID: PMC8689200 DOI: 10.1016/j.jbc.2021.101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli yobA-yebZ-yebY (AZY) operon encodes the proteins YobA, YebZ, and YebY. YobA and YebZ are homologs of the CopC periplasmic copper-binding protein and the CopD putative copper importer, respectively, whereas YebY belongs to the uncharacterized Domain of Unknown Function 2511 family. Despite numerous studies of E. coli copper homeostasis and the existence of the AZY operon in a range of bacteria, the operon's proteins and their functional roles have not been explored. In this study, we present the first biochemical and functional studies of the AZY proteins. Biochemical characterization and structural modeling indicate that YobA binds a single Cu2+ ion with high affinity. Bioinformatics analysis shows that YebY is widespread and encoded either in AZY operons or in other genetic contexts unrelated to copper homeostasis. We also determined the 1.8 Å resolution crystal structure of E. coli YebY, which closely resembles that of the lantibiotic self-resistance protein MlbQ. Two strictly conserved cysteine residues form a disulfide bond, consistent with the observed periplasmic localization of YebY. Upon treatment with reductants, YebY binds Cu+ and Cu2+ with low affinity, as demonstrated by metal-binding analysis and tryptophan fluorescence. Finally, genetic manipulations show that the AZY operon is not involved in copper tolerance or antioxidant defense. Instead, YebY and YobA are required for the activity of the copper-related NADH dehydrogenase II. These results are consistent with a potential role of the AZY operon in copper delivery to membrane proteins.
Collapse
Affiliation(s)
- Rose C Hadley
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Daniel Zhitnitsky
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat-Levanon
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elena Vigonsky
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Jessica Rose
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois, USA.
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Wang KH, Zheng DH, Yuan GQ, Lin W, Li QQ. A yceI Gene Involves in the Adaptation of Ralstonia solanacearum to Methyl Gallate and Other Stresses. Microorganisms 2021; 9:microorganisms9091982. [PMID: 34576877 PMCID: PMC8472277 DOI: 10.3390/microorganisms9091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Ralstonia solanacearum is a plant-pathogenic bacterium causing plant bacterial wilt, and can be strongly inhibited by methyl gallate (MG). Our previous transcriptome sequencing of MG-treated R. solanacearum showed that the yceI gene AVT05_RS03545 of Rs-T02 was up-regulated significantly under MG stress. In this study, a deletion mutant (named DM3545) and an over-expression strain (named OE3545) for yceI were constructed to confirm this hypothesis. No significant difference was observed among the growth of wild-type strain, DM3545 and OE3545 strains without MG treatment. Mutant DM3545 showed a lower growth ability than that of the wild type and OE3545 strains under MG treatment, non-optimal temperature, or 1% NaCl. The ability of DM3545 for rhizosphere colonization was lower than that of the wild-type and OE3545 strains. The DM3545 strain showed substantially reduced virulence toward tomato plants than its wild-type and OE3545 counterpart. Moreover, DM3545 was more sensitive to MG in plants than the wild-type and OE3545 strains. These results suggest that YceI is involved in the adaptability of R. solanacearum to the presence of MG and the effect of other tested abiotic stresses. This protein is also possibly engaged in the virulence potential of R. solanacearum.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Qin Li
- Correspondence: (D.-H.Z.); (Q.-Q.L.)
| |
Collapse
|
6
|
Damle MS, Singh AN, Peters SC, Szalai VA, Fisher OS. The YcnI protein from Bacillus subtilis contains a copper-binding domain. J Biol Chem 2021; 297:101078. [PMID: 34400169 PMCID: PMC8424229 DOI: 10.1016/j.jbc.2021.101078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Bacteria require a precise balance of copper ions to ensure that essential cuproproteins are fully metalated while also avoiding copper-induced toxicity. The Gram-positive bacterium Bacillus subtilis maintains appropriate copper homeostasis in part through the ycn operon. The ycn operon comprises genes encoding three proteins: the putative copper importer YcnJ, the copper-dependent transcriptional repressor YcnK, and the uncharacterized Domain of Unknown Function 1775 (DUF1775) containing YcnI. DUF1775 domains are found across bacterial phylogeny, and bioinformatics analyses indicate that they frequently neighbor domains implicated in copper homeostasis and transport. Here, we investigated whether YcnI can interact with copper and, using electron paramagnetic resonance and inductively coupled plasma-MS, found that this protein can bind a single Cu(II) ion. We determine the structure of both the apo and copper-bound forms of the protein by X-ray crystallography, uncovering a copper-binding site featuring a unique monohistidine brace ligand set that is highly conserved among DUF1775 domains. These data suggest a possible role for YcnI as a copper chaperone and that DUF1775 domains in other bacterial species may also function in copper homeostasis.
Collapse
Affiliation(s)
- Madhura S Damle
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Aarshi N Singh
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Stephen C Peters
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Veronika A Szalai
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
7
|
Differential proteomic analysis under pesticides stress and normal conditions in Bacillus cereus 2D. PLoS One 2021; 16:e0253106. [PMID: 34388169 PMCID: PMC8362991 DOI: 10.1371/journal.pone.0253106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
A potential pesticide degrading bacterial isolate (2D), showing maximum tolerance (450 mg∙L-1) for cypermethrin, fipronil, imidacloprid and sulfosulfuron was recovered from a pesticide contaminated agricultural field. The isolate degraded cypermethrin, imidacloprid, fipronil and sulfosulfuron in minimal salt medium with 94, 91, 89 and 86% respectively as revealed by high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis after 15 days of incubation. Presence of cyclobutane, pyrrolidine, chloroacetic acid, formic acid and decyl ester as major intermediate metabolites of cypermethrin biodegradation was observed in gas chromatography mass spectrometry (GC-MS) analysis. Results based on 16S rDNA sequencing, and phylogenetic analysis showed maximum similarity of 2D with Bacillus cereus (Accession ID: MH341691). Stress responsive and catabolic/pesticide degrading proteins were over expressed in the presence of cypermethrin in bacteria. Enzymatic kinetics of laccase was deduced in the test isolate under normal and pesticide stress conditions which suggested that the production of enzyme was induced significantly in pesticide stress (163 μg.μL-1) as compare to normal conditions(29 μg.μL-1) while the Km value was decreased in pesticides stress condition (Km = 10.57 mM) and increases in normal condition (Km = 14.33 mM).Amplification of laccase gene showed a major band of 1200bp. The present study highlights on the potential of 2D bacterial strain i.e., high tolerance level of pesticide, effective biodegradation rate, and presence of laccase gene in bacterial strain 2D, could become a potential biological agent for large-scale treatment of mixture of pesticide (cypermethrin, fipronil, imidacloprid and sulfosulfuron) in natural environment (soil and water).
Collapse
|
8
|
A Large Tn7-like Transposon Confers Hyper-Resistance to Copper in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2021; 87:AEM.02528-20. [PMID: 33361370 PMCID: PMC8090865 DOI: 10.1128/aem.02528-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Copper resistance mechanisms provide an important adaptive advantage to plant pathogenic bacteria under exposure to copper treatments. Copper resistance determinants have been described in Pseudomonas syringae pv. syringae (Pss) strains isolated from mango intimately associated with 62 kb plasmids belonging to the pPT23A family (PFP). It has been previously described that the indiscriminate use of copper-based compounds promotes the selection of copper resistant bacterial strains and constitutes a selective pressure in the evolution of copper resistance determinants. Hence, we have explored in this study the copper resistance evolution and the distribution of specific genetic determinants in two different Pss mango populations isolated from the same geographical regions, mainly from southern Spain with an average of 20 years of difference. The total content of plasmids, in particular the 62 kb plasmids, and the number of copper resistant Pss strains were maintained at similar levels over the time. Interestingly, the phylogenetic analysis indicated the presence of a phylogenetic subgroup (PSG) in the Pss mango phylotype, mostly composed of the recent Pss population analyzed in this study that was strongly associated with a hyper-resistant phenotype to copper. Genome sequencing of two selected Pss strains from this PSG revealed the presence of a large Tn7-like transposon of chromosomal location, which harbored putative copper and arsenic resistance genes (COARS Tn7-like). Transformation of the copper sensitive Pss UMAF0158 strain with some putative copper resistance genes and RT-qPCR experiments brought into light the role of COARS Tn7-like transposon in the hyper-resistant phenotype to copper in Pss.IMPORTANCECopper compounds have traditionally been used as standard bactericides in agriculture in the past few decades. However, the extensive use of copper has fostered the evolution of bacterial copper resistance mechanisms. Pseudomonas syringae is a plant pathogenic bacterium used worldwide as a model to study plant-pathogen interactions. The adaption of P. syringae to plant surface environment is the most important step prior to an infection. In this scenario, copper resistance mechanisms could play a key role in improving its epiphytic survival. In this work, a novel Tn7-like transposon of chromosomal location was detected in P. syringae pv. syringae strains isolated from mango. This transposon conferred the highest resistance to copper sulfate described to date for this bacterial phytopathogen. Understanding in depth the copper resistance mechanisms and their evolution are important steps to the agricultural industry to get a better improvement of disease management strategies.
Collapse
|
9
|
Behlau F, Lanza FE, da Silva Scapin M, Scandelai LHM, Silva Junior GJ. Spray Volume and Rate Based on the Tree Row Volume for a Sustainable Use of Copper in the Control of Citrus Canker. PLANT DISEASE 2021; 105:183-192. [PMID: 33170770 DOI: 10.1094/pdis-12-19-2673-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Copper is the most efficient pesticide for the control of citrus canker (Xanthomonas citri subsp. citri). To mitigate the environmental impacts and costs, the copper sprays in citrus orchards are being optimized based on the tree row volume (TRV). A previous investigation allowed for significant reductions of the spray volume and copper rates. Nevertheless, the results also indicated the need for additional studies. The aim of this work was to assess whether both the spray volume and the metallic copper rate based on the TRV may be further reduced. A field trial was carried out during two seasons in a 3-year-old commercial orchard of Pera sweet orange located in the municipality of Paranavaí, Paraná, Brazil. The volumes of 20 and 40 ml of spray mixture per m3 of the tree canopy were assessed in combination with the metallic copper rates of 10.5, 21.0, 36.8, or 52.5 mg/m3. Disease was measured as the temporal progress of canker incidence on leaves, cumulative dropped fruit with canker, and incidence of diseased fruit at harvest. The quality of sprays was assessed by measuring the copper deposition and leaf coverage. The treatment with the highest citrus canker control for the lowest use of water and copper was the combination of 40 ml and 36.8 mg/m3. Regression analyses indicated that the minimum threshold deposition of copper was ∼1.5 µg Cu2+/cm2 leaf area. In addition, the lowest spray volume and copper rate necessary to achieve this deposition are 35 ml/m3 and 30 mg/m3. The use of 20 ml/m3 did not efficiently control the disease due to the deficient coverage of treated surfaces. This study demonstrated that it is possible to use even lower amounts of copper and water without interfering with the efficiency of control of citrus canker.
Collapse
Affiliation(s)
- Franklin Behlau
- Fundo de Defesa da Citricultura, 14807-040, Araraquara, SP, Brazil
| | - Fabrício E Lanza
- Fundo de Defesa da Citricultura, 14807-040, Araraquara, SP, Brazil
| | | | | | | |
Collapse
|
10
|
Hao X, Zhu J, Rensing C, Liu Y, Gao S, Chen W, Huang Q, Liu YR. Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 2020; 19:94-109. [PMID: 33425244 PMCID: PMC7771044 DOI: 10.1016/j.csbj.2020.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
12
|
Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101645] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Vu NT, Oh CS. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:204-217. [PMID: 32547337 PMCID: PMC7272851 DOI: 10.5423/ppj.rw.04.2020.0074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Corresponding author. Phone) +82-31-201-2678, FAX) +82-31-204-8116, E-mail) , ORCID Chang-Sik Oh https://orcid.org/0000-0002-2123-862X
| |
Collapse
|
14
|
Kang SM, Asaf S, Khan AL, Lubna, Khan A, Mun BG, Khan MA, Gul H, Lee IJ. Complete Genome Sequence of Pseudomonas psychrotolerans CS51, a Plant Growth-Promoting Bacterium, Under Heavy Metal Stress Conditions. Microorganisms 2020; 8:E382. [PMID: 32182882 PMCID: PMC7142416 DOI: 10.3390/microorganisms8030382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/02/2022] Open
Abstract
In the current study, we aimed to elucidate the plant growth-promoting characteristics of Pseudomonas psychrotolerans CS51 under heavy metal stress conditions (Zn, Cu, and Cd) and determine the genetic makeup of the CS51 genome using the single-molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results revealed that inoculation with CS51 induced endogenous indole-3-acetic acid (IAA) and gibberellins (GAs), which significantly enhanced cucumber growth (root shoot length) and increased the heavy metal tolerance of cucumber plants. Moreover, genomic analysis revealed that the CS51 genome consisted of a circular chromosome of 5,364,174 base pairs with an average G+C content of 64.71%. There were around 4774 predicted protein-coding sequences (CDSs) in 4859 genes, 15 rRNA genes, and 67 tRNA genes. Around 3950 protein-coding genes with function prediction and 733 genes without function prediction were identified. Furthermore, functional analyses predicted that the CS51 genome could encode genes required for auxin biosynthesis, nitrate and nitrite ammonification, the phosphate-specific transport system, and the sulfate transport system, which are beneficial for plant growth promotion. The heavy metal resistance of CS51 was confirmed by the presence of genes responsible for cobalt-zinc-cadmium resistance, nickel transport, and copper homeostasis in the CS51 genome. The extrapolation of the curve showed that the core genome contained a minimum of 2122 genes (95% confidence interval = 2034.24 to 2080.215). Our findings indicated that the genome sequence of CS51 may be used as an eco-friendly bioresource to promote plant growth in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (L.); (H.G.)
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (L.); (H.G.)
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| |
Collapse
|
15
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
16
|
Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X. Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome. Metallomics 2020; 12:387-395. [PMID: 31942889 DOI: 10.1039/c9mt00273a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional metagenomics is a premise-free approach for exploring metal resistance genes, enabling more profound effects on the development of bioremediation tools than pure culture based selection. Six soil metagenomic libraries were screened for copper (Cu) resistance genes in the current study through conventional functional genomics. Clones from the six metagenomic libraries were randomly selected from solid medium supplied with Cu, resulting in 411 Cu resistance clones. Thirty-five clones with the strongest Cu resistance were sequenced and 12 unique sequences harboring 25 putative open reading frames were obtained. It is inferred by bioinformatic analysis that putative genes carried by these recombinant plasmids probably function in the pathways of responding to Cu stress, including energy metabolism, integral components of membrane, ion transport/chelation, protein/amino acid metabolism, carbohydrate/fatty acid metabolism, signal transduction and DNA binding. The sequenced clones were re-transformed into Escherichia coli strain DH5α, and the host's biomass and the metal sorption under Cu stress were subsequently determined. The results showed that the biomass of eight of the clones was significantly increased, whereas four of them were significantly reduced. A negative correlation (R = 0.86) was found between the biomass and Cu sorption capacity. The 12 positive clones were further transferred into a Cu-sensitive E. coli strain (ΔCopA), among which nine restored the host's Cu resistance substantially. The Cu resistant genes explored in this study by functional metagenomics possess a potential capacity for developing novel bioremediation strategies, and the findings imply a vast diversity of microbial Cu resistance genetic factors in soil yet to be discovered.
Collapse
Affiliation(s)
- Chao Xing
- Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. FRONTIERS IN PLANT SCIENCE 2019; 10:570. [PMID: 31139201 PMCID: PMC6518948 DOI: 10.3389/fpls.2019.00570] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 05/29/2023]
Abstract
The Pseudomonas syringae complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of P. syringae have been described based on distinct host ranges and disease symptoms they cause. These pathovars cause disease relying on an array of virulence mechanisms. However, P. syringae pv. syringae (Pss) is the most polyphagous bacterium in the P. syringae complex, based on its wide host range, that primarily affects woody and herbaceous host plants. In early 1990s, bacterial apical necrosis (BAN) of mango trees, a critical disease elicited by Pss in Southern Spain was described for the first time. Pss exhibits important epiphytic traits and virulence factors, which may promote its survival and pathogenicity in mango trees and in other plant hosts. Over more than two decades, Pss strains isolated from mango trees have been comprehensively investigated to elucidate the mechanisms that governs their epiphytic and pathogenic lifestyles. In particular, the vast majority of Pss strains isolated from mango trees produce an antimetabolite toxin, called mangotoxin, whose leading role in virulence has been clearly demonstrated. Moreover, phenotypic, genetic and phylogenetic approaches support that Pss strains producers of BAN symptoms on mango trees all belong to a single phylotype within phylogroup 2, are adapted to the mango host, and produce mangotoxin. Remarkably, a genome sequencing project of the Pss model strain UMAF0158 revealed the presence of other factors that may play major roles in its different lifestyles, such as the presence of two different type III secretion systems, two type VI secretion systems and an operon for cellulose biosynthesis. The role of cellulose in increasing mango leaf colonization and biofilm formation, and impairing virulence of Pss, suggests that cellulose may play a pivotal role with regards to the balance of its different lifestyles. In addition, 62-kb plasmids belonging to the pPT23A-family of plasmids (PFPs) have been strongly associated with Pss strains that inhabit mango trees. Further, complete sequence and comparative genomic analyses revealed major roles of PFPs in detoxification of copper compounds and ultraviolet radiation resistance, both improving the epiphytic lifestyle of Pss on mango surfaces. Hence, in this review we summarize the research that has been conducted on Pss by our research group to elucidate the molecular mechanisms that underpin the epiphytic and pathogenic lifestyle on mango trees. Finally, future directions in this particular plant-pathogen story are discussed.
Collapse
|
18
|
Zhang J, Wang C, Han JR, Chen GJ, Du ZJ. Alteromonas flava sp. nov. and Alteromonas facilis sp. nov., two novel copper tolerating bacteria isolated from a sea cucumber culture pond in China. Syst Appl Microbiol 2019; 42:217-222. [DOI: 10.1016/j.syapm.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
|
19
|
de Freitas EC, Ucci AP, Teixeira EC, Pedroso GA, Hilario E, Bertolazzi Zocca VF, de Paiva GB, Ferreira H, Pedrolli DB, Bertolini MC. The copper-inducible copAB operon in Xanthomonas citri subsp. citri is regulated at transcriptional and translational levels. MICROBIOLOGY-SGM 2019; 165:355-365. [PMID: 30689540 DOI: 10.1099/mic.0.000767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upstream open reading frames (ORFs) are frequently found in the 5'-flanking regions of genes and may have a regulatory role in gene expression. A small ORF (named cohL here) was identified upstream from the copAB copper operon in Xanthomonascitri subsp. citri (Xac). We previously demonstrated that copAB expression was induced by copper and that gene inactivation produced a mutant strain that was unable to grow in the presence of copper. Here, we address the role of cohL in copAB expression control. We demonstrate that cohL expression is induced by copper in a copAB-independent manner. Although cohL is transcribed, the CohL protein is either not expressed in vivo or is synthesized at undetectable levels. Inactivation of cohL (X. citri cohL polar mutant strain) leads to an inability to synthesize cohL and copAB transcripts and consequently the inability to grow in the presence of copper. Bioinformatic tools predicted a stem-loop structure for the cohL-copAB intergenic region and revealed that this region may arrange itself in a secondary structure. Using in vitro gene expression, we found out that the structured 5'-UTR mRNA of copAB is responsible for sequestering the ribosome-binding site that drives the translation of copA. However, copper alone was not able to release the sequence. Based on the results, we speculate that cohL plays a role as a regulatory RNA rather than as a protein-coding gene.
Collapse
Affiliation(s)
- Eliane Cristina de Freitas
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Amanda Piovesan Ucci
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Elaine Cristina Teixeira
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Gisele Audrei Pedroso
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Eduardo Hilario
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil.,†Present address: Department of Biochemistry, University of California, Riverside, CA, 92521-0129, USA
| | - Vitória Fernanda Bertolazzi Zocca
- 2Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, UNESP, 14800-903, Araraquara, Brazil
| | - Gabriela Barbosa de Paiva
- 2Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, UNESP, 14800-903, Araraquara, Brazil
| | - Henrique Ferreira
- 3Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil
| | - Danielle Biscaro Pedrolli
- 2Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, UNESP, 14800-903, Araraquara, Brazil
| | - Maria Célia Bertolini
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
20
|
Yang H, Wang J, Lv Z, Tian J, Peng Y, Peng X, Xu X, Song Q, Lv B, Chen Z, Sun Z, Wang Z. Metatranscriptome analysis of the intestinal microorganisms in Pardosa pseudoannulata in response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:1-9. [PMID: 29730401 DOI: 10.1016/j.ecoenv.2018.04.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) generates a variety of physiological and ecological toxicity to spiders. However, little is known about the effects of Cd on symbiotic bacteria of spiders. Metatranscriptomics is increasing our knowledge of microorganisms in environment. To better understand the impact of Cd on the symbiotic bacteria of spiders, we generated and compared the metatranscriptomes of the intestinal microorganisms of Pardosa pseudoannulata with and without Cd stress. The community structure of intestinal microorganisms in P. pseudoannulata was composed of 4 kingdoms, namely bacteria, viruses, eukaryotes and archaea, including 46 phyla, 97 classes, 184 orders, 339 families, 470 genera, and 598 species. The abundance of eukaryotes, bacteria and viruses was decreased by 0.14%, 1.22% and 2.52% respectively while the archaea was increased by 99.16% when under Cd stress. We identified 1519 differentially expressed genes (DEGs), including 770 up-regulated and 749 down-regulated genes. The results of KEGG annotation revealed that the expression of genes that are involved in the carbon metabolism, protein and amino acid metabolism and synthesis, glucose metabolism, oxidative phosphorylation, and glutathione metabolism were influenced by Cd. Collectively, these findings showed that Cd significantly impacted the community structure and expression of related functional genes of intestinal microorganisms in P. pseudoannulata.
Collapse
Affiliation(s)
- Huilin Yang
- College of Orient Science & Technology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China; College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China.
| | - Juan Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China.
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jianxiang Tian
- College of Continuing Education, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China.
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China.
| | - Xianjin Peng
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Xiang Xu
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Bo Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China.
| | - Zhaoyang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China.
| | - Zhiying Sun
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China.
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, Hunan, China; College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| |
Collapse
|
21
|
Asaf S, Khan AL, Khan MA, Al-Harrasi A, Lee IJ. Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth. 3 Biotech 2018; 8:389. [PMID: 30175026 PMCID: PMC6111035 DOI: 10.1007/s13205-018-1403-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022] Open
Abstract
Our study aimed to elucidate the plant growth-promoting characteristics and the structure and composition of Sphingomonas sp. LK11 genome using the single molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results revealed that LK11 produces different types of gibberellins (GAs) in pure culture and significantly improves soybean plant growth by influencing endogenous GAs compared with non-inoculated control plants. Detailed genomic analyses revealed that the Sphingomonas sp. LK11 genome consists of a circular chromosome (3.78 Mbp; 66.2% G+C content) and two circular plasmids (122,975 bps and 34,160 bps; 63 and 65% G+C content, respectively). Annotation showed that the LK11 genome consists of 3656 protein-coding genes, 59 tRNAs, and 4 complete rRNA operons. Functional analyses predicted that LK11 encodes genes for phosphate solubilization and nitrate/nitrite ammonification, which are beneficial for promoting plant growth. Genes for production of catalases, superoxide dismutase, and peroxidases that confer resistance to oxidative stress in plants were also identified in LK11. Moreover, genes for trehalose and glycine betaine biosynthesis were also found in LK11 genome. Similarly, Sphingomonas spp. analysis revealed an open pan-genome and a total of 8507 genes were identified in the Sphingomonas spp. pan-genome and about 1356 orthologous genes were found to comprise the core genome. However, the number of genomes analyzed was not enough to describe complete gene sets. Our findings indicated that the genetic makeup of Sphingomonas sp. LK11 can be utilized as an eco-friendly bioresource for cleaning contaminated sites and promoting growth of plants confronted with environmental perturbations.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
22
|
Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. MOLECULAR PLANT PATHOLOGY 2018; 19:1302-1318. [PMID: 29105297 PMCID: PMC6638175 DOI: 10.1111/mpp.12638] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 05/09/2023]
Abstract
Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5-2.0 × 0.5-0.75 µm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe.
Collapse
Affiliation(s)
- Christopher M. Ference
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research LaboratoryFort PierceFL 34945USA
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
| | - Alberto M. Gochez
- Citrus Pathology, EEA INTA Bella VistaBella VistaCorrientes 3432Argentina
| | - Franklin Behlau
- Department of Research & DevelopmentFundo de Defesa da Citricultura (Fundecitrus)AraraquaraSão Paulo 14.807‐040Brazil
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of FloridaLake AlfredFL 33850USA
| | - James H. Graham
- Department of Soil and Water Science, Citrus Research and Education Center, University of FloridaLake AlfredFL 33850USA
| | - Jeffrey B. Jones
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
| |
Collapse
|
23
|
Griffin K, Brown P, Gambley C. Media pH and media type can significantly affect the reliability of in vitro
copper tolerance assessments of Pseudomonas syringae
pv. tomato. J Appl Microbiol 2018. [DOI: 10.1111/jam.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Griffin
- Health Medical and Applied Science; Central Queensland University; Bundaberg QLD Australia
| | - P. Brown
- Health Medical and Applied Science; Central Queensland University; Bundaberg QLD Australia
| | - C. Gambley
- Applethorpe Research Facility; Queensland Department of Agriculture and Fisheries; Applethorpe QLD Australia
| |
Collapse
|
24
|
Bütof L, Wiesemann N, Herzberg M, Altzschner M, Holleitner A, Reith F, Nies DH. Synergistic gold–copper detoxification at the core of gold biomineralisation inCupriavidus metallidurans. Metallomics 2018; 10:278-286. [DOI: 10.1039/c7mt00312a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cupriavidus metalliduransescapes synergistic Cu/Au toxicity by re-oxidation of Au(i) back to Au(iii) using the periplasmic oxidase CopA.
Collapse
Affiliation(s)
- L. Bütof
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - N. Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Altzschner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - A. Holleitner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - F. Reith
- The University of Adelaide
- School of Biological Sciences
- Adelaide
- Australia
| | - D. H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| |
Collapse
|
25
|
Synergistic Toxicity of Copper and Gold Compounds in Cupriavidus metallidurans. Appl Environ Microbiol 2017; 83:AEM.01679-17. [PMID: 28939602 DOI: 10.1128/aem.01679-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterium Cupriavidus metallidurans can reduce toxic gold(I/III) complexes and biomineralize them into metallic gold (Au) nanoparticles, thereby mediating the (trans)formation of Au nuggets. In Au-rich soils, most transition metals do not interfere with the resistance of this bacterium to toxic mobile Au complexes and can be removed from the cell by plasmid-encoded metal efflux systems. Copper is a noticeable exception: the presence of Au complexes and Cu ions results in synergistic toxicity, which is accompanied by an increased cytoplasmic Cu content and formation of Au nanoparticles in the periplasm. The periplasmic Cu-oxidase CopA was not essential for formation of the periplasmic Au nanoparticles. As shown with the purified and reconstituted Cu efflux system CupA, Au complexes block Cu-dependent release of phosphate from ATP by CupA, indicating inhibition of Cu transport. Moreover, Cu resistance of Au-inhibited cells was similar to that of mutants carrying deletions in the genes for the Cu-exporting PIB1-type ATPases. Consequently, Au complexes inhibit export of cytoplasmic Cu ions, leading to an increased cellular Cu content and decreased Cu and Au resistance. Uncovering the biochemical mechanisms of synergistic Au and Cu toxicity in C. metallidurans explains the issues this bacterium has to face in auriferous environments, where it is an important contributor to the environmental Au cycle.IMPORTANCE C. metallidurans lives in metal-rich environments, including auriferous soils that contain a mixture of toxic transition metal cations. We demonstrate here that copper ions and gold complexes exert synergistic toxicity because gold ions inhibit the copper-exporting P-type ATPase CupA, which is central to copper resistance in this bacterium. Such a situation should occur in soils overlying Au deposits, in which Cu/Au ratios usually are ≫1. Appreciating how C. metallidurans solves the problem of living in environments that contain both Au and Cu is a prerequisite to understand the molecular mechanisms underlying gold cycling in the environment, and the significance and opportunities of microbiota for specific targeting to Au in mineral exploration and ore processing.
Collapse
|
26
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
27
|
He S, Barco RA, Emerson D, Roden EE. Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer. Front Microbiol 2017; 8:1584. [PMID: 28871245 PMCID: PMC5566968 DOI: 10.3389/fmicb.2017.01584] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/04/2017] [Indexed: 11/13/2022] Open
Abstract
Extracellular electron transfer (EET) is recognized as a key biochemical process in circumneutral pH Fe(II)-oxidizing bacteria (FeOB). In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The "porin-cytochrome c complex" (PCC) gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named "PCC3") encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named "PCC4") encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP) encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II) oxidation. In addition to cytochrome c, multicopper oxidase (MCO) genes potentially involved in Fe(II) oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II) oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and provides candidate genes for future research.
Collapse
Affiliation(s)
- Shaomei He
- Department of Geoscience, University of Wisconsin-MadisonMadison, WI, United States.,NASA Astrobiology Institute, University of WisconsinMadison, WI, United States.,Department of Bacteriology, University of Wisconsin-MadisonMadison, WI, United States
| | - Roman A Barco
- Bigelow Laboratory for Ocean SciencesEast Boothbay Harbor, ME, United States.,Department of Earth Sciences, University of Southern CaliforniaLos Angeles, CA, United States
| | - David Emerson
- Bigelow Laboratory for Ocean SciencesEast Boothbay Harbor, ME, United States
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-MadisonMadison, WI, United States.,NASA Astrobiology Institute, University of WisconsinMadison, WI, United States
| |
Collapse
|
28
|
Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol Ecol 2017; 26:2131-2149. [PMID: 28101896 DOI: 10.1111/mec.14007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.
Collapse
Affiliation(s)
- D Richard
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France.,Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France.,Université de la Réunion, UMR PVBMT, F-97490, St Denis, Réunion, France
| | - V Ravigné
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - A Rieux
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B Facon
- INRA, UMR PVBMT, F-97410, St Pierre, Réunion, France.,INRA, UMR CBGP, F-34090, Montpellier, France
| | - C Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - K Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Grygiel
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - S Javegny
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - M Terville
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B I Canteros
- INTA, Estación Experimental Agropecuaria Bella Vista, Bella Vista, Argentina
| | - I Robène
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - C Vernière
- CIRAD, UMR BGPI, F-34398, Montpellier, France
| | - A Chabirand
- Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France
| | - O Pruvost
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Lefeuvre
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| |
Collapse
|
29
|
Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang C. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1506-1518. [PMID: 27238249 PMCID: PMC6638406 DOI: 10.1111/mpp.12436] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.
Collapse
Affiliation(s)
- George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Luisa F. Castiblanco
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment StationNew HavenCT06504USA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
30
|
Lawton TJ, Kenney GE, Hurley JD, Rosenzweig AC. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins. Biochemistry 2016; 55:2278-90. [PMID: 27010565 PMCID: PMC5260838 DOI: 10.1021/acs.biochem.6b00175] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The CopC proteins are periplasmic copper binding proteins believed to play a role in bacterial copper homeostasis. Previous studies have focused on CopCs that are part of seven-protein Cop or Pco systems involved in copper resistance. These canonical CopCs contain distinct Cu(I) and Cu(II) binding sites. Mounting evidence suggests that CopCs are more widely distributed, often present only with the CopD inner membrane protein, frequently as a fusion protein, and that the CopC and CopD proteins together function in the uptake of copper to the cytoplasm. In the methanotroph Methylosinus trichosporium OB3b, genes encoding a CopCD pair are located adjacent to the particulate methane monooxygenase (pMMO) operon. The CopC from this organism (Mst-CopC) was expressed, purified, and structurally characterized. The 1.46 Å resolution crystal structure of Mst-CopC reveals a single Cu(II) binding site with coordination somewhat different from that in canonical CopCs, and the absence of a Cu(I) binding site. Extensive bioinformatic analyses indicate that the majority of CopCs in fact contain only a Cu(II) site, with just 10% of sequences corresponding to the canonical two-site CopC. Accordingly, a new classification scheme for CopCs was developed, and detailed analyses of the sequences and their genomic neighborhoods reveal new proteins potentially involved in copper homeostasis, providing a framework for expanded models of CopCD function.
Collapse
Affiliation(s)
- Thomas J. Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Grace E. Kenney
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph D. Hurley
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Staehlin BM, Gibbons JG, Rokas A, O'Halloran TV, Slot JC. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria. Genome Biol Evol 2016; 8:811-26. [PMID: 26893455 PMCID: PMC4824010 DOI: 10.1093/gbe/evw031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens.
Collapse
Affiliation(s)
- Benjamin M Staehlin
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University
| | - John G Gibbons
- Department of Biological Sciences, Vanderbilt University Present address: Biology Department, Clark University, Worcester, MA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
| | - Thomas V O'Halloran
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus
| |
Collapse
|
32
|
|
33
|
Singh K, Senadheera DB, Cvitkovitch DG. An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future Microbiol 2015; 9:1283-93. [PMID: 25437189 DOI: 10.2217/fmb.14.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.
Collapse
Affiliation(s)
- Kamna Singh
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis. Appl Microbiol Biotechnol 2014; 98:10255-66. [PMID: 25081552 DOI: 10.1007/s00253-014-5939-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
In this study, we utilized the Illumina high-throughput metagenomic approach to investigate diversity and abundance of both microbial community and copper resistance genes (CuRGs) in activated sludge (AS) which was enriched under copper selective stress up to 800 mg/L. The raw datasets (~3.5 Gb for each sample, i.e., the copper-enriched AS and the control AS) were merged and normalized for the BLAST analyses against the SILVA SSU rRNA gene database and self-constructed copper resistance protein database (CuRD). Also, the raw metagenomic sequences were assembled into contigs and analyzed based on Open Reading Frames (ORFs) to identify potentially novel copper resistance genes. Among the different resistance systems for copper detoxification under the high copper stress condition, the Cus system was the most enriched system. The results also indicated that genes encoding multi-copper oxidase played a more important role than those encoding efflux proteins. More significantly, several potentially novel copper resistance ORFs were identified by Pfam search and phylogenic analysis. This study demonstrated a new understanding of microbial-mediated copper resistance under high copper stress using high-throughput shotgun sequencing technique.
Collapse
|
35
|
Le Brun NE. Copper in Prokaryotes. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability of copper to cycle its oxidation state, and to form high-affinity complexes with a range of biologically relevant ligands, underpins the central role that this metal plays in prokaryotic processes such as respiration, oxidative stress response, the nitrogen cycle and pigmentation. However, the very properties that nature has exploited also mean that copper is extremely toxic. To minimize this toxicity, while also ensuring sufficient supply of the metal, complex systems of trafficking evolved to facilitate transport of copper (as Cu(I)) across membranes and its targeted distribution within the cytoplasm, membrane and periplasm. The past 20 years have seen our understanding of such systems grow enormously, and atomic/molecular and mechanistic detail of many of the major cellular trafficking components is now available. This chapter begins with a discussion of the chemistry of copper that is relevant for understanding the role of this metal throughout life. The subsequent focus is then on current understanding of copper homeostasis in prokaryotes, with eukaryotic copper homeostasis dealt with in the following chapters. The chapter aims to provide a chemical perspective on these complex biological systems, emphasizing the importance of thermodynamic and kinetic properties of copper and the complexes it forms.
Collapse
Affiliation(s)
- Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
36
|
Wakelin S, Gerard E, Black A, Hamonts K, Condron L, Yuan T, van Nostrand J, Zhou J, O'Callaghan M. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 190:1-9. [PMID: 24686114 DOI: 10.1016/j.envpol.2014.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 05/13/2023]
Abstract
Pollution induced community tolerance (PICT) to Cu(2+), and co-tolerance to nanoparticulate Cu, ionic silver (Ag(+)), and vancomycin were measured in field soils treated with Cu(2+) 15 years previously. EC50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO2; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P < 0.05) associated with tolerance to addition of new Cu(2+), and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag(+) and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P < 0.05) with increased metabolic quotient, potentially indicating that the community directed more energy towards cellular maintenance rather than biomass production. Neither bacterial or fungal community composition nor changes in the abundance of genes involved with metal resistance were related to PICT or co-tolerance mechanisms.
Collapse
Affiliation(s)
- Steven Wakelin
- AgResearch Ltd, Lincoln Science Centre, Private Bag 4749, Christchurch, New Zealand.
| | - Emily Gerard
- AgResearch Ltd, Lincoln Science Centre, Private Bag 4749, Christchurch, New Zealand
| | - Amanda Black
- Bio-Protection Research Centre, P.O. Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Kelly Hamonts
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand; CSIRO Plant Industry, Canberra ACT 2601, Australia
| | - Leo Condron
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Tong Yuan
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, OK 73019, USA
| | - Joy van Nostrand
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, OK 73019, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, OK 73019, USA
| | - Maureen O'Callaghan
- AgResearch Ltd, Lincoln Science Centre, Private Bag 4749, Christchurch, New Zealand
| |
Collapse
|
37
|
Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport. Appl Microbiol Biotechnol 2014; 98:8005-15. [DOI: 10.1007/s00253-014-5849-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
38
|
Argüello JM, Raimunda D, Padilla-Benavides T. Mechanisms of copper homeostasis in bacteria. Front Cell Infect Microbiol 2013; 3:73. [PMID: 24205499 PMCID: PMC3817396 DOI: 10.3389/fcimb.2013.00073] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/17/2013] [Indexed: 01/27/2023] Open
Abstract
Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu(+) transport (entry-exit) and traffic through different compartments, ensuring the homeostasis required for cuproprotein synthesis and prevention of toxic effects. Recent studies based on biochemical, bioinformatics, and metalloproteomics approaches, reveal a highly regulated system of transcriptional regulators, soluble chaperones, membrane transporters, and target cuproproteins distributed in the various bacterial compartments. As a result, new questions have emerged regarding the diversity and apparent redundancies of these components, their irregular presence in different organisms, functional interactions, and resulting system architectures.
Collapse
Affiliation(s)
- José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute Worcester, MA, USA
| | | | | |
Collapse
|
39
|
Behlau F, Hong JC, Jones JB, Graham JH. Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. PHYTOPATHOLOGY 2013; 103:409-418. [PMID: 23252970 DOI: 10.1094/phyto-06-12-0134-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
ABSTRACT We determined that multiple and independent introductions of copper resistance genes have taken place for strains of Xanthomonas citri subsp. citri from Argentina and strains of X. alfalfae subsp. citrumelonis from Florida. This study compared the partial nucleotide sequences of principal copper resistance genes copL, copA, and copB from X. citri subsp. citri and X. alfalfae subsp. citrumelonis to strains of other Xanthomonas spp. resistant to copper that were isolated from 12 different countries or territories. The survey confirmed that the copLAB gene cluster is present in many species of Xanthomonas from different parts of the world. Alignment of partial nucleotide sequences of copper resistance genes among the copper-resistant (Cu(R)) strains of Xanthomonas detected homology of ≥92, ≥96, and ≥91% for copL, copA, and copB, respectively. Grouping of strains based on branching patterns of phylogenetic trees was similar for copL and copA but differed for copB. When the three genes were concatenated and analyzed using various phylogenetic methods, it appeared that the plasmid had been horizontally transferred and various populations were mutating based on selection pressure unique to geographic regions. Although high homology of the genes among the strains indicated that the copper resistance in xanthomonads has a common origin, the slight differences in nucleotide sequences within groups of strains indicated that Cu(R) genes have been independently exchanged among species of Xanthomonas throughout the world.
Collapse
Affiliation(s)
- Franklin Behlau
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
40
|
Bouzat JL, Hoostal MJ. Evolutionary Analysis and Lateral Gene Transfer of Two-Component Regulatory Systems Associated with Heavy-Metal Tolerance in Bacteria. J Mol Evol 2013; 76:267-79. [DOI: 10.1007/s00239-013-9558-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/23/2013] [Indexed: 11/28/2022]
|
41
|
Abstract
As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1870, Frederiksberg C, Denmark
| | | |
Collapse
|
42
|
Nies DH, Herzberg M. A fresh view of the cell biology of copper in enterobacteria. Mol Microbiol 2012; 87:447-54. [PMID: 23217080 DOI: 10.1111/mmi.12123] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper-binding metal chaperones, which deliver copper ions to efflux systems or metal-binding sites of copper-requiring proteins. In their publication in this issue, Osman et al. (2013) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P-type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. (2013) change our view of the cell biology of copper in enterobacteria.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
| | | |
Collapse
|
43
|
Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 2012; 12:193. [PMID: 22950448 PMCID: PMC3496636 DOI: 10.1186/1471-2180-12-193] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022] Open
Abstract
Background Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. Results DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. Conclusions This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates showed high copper resistance and additional resistance to other heavy metals. Detection of copA gene in plasmids of four Cu-resistant isolates indicates that mobile genetic elements are involved in the spreading of Cu genetic determinants in polluted environments.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center of Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|
44
|
Llop P, Barbé S, López MM. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. TREES (BERLIN, GERMANY : WEST) 2011; 26:31-46. [PMID: 25983394 PMCID: PMC4425259 DOI: 10.1007/s00468-011-0630-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 05/29/2023]
Abstract
The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees (E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae, which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.
Collapse
Affiliation(s)
- Pablo Llop
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - Silvia Barbé
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - María M. López
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| |
Collapse
|
45
|
Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC. Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9290-9302. [PMID: 21790191 DOI: 10.1021/jf2024006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The gram-negative plant pathogenic Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers, a disease causing tremendous loss in agriculture. Copper-containing bactericides have been widely used to control this disease for many years, possibly leading to the development of copper resistance in Xcc. Homologues of copper resistance genes copLAB are present in the Xcc genome, but none has been characterized. In this study, mutations in copL, copA, and copB decreased Xcc copper tolerance. Among them, the copA mutant displayed the most significant reduction. The copA mutant also resulted in a reduction in virulence on the host cabbage. Sequence and mutational analysis demonstrated that copA encodes a multicopper oxidase and that CopA is able to catalyze the oxidation of 2,6-dimethoxyphenol. Alanine substitutions in each of the putative copper binding residues (H538, H583, C584, and H585) of CopA caused a loss of function including copper tolerance and oxidase activity. Furthermore, reporter assays showed that copA transcription is inducible in the presence of copper, subject to catabolite repression, and repressed under conditions of high osmolarity, nitrogen starvation, or oxygen limitation. This is the first time that multicopper oxidase has been characterized in the crucifer pathogen Xcc.
Collapse
Affiliation(s)
- Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | | | | | | | | | | |
Collapse
|
46
|
Herter S, Schmidt M, Thompson ML, Mikolasch A, Schauer F. Study of enzymatic properties of phenol oxidase from nitrogen-fixing Azotobacter chroococcum. AMB Express 2011; 1:14. [PMID: 21906365 PMCID: PMC3402154 DOI: 10.1186/2191-0855-1-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/24/2011] [Indexed: 12/02/2022] Open
Abstract
Azotobacter chroococcum is a widespread free-living soil bacterium within the genus of Azotobacter known for assimilation of atmospheric nitrogen and subsequent conversion into nitrogenous compounds, which henceforth enrich the nitrogen content of soils. A. chroococcum SBUG 1484, isolated from composted earth, exhibits phenol oxidase (PO) activity when growing under nitrogen-fixing conditions. In the present study we provide incipient analysis of the crude PO activity expressed by A. chroococcum SBUG 1484 within comparative analysis to fungal crude PO from the white-rot fungus Pycnoporus cinnabarinus SBUG-M 1044 and tyrosinase (PPO) from the mushroom Agaricus bisporus in an attempt to reveal desirable properties for exploitation with future recombinant expression of this enzyme. Catalytic activity increased with pre-incubation at 35°C; however 70% of activity remained after pre-treatment at 50°C. Native A. chroococcum crude PO exhibited not only strong preference for 2,6-dimethoxyphenol, but also towards related methoxy-activated substrates as well as substituted ortho-benzenediols from over 40 substrates tested. Presence of CuSO4 enhanced crude phenol oxidase activity up to 30%, whereas NaN3 (0.1 mM) was identified as the most inhibiting substance of all inhibitors tested. Lowest inhibition of crude PO activity occurred after 60 minutes of incubation in presence of 15% methanol and ethanol with 63% and 77% remaining activities respectively, and presence of DMSO even led to increasing oxidizing activities. Substrate scope and inhibitor spectrum strongly differentiated A. chroococcum PO activity comprised in crude extracts from those of PPO and confirmed distinct similarities to fungal PO.
Collapse
|
47
|
Elguindi J, Hao X, Lin Y, Alwathnani HA, Wei G, Rensing C. Advantages and challenges of increased antimicrobial copper use and copper mining. Appl Microbiol Biotechnol 2011; 91:237-49. [DOI: 10.1007/s00253-011-3383-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/24/2022]
|
48
|
Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl Environ Microbiol 2011; 77:4089-96. [PMID: 21515725 DOI: 10.1128/aem.03043-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cu(r)) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cu(r) bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥ 92%) among different Cu(r) bacteria.
Collapse
|
49
|
Cha JS, Cooksey DA. Copper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon. Appl Environ Microbiol 2010; 59:1671-4. [PMID: 16348944 PMCID: PMC182136 DOI: 10.1128/aem.59.5.1671-1674.1993] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper resistance in Pseudomonas syringae carrying the copABCD operon is associated with accumulation of copper in the periplasm and outer membrane, apparently as a function of the copper-binding activities of the copABC gene products. However, no specific function for copD has been determined. In this study, P. syringae cells containing copCD or copBCD cloned behind the lac promoter were hypersensitive to copper. An increased accumulation of copper was measured in cells containing several combinations of cop genes that included copC and copD. Our data suggest that CopC, a periplasmic copper-binding protein, and CopD, a probable inner membrane protein, may function together in copper uptake.
Collapse
Affiliation(s)
- J S Cha
- Department of Plant Pathology, University of California, Riverside, California 92521-0122
| | | |
Collapse
|
50
|
Cooksey DA, Azad HR, Cha JS, Lim CK. Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol 2010; 56:431-5. [PMID: 16348118 PMCID: PMC183357 DOI: 10.1128/aem.56.2.431-435.1990] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper-resistant strains of Xanthomonas campestris pv. vesicatoria, Pseudomonas cichorii, Pseudomonas putida, Pseudomonas fluorescens, and a yellow Pseudomonas sp. were isolated from tomato plants or seeds. In Southern hybridizations, DNA from each strain showed homology with the copper resistance (cop) operon previously cloned from Pseudomonas syringae pv. tomato PT23. Homology was associated with plasmid and chromosomal DNA in X. compestris pv. vesicatoria, P. putida, and the yellow Pseudomonas sp. Homology was detected only in the chromosomal DNA of P. cichorii and P. fluorescens. Homology with cop was also detected in chromosomal DNA from copper-sensitive strains of P. cichorii, P. fluorescens, and P. syringae pv. tomato, suggesting that the cop homolog may be indigenous to certain Pseudomonas species and have some function other than copper resistance. No homology was detected in DNA from a copper-sensitive X. campestris pv. vesicatoria strain. Copper-inducible protein products were detected in each copper-resistant bacterium by immunoblot analysis with antibodies raised to the CopB protein from the cop operon. The role of the homologous DNA in copper resistance was confirmed for the X. campestris pv. vesicatoria strain by cloning and transferring the cop homolog to a copper-sensitive strain of X. campestris pv. vesicatoria. The possibility and implications of copper resistance gene exchange between different species and genera of pathogenic and saprophytic bacteria on tomato plants are discussed.
Collapse
Affiliation(s)
- D A Cooksey
- Department of Plant Pathology, University of California, Riverside, California 92521-0122
| | | | | | | |
Collapse
|