1
|
Pavlov AA, McLain H, Glavin DP, Elsila JE, Dworkin J, House CH, Zhang Z. Radiolytic Effects on Biological and Abiotic Amino Acids in Shallow Subsurface Ices on Europa and Enceladus. ASTROBIOLOGY 2024; 24:698-709. [PMID: 39023275 DOI: 10.1089/ast.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus requires a clear understanding of the necessary ice depth where unaltered organic biomolecules might be present. We conducted radiolysis experiments by exposing individual amino acids in ices and amino acids from dead microorganisms in ices to gamma radiation to simulate conditions on these icy worlds. In the pure amino acid samples, glycine did not show a detectable decrease in abundance, whereas the abundance of isovaline decreased by 40% after 4 MGy of exposure. Amino acids in dead Escherichia coli (E. coli) organic matter exhibited a gradual decline in abundances with the increase of exposure dosage, although at much slower rates than individual amino acids. The majority of amino acids in dead A. woodii samples demonstrated a step function decline as opposed to a gradual decline. After the initial drop in abundance with 1 MGy of exposure, those amino acids did not display further decreases in abundance after exposure up to 4 MGy. New radiolysis constants for isolated amino acids and amino acids in dead E. coli material for Europa/Enceladus-like conditions have been derived. Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life detection measurements by Europa and Enceladus lander missions. Based on our measurements, the "safe" sampling depth on Europa is ∼20 cm at high latitudes of the trailing hemisphere in the area of little impact gardening. Subsurface sampling is not required for the detection of amino acids on Enceladus-these molecules will survive radiolysis at any location on the Enceladus surface. If the stability of amino acids observed in A. woodii organic materials is confirmed in other microorganisms, then the survival of amino acids from a potential biosphere in Europa ice would be significantly increased.
Collapse
Affiliation(s)
| | - Hannah McLain
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Chemistry, Catholic University of America, Washington, District of Columbia, USA
- Center for Research and Exploration in Space Science and Technology, NASA/GSFC Greenbelt, Maryland, USA
| | | | - Jamie E Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Jason Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Christopher H House
- Department of Geosciences and Earth and Environment Systems Institute, The Pennsylvania State University, Pennsylvania, USA
| | - Zhidan Zhang
- Department of Geosciences and Earth and Environment Systems Institute, The Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
2
|
Zhang J, Wang S, Abee T, van der Veen S. Role of Base Excision Repair in Listeria monocytogenes DNA Stress Survival During Infections. J Infect Dis 2020; 223:721-732. [PMID: 32644146 DOI: 10.1093/infdis/jiaa412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Base excision repair (BER), consisting mostly of lesion-specific DNA glycosylases and apurinic/apyrimidinic (AP) endonucleases, is one of the most important DNA repair mechanisms for repair of single nucleobase lesions generated by reactive oxygen and nitrogen species as part of an immune response against bacterial infections. However, few studies have addressed the contribution of BER to bacterial virulence and Listeria monocytogenes BER has thus far remained completely uncharacterized. METHODS Analysis of the L. monocytogenes EGDe genome identified 7 DNA glycosylases (MutM, MutY, Nth, Tag, Mpg, Ung, and Ung2) and 2 apurinic/apyrimidinic endonucleases (Xth and Nfo) as part of BER. Markerless in-frame deletion mutants were generated for all 9 genes, and mutants were tested for DNA damage survival, mutagenesis, and the ability to colonize a mouse model of infection. RESULTS Distinct lesion-specific phenotypes were identified for all deletion mutants. Importantly, the Δnth, ΔmutY, and Δnfo mutants were significantly attenuated for virulence in the mouse model and showed much lower colonization of the liver and spleen or were unable to compete with the wild-type strain during in vivo competition assays. CONCLUSIONS Our results highlight the importance of BER for L. monocytogenes virulence and survival of DNA-damaging insults during host colonization.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuyi Wang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Res 2019; 47:7592-7604. [PMID: 31131413 PMCID: PMC6698664 DOI: 10.1093/nar/gkz467] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
To cope with harsh circumstances, bacterial cells must initiate cellular stress response programs, which demands the de novo synthesis of many stress defense proteins. Reactive oxygen species (ROS) is a universal environmental stressor for both prokaryotic cells and eukaryotic cells. However, the physiological burden that limits the survival of bacterial cells during oxidative stress remains elusive. Here we quantitatively characterize the cell growth and translational elongation rate of Escherichia coli cells treated with different doses of hydrogen peroxide. Cell growth is immediately arrested by low to moderate levels of hydrogen peroxide, but completely recovers after a certain lag time. The lag time depends positively on the dose of hydrogen peroxide. During the lag time, translational elongation rate drops by as much as ∼90% at initial stage and recovers to its normal state later, a phenomenon resulting from the dramatic alteration in cellular tRNA pools during oxidative stress. However, translational elongation is completely stalled at a certain threshold-level of hydrogen peroxide, at which cells ultimately fail to resume growth. Although the mRNA transcription of oxidative defense genes in oxyR regulon is dramatically induced upon hydrogen peroxide treatment, the extreme slow-down of translational elongation during high levels of hydrogen peroxide has severely compromised the timely synthesis of those oxidative defense proteins. Our study demonstrates that the tRNA-limited translational elongation is a key physiological bottleneck that the bacteria must overcome to counteract ROS, and the maintenance of translational elongation rate for timely synthesis of stress defense proteins is crucial for cells to smoothly get over the oxidative stress.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| |
Collapse
|
4
|
Seregina TA, Nagornykh MO, Lobanov KV, Shakulov RS, Mironov AS. The New Role of СysB Transcription Factor in Cysteine Degradation and Production of Hydrogen Sulfide in E. coli. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418110145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Negl Trop Dis 2017; 11:e0005357. [PMID: 28358880 PMCID: PMC5373514 DOI: 10.1371/journal.pntd.0005357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. Methodology/ Principle findings To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode’s development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. Conclusions/ Significance This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies. Filarial nematodes currently infect millions of people worldwide and represent a leading cause of disability. Currently available medications are insufficient in reaching elimination of these parasites. Many filarial nematodes, including Brugia malayi, have an Achilles heel of sorts—that is their obligate symbiotic relationship with the bacteria Wolbachia. While it is known that the nematode and the bacteria are co-dependent, the molecular basis of this relationship remains poorly understood. Using deep sequencing, we profiled the transcriptomes of B. malayi and Wolbachia across the life cycle of the parasite to determine the functional pathways necessary for parasite survival provided by the co-expression of nematode and bacterial genes. Defining the mechanisms of endosymbiosis between these two organisms will allow for the exploitation of this relationship for the development of new intervention strategies.
Collapse
|
6
|
Vidovic S, Korber DR. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit Rev Microbiol 2014; 42:83-93. [PMID: 24601836 DOI: 10.3109/1040841x.2014.889654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.
Collapse
Affiliation(s)
- Sinisa Vidovic
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| | - Darren R Korber
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| |
Collapse
|
7
|
Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa. BMC Microbiol 2012; 12:290. [PMID: 23234440 PMCID: PMC3557215 DOI: 10.1186/1471-2180-12-290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background Leptospires lack many of the homologs for oxidative defense present in other bacteria, but do encode homologs of the Bacteriodes aerotolerance (Bat) proteins, which have been proposed to fulfill this function. Bat homologs have been identified in all families of the phylum Spirochaetes, yet a specific function for these proteins has not been experimentally demonstrated. Results We investigated the contribution of the Bat proteins in the model organism Leptospira biflexa for their potential contributions to growth rate, morphology and protection against oxidative challenges. A genetically engineered mutant strain in which all bat ORFs were deleted did not exhibit altered growth rate or morphology, relative to the wild-type strain. Nor could we demonstrate a protective role for the Bat proteins in coping with various oxidative stresses. Further, pre-exposing L. biflexa to sublethal levels of reactive oxygen species did not appear to induce a general oxidative stress response, in contrast to what has been shown in other bacterial species. Differential proteomic analysis of the wild-type and mutant strains detected changes in the abundance of a single protein only – HtpG, which is encoded by the gene immediately downstream of the bat loci. Conclusion The data presented here do not support a protective role for the Leptospira Bat proteins in directly coping with oxidative stress as previously proposed. L. biflexa is relatively sensitive to reactive oxygen species such as superoxide and H2O2, suggesting that this spirochete lacks a strong, protective defense against oxidative damage despite being a strict aerobe.
Collapse
|
8
|
|
9
|
Mi S, Song J, Lin J, Che Y, Zheng H, Lin J. Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol 2011; 49:890-901. [DOI: 10.1007/s12275-011-1099-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/27/2011] [Indexed: 12/23/2022]
|
10
|
Finnegan M, Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemother 2010; 65:2108-15. [DOI: 10.1093/jac/dkq308] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Daley JM, Zakaria C, Ramotar D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutat Res 2010; 705:217-27. [PMID: 20667510 DOI: 10.1016/j.mrrev.2010.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/03/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, 5415 de L'Assomption, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
12
|
Abstract
Bacterial isolates of the genus Xenorhabdus were shown to be extremely sensitive to photoproducts produced in a number of common media irradiated by fluorescent light. Two forms of toxic oxygen, hydrogen peroxide and superoxide radical, were produced in the media upon exposure to fluorescent light. The addition of pyruvate or catalase to the irradiated media eliminated the toxicity. The poor plating efficiencies previously reported for Xenorhabdus spp. are likely due to the uncontrolled exposure of media to ambient lighting.
Collapse
Affiliation(s)
- J Xu
- Department of Microbiology, Washington State University, Pullman, Washington 99164-4340
| | | |
Collapse
|
13
|
Kim K, Yang E, Vu GP, Gong H, Su J, Liu F, Lu S. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol 2010; 10:166. [PMID: 20529336 PMCID: PMC2897801 DOI: 10.1186/1471-2180-10-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied. RESULTS Using stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonella enterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice. CONCLUSIONS We have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other regulated proteins in supporting survival and replication of Salmonella under oxidative stress and during its systemic infection in vivo.
Collapse
Affiliation(s)
- Kihoon Kim
- University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Singlet oxygen is one of several reactive oxygen species that can destroy biomolecules, microorganisms and other cells. Traditionally, the response to singlet oxygen has been termed photo-oxidative stress, as light-dependent processes in photosynthetic cells are major biological sources of singlet oxygen. Recent work identifying a core set of singlet oxygen stress response genes across various bacterial species highlights the importance of this response for survival by both photosynthetic and non-photosynthetic cells. Here, we review how bacterial cells mount a transcriptional response to photo-oxidative stress in the context of what is known about bacterial stress responses to other reactive oxygen species.
Collapse
Affiliation(s)
- Eva C Ziegelhoffer
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
16
|
Iso-superoxide dismutase in Deinococcus grandis, a UV resistant bacterium. J Microbiol 2009; 47:172-7. [PMID: 19412601 DOI: 10.1007/s12275-008-0221-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 02/09/2009] [Indexed: 10/20/2022]
Abstract
Deinococcus grandis possesses two types of superoxide dismutase (SOD, E. C. 1.15.1.1.) that show distinct electrophoretic behavior, one that migrates slowly and the other that migrates rapidly (SOD-1 and SOD-2, respectively). In this study, SOD-1 was uniformly and abundantly detected, regardless of growth phase, whereas SOD-2 was not detected during early growth, but was detectable from the exponential growth phase. In addition, a substantial increase in SOD-2 was observed in cells that were treated with potassium superoxide or UV, which suggests that SOD-2 is an inducible protein produced in response to stressful environments. Insensitivity of SOD-1 to both H(2)O(2) and cyanide treatment suggests that SOD-1 is MnSOD. However, SOD-2 would be FeSOD, since it lost activity in response to H(2)O(2) treatment, but not to cyanide. Localization studies of D. grandis iso-SODs in sucrose-shocked cells suggest that SOD-1 is a membrane-associated enzyme, whereas SOD-2 is a cytosolic enzyme. In conclusion, SOD-1 seems to be an essential constitutive enzyme for viability and SOD-2 appears to be an inducible enzyme that is probably critical for survival upon UV irradiation and oxidative stress.
Collapse
|
17
|
Abstract
It has been known for many years that oxygen (O2) may have toxic effects on aerobically growing microorganisms, mainly due to the threat arising from reactive oxygen species (ROS). In submerged culture industrial fermentation processes, maintenance of adequate levels of O2 (usually measured as dissolved oxygen tension (DOT)) can often be critical to the success of the manufacturing process. In viscous cultures of filamentous cultures, actively respiring, supplying adequate levels of O2 to the cultures by conventional air sparging is difficult and various strategies have been adopted to improve or enhance O2 transfer. However, adoption of those strategies to maintain adequate levels of DOT, that is, to avoid O2 limitation, may expose the fungi to potential oxidative damage caused by enhanced flux through the respiratory system. In the past, there have been numerous studies investigating the effects of DOT on fungal bioprocesses. Generally, in these studies moderately enhanced levels of O2 supply resulted in improvement in growth, product formation and acceptable morphological changes, while the negative impact of higher levels of DOT on morphology and product synthesis were generally assumed to be a consequence of "oxidative stress." However, very little research has actually been focused on investigation of this implicit link, and the mechanisms by which such effects might be mediated within industrial fungal processes. To elucidate this neglected topic, this review first surveys the basic knowledge of the chemistry of ROS, defensive systems in fungi and the effects of DOT on fungal growth, metabolism and morphology. The physiological responses of fungal cells to oxidative stress imposed by artificial and endogenous stressors are then critically reviewed. It is clear that fungi have a range of methods available to minimize the negative impacts of elevated ROS, but also that development of the various defensive systems or responses, can itself have profound consequences upon many process-related parameters. It is also clear that many of the practically convenient and widely used experimental methods of simulating oxidative stress, for example, addition of exogenous menadione or hydrogen peroxide, have effects on fungal cultures quite distinct from the effects of elevated levels of O2, and care must thus be exercised in the interpretation of results from such studies. The review critically evaluates our current understanding of the responses of fungal cultures to elevated O2 levels, and highlights key areas requiring further research to remedy gaps in knowledge.
Collapse
Affiliation(s)
- Zhonghu Bai
- Strathclyde Fermentation Center, Department of Bioscience, Strathclyde University, Glasgow, UK
| | | | | |
Collapse
|
18
|
Partridge JD, Poole RK, Green J. The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. MICROBIOLOGY-SGM 2007; 153:1499-1509. [PMID: 17464064 DOI: 10.1099/mic.0.2006/004838-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli FNR protein is an oxygen-responsive global transcription factor, and OxyR is a key regulator of the peroxide stress response. Here both FNR and OxyR are shown to regulate expression of the E. coli yhjA gene. The yhjA gene encodes a predicted cytochrome c peroxidase, a bacterial haem-containing protein involved in the peroxide stress response through its ability to convert hydrogen peroxide to water. It is shown that the yhjA gene of E. coli possesses a class II FNR site and an OxyR site upstream of the yhjA transcript start. Expression of yhjA was found to be dependent on this unusual combination of FNR and OxyR under conditions of oxygen starvation. Phenotypic analysis of the yhjA mutant revealed increased sensitivity to exogenous hydrogen peroxide and organic peroxides during growth under anaerobic conditions, consistent with the observed regulation and predicted function of the yhjA gene product.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Shah IM, Wolf RE. Inhibition of Lon‐dependent degradation of the
Escherichia coli
transcription activator SoxS by interaction with ‘soxbox’ DNA or RNA polymerase. Mol Microbiol 2006; 60:199-208. [PMID: 16556231 DOI: 10.1111/j.1365-2958.2006.05086.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli SoxS, the direct transcription activator of the SoxRS (superoxide) regulon, is intrinsically unstable with an in vivo half-life of approximately 2 min. Overexpression of SoxS is lethal, but mutations interfering with DNA binding relieve the toxicity. Here, we determined the effects on the half-life of SoxS of alanine substitutions that confer defects in positive control, i.e. transcription activation, or in specific DNA binding. We found that both types of mutations render SoxS more unstable than the wild-type protein, as if 'soxbox' DNA and RNA polymerase serve as stabilizing ligands in vivo that protect SoxS from degradation by Lon, the protease shown previously to be primarily responsible for its turnover. Indeed, we found that the addition of soxbox DNA or RNA polymerase to an in vitro degradation system decreases the rate of SoxS proteolysis by Lon protease. To the best of our knowledge, these are the first examples of target DNA and RNA polymerase serving as ligands that inhibit the turnover of an unstable transcription activator.
Collapse
Affiliation(s)
- Ishita M Shah
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | |
Collapse
|
20
|
Shah IM, Wolf RE. Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues. J Mol Biol 2006; 357:718-31. [PMID: 16460757 DOI: 10.1016/j.jmb.2005.12.088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/22/2005] [Accepted: 12/30/2005] [Indexed: 11/26/2022]
Abstract
When Escherichia coli encounter redox-cycling compounds that endogenously generate superoxide, the cell's defense response is initiated by the de novo synthesis of SoxS, which then activates transcription of the genes of the SoxRS regulon. Recently, we showed that after the oxidative stress is relieved, the SoxRS system resets by an active process wherein SoxS synthesis ceases and the intrinsically unstable SoxS protein is rapidly degraded, primarily by Lon protease. Here, we use deletion mutants and a library of alanine-stretch mutants of the entire protein to identify the SoxS features responsible for Lon-dependent proteolysis in vivo. We found that the 17 amino acid residues at the SoxS N terminus play the primary role in protease recognition and that the addition of the N-terminal 21 residues of SoxS to the otherwise stable green fluorescent protein is sufficient to signal the chimera for Lon-dependent degradation. With a minimal in vitro degradation system, we confirm the intrinsic instability of SoxS and the sequence requirements for Lon-dependent degradation. Lastly, we demonstrate that the addition of a peptide comprised of the 21 N-terminal amino acid residues of SoxS is able to inhibit specifically the in vitro proteolysis of SoxS.
Collapse
Affiliation(s)
- Ishita M Shah
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | |
Collapse
|
21
|
Ridnour LA, Sim JE, Choi J, Dickinson DA, Forman HJ, Ahmad IM, Coleman MC, Hunt CR, Goswami PC, Spitz DR. Nitric oxide-induced resistance to hydrogen peroxide stress is a glutamate cysteine ligase activity-dependent process. Free Radic Biol Med 2005; 38:1361-71. [PMID: 15855054 DOI: 10.1016/j.freeradbiomed.2005.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 01/24/2005] [Accepted: 01/28/2005] [Indexed: 11/16/2022]
Abstract
Nitric oxide (*NO) is a reactive nitrogen species known to be involved in cytotoxic processes. Cells respond to cytotoxic injury by stress response induction leading to the development of cellular resistance. This report describes an *NO-induced stress response in Chinese hamster fibroblasts (HA1), which leads to glutathione synthesis-dependent resistance to H2O2-mediated oxidative stress. The development of resistance to H2O2 was completely abolished by the inhibition of glutamate cysteine ligase (GCL) during the first 8 h of recovery after *NO exposure. Altered thiol metabolism was observed immediately after *NO exposure as demonstrated by up to 75% decrease in intracellular thiol pools (glutathione, gamma-glutamylcysteine, and cysteine), which then reaccumulated during the *NO-mediated development of resistance. Immunoreactive protein and activity associated with GCL decreased immediately after exposure to *NO and then reaccumulated during the development of resistance to H2O2 challenge. Moreover, compared to N2 controls the activity levels of GCL in *NO-exposed cells increased approximately twofold 24 h after H2O2 challenge. These results demonstrate that *NO exposure is capable of inducing an adaptive response to H2O2-mediated oxidative stress in mammalian cells, which involves alterations in thiol metabolism and is dependent upon glutathione synthesis and increased GCL activity.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Boulevard, Room 411, St. Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P. Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver; Bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 2005; 98:1054-60. [PMID: 15149815 DOI: 10.1016/j.jinorgbio.2004.02.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 01/26/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
An activated carbon fibre supporting silver (ACF(Ag)) was tested for its antibacterial capacity against Escherichia coli (E. coli). Water that has passed through ACF(Ag) demonstrated strong bactericidal ability. This activity decreased over the time suggesting that generated bactericidal species were short lifespan. Since formation of reactive oxygen species (ROS) might be catalysed by silver impregnated and/or ACF itself, implication of ROS and silver was evaluated by the use of ROS scavengers and a silver ions neutralizing agent. The role of ROS in the E. coli mortality was confirmed by the use of a molecular approach which revealed a strong expression of oxidative stress genes.
Collapse
Affiliation(s)
- H Le Pape
- UMR 1061 INRA-Université, Universite de Limoges, Institut des Sciences de la Vie et de la Santé, 123 avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | |
Collapse
|
23
|
Griffith KL, Shah IM, Wolf RE. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 2004; 51:1801-16. [PMID: 15009903 DOI: 10.1046/j.1365-2958.2003.03952.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the SoxRS regulon confers resistance to redox-cycling compounds, and the Mar regulon provides a defence against multiple antibiotics. The response regulators, SoxS and MarA, are synthesized de novo in response to their inducing signals and directly activate transcription of a common set of target genes. Although the mechanisms of transcription activation by SoxS and MarA have been well studied, little is known about how the systems are shut-off once the inducing stress has subsided, except that de novo synthesis of the regulators is known to cease almost immediately. Here, we induced the SoxRS regulon and determined that, upon removal of the inducer, expression of the regulon's genes quickly returns to the preinduced level. This rapid shut-off indicates that the system is reset by an active process. We found that SoxS is unstable and infer that SoxS degradation is responsible for the rapid return of the system to the ground state upon removal of the inducing signal. We also found that MarA is unstable and that the instability of both proteins is intrinsic and unregulated. We used null mutations of protease genes to identify the proteases involved in the degradation of SoxS and MarA. Among single protease mutations, only lon mutations increased the half-life of SoxS and MarA. In addition, SoxS appeared to be nearly completely stable in a lon ftsH double mutant. Using hexahistidine tags placed at the respective ends of the activators, we found that access to the amino-terminus is essential for the proteolytic degradation.
Collapse
Affiliation(s)
- Kevin L Griffith
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
24
|
Mostertz J, Scharf C, Hecker M, Homuth G. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. MICROBIOLOGY-SGM 2004; 150:497-512. [PMID: 14766928 DOI: 10.1099/mic.0.26665-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive soil bacterium Bacillus subtilis responds to oxidative stress by the activation of different cellular defence mechanisms. These are composed of scavenging enzymes as well as protection and repair systems organized in highly sophisticated networks. In this study, the peroxide and the superoxide stress stimulons of B. subtilis were characterized by means of transcriptomics and proteomics. The results demonstrate that oxidative-stress-responsive genes can be classified into two groups. One group encompasses genes which show similar expression patterns in the presence of both reactive oxygen species. Examples are members of the PerR and the Fur regulon which were induced by peroxide and superoxide stress. Similarly, both kinds of stress stimulated the activation of the stringent response. The second group is composed of genes primarily responding to one stimulus, like the members of the SOS regulon which were particularly upregulated in the presence of peroxide, and many genes involved in sulfate assimilation and methionine biosynthesis which were only induced by superoxide. Several genes encoding proteins of unknown function could be assigned to one of these groups.
Collapse
Affiliation(s)
- Jörg Mostertz
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | - Christian Scharf
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | - Georg Homuth
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
25
|
Ishchenko AA, Sanz G, Privezentzev CV, Maksimenko AV, Saparbaev M. Characterisation of new substrate specificities of Escherichia coli and Saccharomyces cerevisiae AP endonucleases. Nucleic Acids Res 2003; 31:6344-53. [PMID: 14576322 PMCID: PMC275454 DOI: 10.1093/nar/gkg812] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite the progress in understanding the base excision repair (BER) pathway it is still unclear why known mutants deficient in DNA glycosylases that remove oxidised bases are not sensitive to oxidising agents. One of the back-up repair pathways for oxidative DNA damage is the nucleotide incision repair (NIR) pathway initiated by two homologous AP endonucleases: the Nfo protein from Escherichia coli and Apn1 protein from Saccharomyces cerevisiae. These endonucleases nick oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to repair of the remaining 5'-dangling nucleotide. NIR provides an advantage compared to DNA glycosylase-mediated BER, because AP sites, very toxic DNA glycosylase products, do not form. Here, for the first time, we have characterised the substrate specificity of the Apn1 protein towards 5,6-dihydropyrimidine, 5-hydroxy-2'-deoxyuridine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine deoxynucleotide. Detailed kinetic comparisons of Nfo, Apn1 and various DNA glycosylases using different DNA substrates were made. The apparent K(m) and kcat/K(m) values of the reactions suggest that in vitro DNA glycosylase/AP lyase is somewhat more efficient than the AP endonuclease. However, in vivo, using cell-free extracts from paraquat-induced E.coli and from S.cerevisiae, we show that NIR is one of the major pathways for repair of oxidative DNA base damage.
Collapse
Affiliation(s)
- Alexander A Ishchenko
- Groupe Réparation de l'ADN, UMR 8113 CNRS, LBPA ENS Cachan, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Hung SP, Baldi P, Hatfield GW. Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 2002; 277:40309-23. [PMID: 12130640 DOI: 10.1074/jbc.m204044200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a global regulatory protein that affects the expression of multiple genes and operons in bacteria. Although the physiological purpose of Lrp-mediated gene regulation remains unclear, it has been suggested that it functions to coordinate cellular metabolism with the nutritional state of the environment. The results of gene expression profiles between otherwise isogenic lrp(+) and lrp(-) strains of Escherichia coli support this suggestion. The newly discovered Lrp-regulated genes reported here are involved either in small molecule or macromolecule synthesis or degradation, or in small molecule transport and environmental stress responses. Although many of these regulatory effects are direct, others are indirect consequences of Lrp-mediated changes in the expression levels of other global regulatory proteins. Because computational methods to analyze and interpret high dimensional DNA microarray data are still an early stage, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe a Bayesian statistical framework for a posterior estimate of the standard deviation of gene measurements based on a limited number of replications. We also describe an algorithm to compute a posterior estimate of differential expression for each gene based on the experiment-wide global false positive and false negative level for a DNA microarray data set. This allows the experimenter to compute posterior probabilities of differential expression for each individual differential gene expression measurement.
Collapse
Affiliation(s)
- She-pin Hung
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
27
|
Zahrt TC, Deretic V. Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid Redox Signal 2002; 4:141-59. [PMID: 11970850 DOI: 10.1089/152308602753625924] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The production of reactive oxygen and reactive nitrogen intermediates is an important host defense mechanism mediated in response to infection by bacterial pathogens. Not surprisingly, intracellular pathogens have evolved numerous defense strategies to protect themselves against the damaging effects of these agents. In enteric bacteria, exposure to oxidative or nitrosative stress induces expression of numerous pathways that allow the bacterium to resist the toxic effects of these compounds during growth in the host. In contrast, members of pathogenic mycobacterial species, including the frank human pathogens Mycobacterium tuberculosis and Mycobacterium leprae, are dysfunctional in aspects of the oxidative and nitrosative stress response, yet they remain able to establish and maintain productive acute and persistent infections in the host. This article reviews the current knowledge regarding reactive oxygen and nitrogen intermediates, and compares the adaptative mechanisms utilized by enteric organisms and mycobacterial species to resist the bactericidal and bacteriostatic effects resulting from exposure to these compounds.
Collapse
Affiliation(s)
- Thomas C Zahrt
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | | |
Collapse
|
28
|
Hosfield DJ, Daniels DS, Mol CD, Putnam CD, Parikh SS, Tainer JA. DNA damage recognition and repair pathway coordination revealed by the structural biochemistry of DNA repair enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:315-47. [PMID: 11554309 DOI: 10.1016/s0079-6603(01)68110-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have evolved distinct mechanisms for both preventing and removing mutagenic and lethal DNA damage. Structural and biochemical characterization of key enzymes that function in DNA repair pathways are illuminating the biological and chemical mechanisms that govern initial lesion detection, recognition, and excision repair of damaged DNA. These results are beginning to reveal a higher level of DNA repair coordination that ensures the faithful repair of damaged DNA. Enzyme-induced DNA distortions allow for the specific recognition of distinct extrahelical lesions, as well as tight binding to cleaved products, which has implications for the ordered transfer of unstable DNA repair intermediates between enzymes during base excision repair.
Collapse
Affiliation(s)
- D J Hosfield
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Manchado M, Michán C, Pueyo C. Hydrogen peroxide activates the SoxRS regulon in vivo. J Bacteriol 2000; 182:6842-4. [PMID: 11073934 PMCID: PMC111432 DOI: 10.1128/jb.182.23.6842-6844.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2000] [Accepted: 09/12/2000] [Indexed: 11/20/2022] Open
Abstract
By multiplex reverse transcription-PCR, we demonstrate that the SoxRS response, which protects cells against superoxide toxicity, is triggered also by hydrogen peroxide. SoxR-dependent inductions of 7. 3-, 7.6-, 4.6-, 2.2-, and 2.6-fold were quantified for soxS, micF, sodA, inaA, and fpr transcripts, respectively. This finding suggests an extensive and tight connectivity between different regulatory pathways in the Escherichia coli response to oxidative stress.
Collapse
Affiliation(s)
- M Manchado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
30
|
Mol CD, Hosfield DJ, Tainer JA. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mutat Res 2000; 460:211-29. [PMID: 10946230 DOI: 10.1016/s0921-8777(00)00028-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo IV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways.
Collapse
Affiliation(s)
- C D Mol
- Department of Molecular Biology, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | |
Collapse
|
31
|
Abstract
All aerobic organisms have mechanisms that protect against oxidative compounds. Catalase, peroxidase, superoxide dismutase, glutathione, and thioredoxin are widely distributed in many taxa and constitute elements of a nearly ubiquitous antioxidant metabolic strategy. Interestingly, the regulatory mechanisms that control these elements are rather different depending on the nature of the oxidative stress and the organism. Catalase is well documented to play an important role in protecting cells from oxidative stress. In particular, pathogenic bacteria seem to use this enzyme as a defensive tool against attack by the host. To investigate the significance of catalase in hostile environments, we made catalase deletion mutations in two different B. abortus strains and used two-dimensional gel analysis, survival tests, and adaptation experiments to explore the behavior and role of catalase under several oxidative stress conditions. These studies show that B. abortus strains that do not express catalase activity exhibit increased sensitivity to hydrogen peroxide. We also demonstrate that catalase expression is regulated in this species, and that preexposure to a sublethal concentration of hydrogen peroxide allows B. abortus to adapt so as to survive subsequent exposure to higher concentrations of hydrogen peroxide.
Collapse
Affiliation(s)
- J A Kim
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
32
|
Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 1999; 98:397-408. [PMID: 10458614 DOI: 10.1016/s0092-8674(00)81968-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endonuclease IV is the archetype for a conserved apurinic/apyrimidinic (AP) endonuclease family that primes DNA repair synthesis by cleaving the DNA backbone 5' of AP sites. The crystal structures of Endonuclease IV and its AP-DNA complex at 1.02 and 1.55 A resolution reveal how an alpha8beta8 TIM barrel fold can bind dsDNA. Enzyme loops intercalate side chains at the abasic site, compress the DNA backbone, bend the DNA approximately 90 degrees, and promote double-nucleotide flipping to sequester the extrahelical AP site in an enzyme pocket that excludes undamaged nucleotides. These structures suggest three Zn2+ ions directly participate in phosphodiester bond cleavage and prompt hypotheses that double-nucleotide flipping and sharp bending by AP endonucleases provide exquisite damage specificity while aiding subsequent base excision repair pathway progression.
Collapse
Affiliation(s)
- D J Hosfield
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Liochev SI, Benov L, Touati D, Fridovich I. Induction of the soxRS regulon of Escherichia coli by superoxide. J Biol Chem 1999; 274:9479-81. [PMID: 10092630 DOI: 10.1074/jbc.274.14.9479] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The soxRS regulon orchestrates a multifaceted defense against oxidative stress, by inducing the transcription of approximately 15 genes. The induction of this regulon by redox agents, known to mediate O-2 production, led to the view that O-2 is one signal to which it responds. However, redox cycling agents deplete cellular reductants while producing O-2, and one may question whether the regulon responds to the depletion of some cytoplasmic reductant or to O-2, or both. We demonstrate that raising [O-2] by mutational deletion of superoxide dismutases and/or by addition of paraquat, both under aerobic conditions, causes induction of a member of the soxRS regulon and that a mutational defect in soxRS eliminates that induction. This establishes that O-2, directly or indirectly, can cause induction of this defensive regulon.
Collapse
Affiliation(s)
- S I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Tribble DL, Gong EL, Leeuwenburgh C, Heinecke JW, Carlson EL, Verstuyft JG, Epstein CJ. Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Arterioscler Thromb Vasc Biol 1997; 17:1734-40. [PMID: 9327771 DOI: 10.1161/01.atv.17.9.1734] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies in vitro have shown that copper-zinc superoxide dismutase (CuZn-SOD) inhibits a number of events putatively involved in atherogenesis, including cell-mediated oxidation of LDL. To investigate whether increased activity of CuZn-SOD reduces atherogenesis in vivo, we examined diet-induced fatty streak formation in CuZn-SOD transgenic mice (n = 24) as compared with their nontransgenic littermates (n = 28). Transgenic animals were originally created by introduction of an EcoRI-BamHI human genomic DNA fragment containing the CuZn-SOD gene and its regulatory elements into B6SJL zygotes. For the current studies, the transgene was bred for 12 generations into the atherosclerosis-susceptible C57BL/6 background. Animals were fed atherogenic diets (15% fat, 1.25% cholesterol, 0.5% Na cholate) starting at 100 weeks of age and extending for 18 weeks. At the end of the diet period, aortic SOD activity was two-fold higher in transgenics than nontransgenics (mean +/- SE: 46.7 +/- 5.8 versus 20.1 +/- 2.4 units/mg of protein, P < .001). Levels of protein-bound amino acid oxidation products (meta-, ortho-, and dityrosine) were either similar or lower in aorta and heart from transgenics as compared with nontransgenics, suggesting that amplification of CuZn-SOD activity above the normal complement had modest inhibitory effects on basal oxidative stress in these tissues. CuZn-SOD overexpression did not reduce the extent of lesion development as analyzed by quantitative lipid staining of serial sections of the proximal aorta; mean lesion areas (+/- SE) were 997 +/- 478 and 943 +/- 221 mu 2 in transgenics and nontransgenics, respectively. Notably, the range of values for lesion area was 2.2-fold greater in transgenics (0-8403 versus 0-3868 mu 2 in nontransgenics). Moreover, within this group, lesion area showed a significant positive correlation with SOD activity (r = .611, P < .03). These results do not support an antiatherogenic effect of Cu-Zn-SOD over expression and raise the possibility that high tissue SOD activity may potentiate atherogenesis in fat-fed atherosclerosis-susceptible mice [corrected].
Collapse
Affiliation(s)
- D L Tribble
- Department of Molecular and Nuclear Medicine, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Antelmann H, Bernhardt J, Schmid R, Mach H, Völker U, Hecker M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997; 18:1451-63. [PMID: 9298659 DOI: 10.1002/elps.1150180820] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Data on the identification of proteins of Bacillus subtilis on two-dimensional (2-D) gels as well as their regulation are summarized and the identification of 56 protein spots is included. The pattern of proteins synthesized in Bacillus subtilis during exponential growth, during starvation for glucose or phosphate, or after the imposition of stresses like heat shock, salt- and ethanol stress as well as oxidative stress was analyzed. N-terminal sequencing of protein spots allowed the identification of 93 proteins on 2-D gels, which are required for the synthesis of amino acids and nucleotides, the generation of ATP, for glycolyses, the pentose phosphate cycle, the citric acid cycle as well as for adaptation to a variety of stress conditions. A computer-aided analysis of the 2-D gels was used to monitor the synthesis profile of more than 130 protein spots. Proteins performing housekeeping functions during exponential growth displayed a reduced synthesis rate during stress and starvation, whereas spots induced during stress and starvation were classified as specific stress proteins induced by a single stimulus or a group of related stimuli, or as general stress proteins induced by a variety of entirely different stimuli. The analysis of mutants in global regulators was initiated in order to establish a response regulation map for B. subtilis. These investigations demonstrated that the alternative sigma factor sigma B is involved in the regulation of almost all of the general stress proteins and that the phoPR two-component system is required for the induction of a large part but not all of the proteins induced by phosphate starvation.
Collapse
Affiliation(s)
- H Antelmann
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie und Molekularbiologie, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Cash P, Argo E, Langford PR, Kroll JS. Development of a Haemophilus two-dimensional protein database. Electrophoresis 1997; 18:1472-82. [PMID: 9298661 DOI: 10.1002/elps.1150180822] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the Haemophilus genus are responsible for various human infections including respiratory infections and meningitis. The complete nucleotide sequence of the Rd strain of Haemophilus influenzae has been reported and represents a valuable resource to investigate gene expression within this bacterial group. We described previously the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to characterise the proteins of Haemophilus influenzae (Cash et al., Electrophoresis 1995, 16, 135-148). We have extended these data with comparative studies of the proteins from other members of the Haemophilus genus (specifically H. parainfluenzae, H. haemolyticus and H. parahaemolyticus) to identify homologous proteins and, by extension, the genes encoding them, among these bacteria. The proteins extracted from each of these bacterial isolates were compared by coelectrophoresis to the 2-D protein profile of the reference nontypable strain of H. influenzae (HI-64443) used as the basis for the 2-D protein database. A composite reference 2-D protein profile of HI-64443 was derived from three independent analyses of the soluble bacterial proteins. Between 21% and 37% of the HI-64443 proteins from the reference 2-D protein profile comigrated with proteins in the other isolates from the Haemophilus genus. This compared with 62% and 64% comigration when HI-64443 was compared with the Eagan and Rd strains of H. influenzae, respectively. The 2-D protein profile of the Rd strain of H. influenzae was compared to that of HI-64443 by coelectrophoresis; 64% of the proteins detected for the Rd strain comigrated with proteins found for HI-64443 when analysed in parallel. The capacity of 2-D PAGE to investigate global interactions of gene expression was applied to the analysis of superoxide dismutase (SOD) expression in H. influenzae strain Eagan. A "knock-out" mutant in the sodA gene which encodes [Mn]-SOD was characterised with respect to protein synthesis compared to the parental isolate. From these analyses, the primary product of sodA was provisionally identified as a protein with a molecular mass of 25500 Da and an estimated pI of 6.55. Quantitative changes in the expression of two other proteins in the SOD mutant were detected by comparison with the parental isolate. These data are discussed in relation to the development of a 2-D protein database for H. influenzae and related bacteria to investigate genome homologies and gene expression.
Collapse
Affiliation(s)
- P Cash
- Department of Medical Microbiology, University of Aberdeen, Foresterhill, UK.
| | | | | | | |
Collapse
|
38
|
Membrillo-Hernández J, Kim SO, Cook GM, Poole RK. Paraquat regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12 is SoxRS independent but modulated by sigma S. J Bacteriol 1997; 179:3164-70. [PMID: 9150210 PMCID: PMC179093 DOI: 10.1128/jb.179.10.3164-3170.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the first example of a gene, hmp, encoding a soluble flavohemoglobin in Escherichia coli K-12, which is up-regulated by paraquat in a SoxRS-independent manner. Unlike what is found for other paraquat-inducible genes, high concentrations of paraquat (200 microM) were required to increase the level of hmp expression, and maximal induction was observed only after 20 min of exposure to paraquat. Neither a mutation in soxS nor one in soxR prevented the paraquat-dependent increase in phi(hmp-lacZ) expression, but either mutant allele delayed full expression of phi(hmp-lacZ) activity after paraquat addition. Induction of hmp by paraquat was demonstrated in aerobically grown cultures during exponential growth and the stationary phase, thus revealing two Sox-independent regulatory mechanisms. Induction of hmp by paraquat in the stationary phase was dependent on the global regulator of stationary-phase gene expression, RpoS (sigma S). However, a mutation in rpoS did not prevent an increase in hmp expression by paraquat in exponentially growing cells. Induction of sigma S in the exponential phase by heat shock also induced phi(hmp-lacZ) expression in the presence of paraquat, supporting the role of sigma S in one of the regulatory mechanisms. Mutations in oxyR or rob, known regulators of several stress promoters in E. coli, had no effect on the induction of hmp by paraquat. Other known superoxide-generating agents (plumbagin, menadione, and phenazine methosulfate) were not effective in inducing hmp expression.
Collapse
Affiliation(s)
- J Membrillo-Hernández
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, United Kingdom
| | | | | | | |
Collapse
|
39
|
Liochev SI, Fridovich I. Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:2891-6. [PMID: 9096317 PMCID: PMC20293 DOI: 10.1073/pnas.94.7.2891] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lucigenin and paraquat are similar in that each can be taken into Escherichia coli and can then mediate O2.- production by cycles of univalent reduction, to the corresponding monocation radical, followed by autoxidation. Thus, both compounds caused induction of enzymes that are regulated by the soxRS regulon. The lucigenin cation radical has the added property of reacting with O2.-, in a radical-radical addition, to yield an unstable dioxetane, whose decomposition yields light. Superoxide dismutases (SOD), by decreasing [O2.-], inhibit light production and to the same degree inhibit other O2.(-)-dependent reactions in the cell. Lucigenin luminescence was used to show that the levels of SOD in the parental strain provide approximately 95% protection of all O2.(-)-sensitive targets in E. coli. This degree of protection was so close to the limit of 100% that halving the parental level of [SOD], or increasing it 5-fold, had only marginal effects on the intensity of lucigenin-dependent luminescence.
Collapse
Affiliation(s)
- S I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Laurent-Winter C, Ngo S, Danchin A, Bertin P. Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response--identification of targets by two-dimensional electrophoresis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:767-73. [PMID: 9108246 DOI: 10.1111/j.1432-1033.1997.00767.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The histone-like nucleoid-structuring protein, H-NS, is a major bacterial chromatin component which influences DNA structure and gene expression. Mutations in hns, the structural gene of H-NS protein, have been shown to result in highly pleiotropic effects in Escherichia coli cells. In this study, we have initiated an index of the proteins whose synthesis is, directly or indirectly regulated by H-NS. Using two-dimensional gel electrophoresis, we have examined the global changes in gene expression which occured in an hns background compared with its wild-type parent. In addition, we analysed the effects of mutations in two other genes i.e. lrp and pta, which are also involved in global regulatory pathways. Although these comparative analyses revealed several common differences, thus suggesting possible interactions between these regulatory mechanisms, i.e. H-NS, Lrp (leucine-responsive regulatory protein) and acetylphosphate, the most extensive modifications occurred in an hns mutant. Among the polypeptides whose level of synthesis was specifically altered in an hns mutant, several corresponded to H-NS targets previously identified by classical selection methods. Moreover, the present study allows us to characterize several H-NS targets, which were identified either by comparison with the E. coli two-dimensional reference maps or by microsequencing procedure. Many of these newly identified polypeptides are involved in adaptation of E. coli cells to environmental challenges, and one of them could be involved in bacterial virulence. Finally, synthesis of several proteins belonging to the heat-shock regulon, more particularly molecular chaperones, was induced in an hns mutant.
Collapse
Affiliation(s)
- C Laurent-Winter
- Laboratoire d'Electrophorèse Bidimensionnelle, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
41
|
Rocha ER, Selby T, Coleman JP, Smith CJ. Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol 1996; 178:6895-903. [PMID: 8955312 PMCID: PMC178591 DOI: 10.1128/jb.178.23.6895-6903.1996] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the addition of exogenous hydrogen peroxide. As determined by autoradiography after two-dimensional gel electrophoresis, approximately 28 newly synthesized proteins were detected in response to oxidative conditions. These proteins were found to have a broad range of pI values (from 5.1 to 7.2) and molecular weights (from 12,000 to 79,000). The hydrogen peroxide- and paraquat-inducible responses were similar but not identical to that induced by oxygen as seen by two-dimensional gel protein profile. Eleven of the oxidative response proteins were closely related, with pI values and molecular weights from 5.1 to 5.8 and from 17,000 to 23,000, respectively. As a first step to understanding the resistance to oxygen, a catalase-deficient mutant was constructed by allelic gene exchange. The katB mutant was found to be more sensitive to the lethal effects of hydrogen peroxide than was the parent strain when the ferrous iron chelator bipyridyl was added to culture media. This suggests that the presence of ferrous iron in anaerobic culture media exacerbates the toxicity of hydrogen peroxide and that the presence of a functional catalase is important for survival in the presence of hydrogen peroxide. Further, the treatment of cultures with a sublethal concentration of hydrogen peroxide was necessary to induce resistance to higher concentrations of hydrogen peroxide in the parent strain, suggesting that this was an inducible response. This was confirmed when the bacterial culture, treated with chloramphenicol before the cells were exposed to a sublethal concentration of peroxide, completely lost viability. In contrast, cell viability was greatly preserved when protein synthesis inhibition occurred after peroxide induction. Complementation of catalase activity in the mutant restored the ability of the mutant strain to survive in the presence of hydrogen peroxide, showing that the catalase (KatB) may play a role in oxidative stress resistance in aerotolerant anaerobic bacteria.
Collapse
Affiliation(s)
- E R Rocha
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | | | | |
Collapse
|
42
|
Koh YS, Choih J, Lee JH, Roe JH. Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:591-8. [PMID: 8709966 DOI: 10.1007/bf02173649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We isolated a promoter that is inducible by paraquat, a superoxide-generating agent, from Escherichia coli using the promoter-probe plasmid pRS415. Sequence analysis revealed that the promoter derives from the ribA gene encoding GTP cyclohydrolase II, which is the first enzyme in the biosynthetic pathway of riboflavin. We fused the lacZ gene with the ribA promoter to monitor the expression of the gene in the single-copy state. LacZ expression from the ribA promoter was induced about eight-fold by 200 microM paraquat. Other known superoxide generators, menadione and plumbagin, also induced the expression of beta-galactosidase in the fusion strain. On the other hand, no significant induction was observed following treatment with hydrogen peroxide, ethanol or heat shock. Induction of beta-galactosidase was significantly reduced by the introduction of a delta sox-8::cat or soxS3::Tn10 mutation into the fusion strain, indicating that the ribA gene is a member of the soxRS regulon. The transcriptional start site was determined by primer extension analysis and putative binding sites for SoxS in both orientations were identified. GTP cyclohydrolase II activity in soluble extracts of E. coli increased more than three-fold on treatment with paraquat. This increase was dependent on the soxRS locus, and reflects the increase in transcript levels. However, flavin pools did not change significantly. A possible role for ribA induction during superoxide stress is discussed.
Collapse
Affiliation(s)
- Y S Koh
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
43
|
Garbe TR, Hibler NS, Deretic V. Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates. Mol Med 1996; 2:134-42. [PMID: 8900541 PMCID: PMC2230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is a significant human pathogen capable of replicating in mononuclear phagocytic cells. Exposure to reactive oxygen and nitrogen intermediates is likely to represent an important aspect of the life cycle of this organism. The response of M. tuberculosis to these agents may be of significance for its survival in the host. MATERIALS AND METHODS Patterns of de novo proteins synthesized in M. tuberculosis H37Rv exposed to compounds that generate reactive oxygen and nitrogen intermediates were studied by metabolic labeling and two-dimensional electrophoresis. RESULTS Menadione, a redox cycling compound which increases intracellular superoxide levels, caused enhanced synthesis of seven polypeptides, six of which appeared to be heat shock proteins. Chemical release of nitric oxide induced eight polypeptides of which only one could be identified as a heat shock protein. Nitric oxide also exhibited a mild inhibitory action on general protein synthesis in the concentration range tested. Hydrogen peroxide did not cause differential gene expression and exerted a generalized inhibition in a dose-dependent manner. Cumene hydroperoxide caused mostly inhibition but induction of two heat shock proteins was detectable. CONCLUSIONS The presented findings indicate major differences between M. tuberculosis and the paradigms of oxidative stress response in enteric bacteria, and are consistent with the multiple lesions found in oxyR of this organism. The effect of hydrogen peroxide, which in Escherichia coli induces eight polypeptides known to be controlled by the central regulator oxyR, appears to be absent in M. tuberculosis. Superoxide and nitric oxide responses, which in E. coli overlap and are controlled by the same regulatory system soxRS, represent discrete and independent phenomena in M. tuberculosis.
Collapse
Affiliation(s)
- T R Garbe
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7739, USA
| | | | | |
Collapse
|
44
|
Response of Mycobacterium tuberculosis to Reactive Oxygen and Nitrogen Intermediates. Mol Med 1996. [DOI: 10.1007/bf03402209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
45
|
Hanawa T, Yamamoto T, Kamiya S. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect Immun 1995; 63:4595-9. [PMID: 7591111 PMCID: PMC173660 DOI: 10.1128/iai.63.12.4595-4599.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular pathogen which is able to survive and grow within phagocytic cells. Some facultative intracellular bacteria have been shown to respond to the hostile environment within phagocytic cells by producing a set of stress proteins. Since L. monocytogenes has a mechanism for intracellular survival that is distinct from those of other bacteria, we studied the phenotypic response of the bacterium to phagocytosis by macrophages. After phagocytosis of L. monocytogenes EGD by J774-1 macrophage cells, the microorganism rapidly increased in numbers about 20-fold during an incubation period of 5 h. In this phase of phagocytosis, the selective induction of 32 proteins was observed by two-dimensional gel electrophoresis. The responses to the environmental stresses of heat and hydrogen peroxide were also studied, and it was found that 14 heat shock proteins and 13 oxidative stress proteins were induced. Five of the induced proteins were common to both heat and oxidative stresses. By amino acid sequencing analysis, homologs of DnaK and GroEL were confirmed among the heat shock proteins. A comparison of the autoradiograms of the two-dimensional gels revealed that none of these stress proteins were among the proteins induced by L. monocytogenes within the macrophages. This behavior is entirely different from that shown by other facultative intracellular pathogens. Stress proteins known to be induced by environmental stresses were absent in intracellularly grown L. monocytogenes in the present study. This absence could be due to the mechanism by which the microorganisms rapidly escape from this stressful environment at a very early phase of phagocytosis.
Collapse
Affiliation(s)
- T Hanawa
- Department of Microbiology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Koh YS, Roe JH. Isolation of a novel paraquat-inducible (pqi) gene regulated by the soxRS locus in Escherichia coli. J Bacteriol 1995; 177:2673-8. [PMID: 7751275 PMCID: PMC176936 DOI: 10.1128/jb.177.10.2673-2678.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have isolated promoters inducible by paraquat, a superoxide radical-generating agent, from Escherichia coli, using promoter-probing plasmid pJAC4 (Y.S. Koh and J.H. Roe, Korean J. Microbiol. 31:267-273, 1993). One promoter clone pqi-5 (pqi denotes paraquat-inducible gene) was mapped at 21.8 min on the E. coli chromosome by using the Kohara phage library. We constructed an operon fusion of the lacZ gene with the pqi-5 promoter to monitor the expression of the gene in the single-copy state. LacZ expression was induced about 7- to 13-fold by 77 to 780 microM paraquat. Other known superoxide generators such as menadione, phenazine methosulfate, and plumbagin also induced the expression of beta-galactosidase in this fusion strain. On the other hand, no significant induction was observed with treatment with hydrogen peroxide, ethanol, and heat shock. Induction of beta-galactosidase was significantly reduced by introducing a delta sox-8::cat or soxS3::Tn10 mutation into the fusion strain, indicating that pqi-5 is a member of the soxRS regulon. A DNA fragment containing the pqi-5 promoter was cloned and sequenced from the Kohara phage E2E5. We identified two pqi-5 open reading frames (ORFs); ORF-A encodes a predicted protein of 342 amino acids, and ORF-B is truncated at the cloning site. The transcription start site from the pqi-5 promoter was determined by primer extension and S1 nuclease protection analyses. Northern (RNA) and S1 analyses indicated that there are two kinds of pqi-5 transcript; one covers ORF-A only and the other covers ORF-A and possibly also ORF-B.
Collapse
Affiliation(s)
- Y S Koh
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | |
Collapse
|
47
|
Nunoshiba T, Demple B. A cluster of constitutive mutations affecting the C-terminus of the redox-sensitive SoxR transcriptional activator. Nucleic Acids Res 1994; 22:2958-62. [PMID: 8065907 PMCID: PMC310261 DOI: 10.1093/nar/22.15.2958] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation of Escherichia coli oxidative stress regulon genes (sodA, zwf, fumC, nfo, etc.) is mediated by a two-stage regulatory system: the redox-sensitive SoxR protein transcriptionally activates the soxS gene, whose product then stimulates transcription of the regulon genes. Previous experiments showed that limited 3' truncation of soxR gene causes constitutive soxRS expression. DNA sequence analysis of the soxR genes from the soxRS-constitutive strains isolated originally (Greenberg et al. (1990) Proc. Natl. Acad. Sci. USA 87, 6181-6185) revealed that three alleles encode amino acid substitutions or a chain termination clustered near the C-terminus of SoxR. Two other single-amino-acid substitutions in constitutive alleles mapped to the helix-turn-helix motif and to a region of unknown function in the center of the polypeptide, respectively. No constitutive mutation was found within the region encoding the cysteines of the SoxR FeS center, in the soxR or soxS promoters, or in the soxS structural gene. Since an in-frame deletion of just nine SoxR residues (136-144; full-length SoxR = 154 residues) gave rise to a powerful constitutive allele, it appears that a small segment of the SoxR C-terminus maintains the protein in the inactive state. Conservely, an intact C-terminus is evidently not required for gene activation by SoxR.
Collapse
Affiliation(s)
- T Nunoshiba
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115
| | | |
Collapse
|
48
|
Volkert MR, Loewen PC, Switala J, Crowley D, Conley M. The delta (argF-lacZ)205(U169) deletion greatly enhances resistance to hydrogen peroxide in stationary-phase Escherichia coli. J Bacteriol 1994; 176:1297-302. [PMID: 8113168 PMCID: PMC205192 DOI: 10.1128/jb.176.5.1297-1302.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we demonstrate that a strain bearing the delta (argF-lacZ)205(U169) deletion exhibits a high level of resistance to hydrogen peroxide compared with its undeleted parent. Our initial investigation of the mechanism behind the observed differences in peroxide resistance when parent and mutant strains are compared indicates that the parent strain carries a region near argF that is responsible for the H2O2-sensitive phenotype, which we have named katC. The H2O2 resistance phenotype of the delta katC [delta (argF-lacZ)205(U169)] mutant strain can be duplicated by Tn9 insertion in a specific locus (katC5::Tn9) which maps near argF. The increased H2O2 resistance of the delta katC and katC5::Tn9 mutant strains can be seen only when cells are grown to stationary phase; exponential-phase cells are unaffected by the presence or absence of katC. This H2O2 resistance mechanism requires functional katE and katF genes, which suggests that the mechanism of H2O2 resistance may involve the activity of the stationary-phase-specific catalase HPII. Cloning, DNA sequencing, and analysis of the katC5::Tn9 insertion allele in comparison with its parent allele implicate two insertion elements, IS1B and IS30B, and suggest that their presence sensitizes parent cells to H2O2.
Collapse
Affiliation(s)
- M R Volkert
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | |
Collapse
|
49
|
Liochev SI, Hausladen A, Beyer WF, Fridovich I. NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc Natl Acad Sci U S A 1994; 91:1328-31. [PMID: 8108411 PMCID: PMC43151 DOI: 10.1073/pnas.91.4.1328] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Soluble extracts of Escherichia coli contain four NADPH:paraquat diaphorases that were separable by anion-exchange HPLC over Mono Q. One of these was induced when the cells were exposed to paraquat. This was the case in a soxRS-competent strain but not in a soxRS-null strain, while a soxRS-constitutive strain overexpressed this diaphorase without the stimulus of exposure to paraquat. This NADPH:paraquat diaphorase could use cytochrome c or nitroblue tetrazolium as an electron acceptor, whereas O2 was a relatively poor acceptor. This diaphorase was identified as the NADPH:ferredoxin reductase. A role for reduced ferredoxin and flavodoxin in the adaptive soxRS response to oxidative stress and in the regulation of the redox status of soxR is discussed.
Collapse
Affiliation(s)
- S I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
50
|
Storz G, Toledano MB. Regulation of bacterial gene expression in response to oxidative stress. Methods Enzymol 1994; 236:196-207. [PMID: 7968610 DOI: 10.1016/0076-6879(94)36017-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|