1
|
Danson AE, Jovanovic M, Buck M, Zhang X. Mechanisms of σ 54-Dependent Transcription Initiation and Regulation. J Mol Biol 2019; 431:3960-3974. [PMID: 31029702 PMCID: PMC7057263 DOI: 10.1016/j.jmb.2019.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/02/2023]
Abstract
Cellular RNA polymerase is a multi-subunit macromolecular assembly responsible for gene transcription, a highly regulated process conserved from bacteria to humans. In bacteria, sigma factors are employed to mediate gene-specific expression in response to a variety of environmental conditions. The major variant σ factor, σ54, has a specific role in stress responses. Unlike σ70-dependent transcription, which often can spontaneously proceed to initiation, σ54-dependent transcription requires an additional ATPase protein for activation. As a result, structures of a number of distinct functional states during the dynamic process of transcription initiation have been captured using the σ54 system with both x-ray crystallography and cryo electron microscopy, furthering our understanding of σ54-dependent transcription initiation and DNA opening. Comparisons with σ70 and eukaryotic polymerases reveal unique and common features during transcription initiation.
Collapse
Affiliation(s)
- Amy E Danson
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Milija Jovanovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Crystal structure of Aquifex aeolicus σ N bound to promoter DNA and the structure of σ N-holoenzyme. Proc Natl Acad Sci U S A 2017; 114:E1805-E1814. [PMID: 28223493 DOI: 10.1073/pnas.1619464114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial σ factors confer promoter specificity to the RNA polymerase (RNAP). One alternative σ factor, σN, is unique in its structure and functional mechanism, forming transcriptionally inactive promoter complexes that require activation by specialized AAA+ ATPases. We report a 3.4-Å resolution X-ray crystal structure of a σN fragment in complex with its cognate promoter DNA, revealing the molecular details of promoter recognition by σN The structure allowed us to build and refine an improved σN-holoenzyme model based on previously published 3.8-Å resolution X-ray data. The improved σN-holoenzyme model reveals a conserved interdomain interface within σN that, when disrupted by mutations, leads to transcription activity without activator intervention (so-called bypass mutants). Thus, the structure and stability of this interdomain interface are crucial for the role of σN in blocking transcription activity and in maintaining the activator sensitivity of σN.
Collapse
|
3
|
Fumeaux C, Bakkou N, Kopcińska J, Golinowski W, Westenberg DJ, Müller P, Perret X. Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter. MICROBIOLOGY-SGM 2011; 157:2745-2758. [PMID: 21719545 DOI: 10.1099/mic.0.049999-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobia are a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes (Fix phenotype). Synthesis of the nitrogenase and its accessory components is under the transcriptional control of the key regulator NifA and is generally restricted to the endosymbiotic forms of rhizobia known as bacteroids. Amongst studied rhizobia, Sinorhizobium fredii strain NGR234 has the remarkable ability to fix nitrogen in association with more than 130 species in 73 legume genera that form either determinate, indeterminate or aeschynomenoid nodules. Hence, NGR234 is a model organism to study nitrogen fixation in association with a variety of legumes. The symbiotic plasmid pSfrNGR234a carries more than 50 genes that are under the transcriptional control of NifA. To facilitate the functional analysis of NifA-regulated genes a new transposable element, TnEKm-PwA, was constructed. This transposon combines the advantages of in vitro mutagenesis of cloned DNA fragments with a conditional read-out promoter from NGR234 (PwA) that reinitiates NifA-dependent transcription downstream of transposition sites. To test the characteristics of the new transposon, the nifQdctA1y4vGHIJ operon was mutated using either the Omega interposon or TnEKm-PwA. The symbiotic phenotypes on various hosts as well as the transcriptional characteristics of these mutants were analysed in detail and compared with the ineffective (Fix(-)) phenotype of strain NGRΔnifA, which lacks a functional copy of nifA. De novo transcription from inserted copies of TnEKm-PwA inside bacteroids was confirmed by qRT-PCR. Unexpectedly, polar mutants in dctA1 and nifQ were Fix(+) on all of the hosts tested, indicating that none of the six genes of the nifQ operon of NGR234 is essential for symbiotic nitrogen fixation on plants that form nodules of either determinate or indeterminate types.
Collapse
Affiliation(s)
- Coralie Fumeaux
- University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Nadia Bakkou
- University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Joanna Kopcińska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wladyslav Golinowski
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - David J Westenberg
- Department of Biological Sciences, Missouri University of Science and Technology, 105A Schrenk Hall, 400 West 11th Street, Rolla, 65409-1120 MO, USA
| | - Peter Müller
- Fachbereich Biologie/Zellbiologie, Philipps Universität Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Xavier Perret
- University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
4
|
Oono R, Denison RF, Kiers ET. Controlling the reproductive fate of rhizobia: how universal are legume sanctions? THE NEW PHYTOLOGIST 2009; 183:967-979. [PMID: 19594691 DOI: 10.1111/j.1469-8137.2009.02941.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When a single host plant is infected by more than one strain of rhizobia, they face a tragedy of the commons. Although these rhizobia benefit collectively from nitrogen fixation, which increases host-plant photosynthesis, each strain might nonetheless increase its own reproduction, relative to competing strains, by diverting resources away from nitrogen fixation. Host sanctions can limit the evolutionary success of such rhizobial cheaters (strains that would otherwise benefit by fixing less nitrogen). Host sanctions have been shown in soybean (Glycine max) nodules, where the next generation of symbiotic rhizobia is descended from bacteroids (the differentiated cells that can fix nitrogen). Evidence for sanctions is less clear in legume species that induce rhizobial dimorphism inside their nodules. There, bacteroids are swollen and cannot reproduce regardless of how much nitrogen they fix, but sanctions could reduce reproduction of their undifferentiated clonemates within the same nodule. This rhizobial dimorphism can affect rhizobial evolution, including cheating options, in ways that may affect future generations of legumes. Both the importance of sanctions to hosts and possible physiological mechanisms for sanctions may depend on whether bacteroids are potentially reproductive.
Collapse
Affiliation(s)
- Ryoko Oono
- Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Ford Denison
- Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - E Toby Kiers
- Faculteit der Aard - en Levenswetenschappen, De Boelelaan 1085-1087, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
5
|
Iannino F, Ugalde RA, Iñón de Iannino N. Characterization of Brucella abortus sigma factor σ54 (rpoN): Genetic complementation of Sinorhizobium meliloti ntrA mutant. Microb Pathog 2008; 45:394-402. [DOI: 10.1016/j.micpath.2008.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/30/2022]
|
6
|
Gautam US, Jajoo A, Singh A, Chakrabartty PK, Das SK. Characterization of an rpoN mutant of Mesorhizobium ciceri. J Appl Microbiol 2008; 103:1798-807. [PMID: 17953590 DOI: 10.1111/j.1365-2672.2007.03432.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the genetic basis of C(4)-dicarboxylate transport (Dct) in relation to symbiotic nitrogen fixation in Mesorhizobium ciceri. METHODS AND RESULTS A Tn5-induced mutant strain (TL16) of M. ciceri, unable to grow on C(4)-dicarboxylates, was isolated from the wild-type strain TAL 620. The mutant lacked activities of the enzymes, which use C(4)-dicarboxylates as substrate. The sequencing of the 3.2kb EcoRI fragment, which was the site of Tn5 insertion, revealed three complete and two partial open reading frames. In the mutant, Tn5 interrupted the rpoN gene, of which only one copy was there. Complementation and biochemical studies suggest that the M. ciceri rpoN activity is required for C(4)-Dct, maturation of bacteroids and symbiotic nitrogen fixation. The fine structure of the ineffective nodules produced by TL16 on Cicer arietinum L changed in comparison with those produced by the wild type. CONCLUSIONS The mutant strain TL16 suffered a disruption in the rpoN gene. Only one copy of rpoN gene is present in M. ciceri. The mutation abolishes Dct activity. It additionally abolishes the symbiotic nitrogen fixation activity of the bacteroids in the nodules. SIGNIFICANCE AND IMPACT OF THE STUDY This first document in M. ciceri shows that a functional rpoN gene is essential for the transport of dicarboxylic acids and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- U S Gautam
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Aneja P, Charles TC. Characterization of bdhA, encoding the enzyme D-3-hydroxybutyrate dehydrogenase, from Sinorhizobium sp. strain NGR234. FEMS Microbiol Lett 2005; 242:87-94. [PMID: 15621424 DOI: 10.1016/j.femsle.2004.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/19/2004] [Accepted: 10/25/2004] [Indexed: 11/20/2022] Open
Abstract
A genomic library of Sinorhizobium sp. strain NGR234 was introduced into Escherichia coli LS5218, a strain with a constitutively active pathway for acetoacetate degradation, and clones that confer the ability to utilize D-3-hydroxybutyrate as a sole carbon source were isolated. Subcloning experiments identified a 2.3 kb EcoRI fragment that retained complementing ability, and an ORF that appeared orthologous with known bdhA genes was located within this fragment. The deduced NGR234 BdhA amino acid sequence revealed 91% identity to the Sinorhizobium meliloti BdhA. Site-directed insertion mutagenesis was performed by introduction of a OmegaSmSp cassette at a unique EcoRV site within the bdhA coding region. A NGR234 bdhA mutant, NGRPA2, was generated by homogenotization, utilizing the sacB gene-based lethal selection procedure. This mutant was devoid of D-3-hydroxybutyrate dehydrogenase activity, and was unable to grow on D-3-hydroxybutyrate as sole carbon source. NGRPA2 exhibited symbiotic defects on Leucaena but not on Vigna, Macroptilium or Tephrosia host plants. Furthermore, the D-3-hydroxybutyrate utilization phenotype of NGRPA2 was suppressed by presence of plasmid-encoded multiple copies of the S. meliloti acsA2 gene. The glpK-bdhA-xdhA gene organization and the bdhA-xdhA operon arrangement observed in S. meliloti are also conserved in NGR234.
Collapse
Affiliation(s)
- Punita Aneja
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
9
|
Dombrecht B, Marchal K, Vanderleyden J, Michiels J. Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales. Genome Biol 2002; 3:RESEARCH0076. [PMID: 12537565 PMCID: PMC151178 DOI: 10.1186/gb-2002-3-12-research0076] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Revised: 09/16/2002] [Accepted: 10/18/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the rhizobia, a group of symbiotic Gram-negative soil bacteria, RpoN (sigma54, sigmaN, NtrA) is best known as the sigma factor enabling transcription of the nitrogen fixation genes. Recent reports, however, demonstrate the involvement of RpoN in other symbiotic functions, although no large-scale effort has yet been undertaken to unravel the RpoN-regulon in rhizobia. We screened two complete rhizobial genomes (Mesorhizobium loti, Sinorhizobium meliloti) and four symbiotic regions (Rhizobium etli, Rhizobium sp. NGR234, Bradyrhizobium japonicum, M. loti) for the presence of the highly conserved RpoN-binding sites. A comparison was also made with two closely related non-symbiotic members of the Rhizobiales (Agrobacterium tumefaciens, Brucella melitensis). RESULTS A highly specific weight-matrix-based screening method was applied to predict members of the RpoN-regulon, which were stored in a highly annotated and manually curated dataset. Possible enhancer-binding proteins (EBPs) controlling the expression of RpoN-dependent genes were predicted with a profile hidden Markov model. CONCLUSIONS The methodology used to predict RpoN-binding sites proved highly effective as nearly all known RpoN-controlled genes were identified. In addition, many new RpoN-dependent functions were found. The dependency of several of these diverse functions on RpoN seems species-specific. Around 30% of the identified genes are hypothetical. Rhizobia appear to have recruited RpoN for symbiotic processes, whereas the role of RpoN in A. tumefaciens and B. melitensis remains largely to be elucidated. All species screened possess at least one uncharacterized EBP as well as the usual ones. Lastly, RpoN could significantly broaden its working range by direct interfering with the binding of regulatory proteins to the promoter DNA.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Kathleen Marchal
- ESAT-SCD, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
10
|
Wang L, Gralla JD. Roles for the C-terminal region of sigma 54 in transcriptional silencing and DNA binding. J Biol Chem 2001; 276:8979-86. [PMID: 11124262 DOI: 10.1074/jbc.m009587200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twenty-one conserved positively charged and aromatic amino acids between residues 331 and 462 of sigma 54 were changed to alanine, and the mutant proteins were studied by transcription, band shift analysis, and footprinting in vitro. A small segment corresponding to the rpoN box was found to be most important for binding duplex DNA. Two amino acids, 52 residues apart, were found to be critical for maintaining transcriptional silencing in the absence of activator. These two activator bypass mutants and several other mutants failed to bind the type of fork junction DNA thought to be required to maintain silencing. The two bypass mutants showed a binding pattern to DNA probes that was unique, both in comparison to other C-terminal mutants and to previously known N-terminal bypass mutants. On this basis, a model is proposed for the role of the C terminus and the N terminus of sigma 54 in enhancer-dependent transcription.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
11
|
Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 1999; 32:415-25. [PMID: 10231496 DOI: 10.1046/j.1365-2958.1999.01361.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the bacterial genes involved in nodulation of legumes (nod, nol and noe ) as well as nitrogen fixation (nif and fix ) are carried on pNGR234a, the 536 kb symbiotic plasmid (pSym) of the broad-host-range Rhizobium sp. NGR234. Putative transcription regulators comprise 24 of the predicted 416 open reading frames (ORFs) contained on this replicon. Computational analyses identified 19 nod boxes and 16 conserved NifA-sigma54 regulatory sequences, which are thought to co-ordinate the expression of nodulation and nitrogen fixation genes respectively. To analyse transcription of all putative ORFs, the nucleotide sequence of pNGR234a was divided into 441 segments designed to represent all coding and intergenic regions. Each of these segments was amplified by polymerase chain reactions, transferred to filters and probed with radioactively labelled RNA. RNA was extracted from bacterial cultures grown under various experimental conditions, as well as from bacteroids of determinate and indeterminate nodules. Generally, genes involved in the synthesis of Nod factors (e.g. the three hsn loci) were induced rapidly after the addition of flavonoids, whereas others thought to act within the plant (e.g. those encoding the type III secretion system) responded more slowly. Many insertion (IS) and transposon (Tn)-like sequences were expressed strongly under all conditions tested, while a number of loci other than those known to encode nod, noe, nol, nif and fix genes were also transcribed in nodules. Many more diverse transcripts were found in bacteroids of determinate as opposed to indeterminate nodules.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, University of Geneva, 1 chemin de l'Impératrice, 1292 Chambésy, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Aneja P, Charles TC. Poly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J Bacteriol 1999; 181:849-57. [PMID: 9922248 PMCID: PMC93451 DOI: 10.1128/jb.181.3.849-857.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and sequenced the 3-hydroxybutyrate dehydrogenase-encoding gene (bdhA) from Rhizobium (Sinorhizobium) meliloti. The gene has an open reading frame of 777 bp that encodes a polypeptide of 258 amino acid residues (molecular weight 27,177, pI 6.07). The R. meliloti Bdh protein exhibits features common to members of the short-chain alcohol dehydrogenase superfamily. bdhA is the first gene transcribed in an operon that also includes xdhA, encoding xanthine oxidase/dehydrogenase. Transcriptional start site analysis by primer extension identified two transcription starts. S1, a minor start site, was located 46 to 47 nucleotides upstream of the predicted ATG start codon, while S2, the major start site, was mapped 148 nucleotides from the start codon. Analysis of the sequence immediately upstream of either S1 or S2 failed to reveal the presence of any known consensus promoter sequences. Although a sigma54 consensus sequence was identified in the region between S1 and S2, a corresponding transcript was not detected, and a rpoN mutant of R. meliloti was able to utilize 3-hydroxybutyrate as a sole carbon source. The R. meliloti bdhA gene is able to confer upon Escherichia coli the ability to utilize 3-hydroxybutyrate as a sole carbon source. An R. meliloti bdhA mutant accumulates poly-3-hydroxybutyrate to the same extent as the wild type and shows no symbiotic defects. Studies with a strain carrying a lacZ transcriptional fusion to bdhA demonstrated that gene expression is growth phase associated.
Collapse
Affiliation(s)
- P Aneja
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | |
Collapse
|
13
|
Härtig E, Zumft WG. The requirement of RpoN (sigma factor sigma54) in denitrification by Pseudomonas stutzeri is indirect and restricted to the reduction of nitrite and nitric oxide. Appl Environ Microbiol 1998; 64:3092-5. [PMID: 9687481 PMCID: PMC106823 DOI: 10.1128/aem.64.8.3092-3095.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rpoN region of Pseudomonas stutzeri was cloned, and an rpoN null mutant was constructed. RpoN was not essential for denitrification in this bacterium but affected the expression levels and enzymatic activities of cytochrome cd1 nitrite reductase and nitric oxide reductase, whereas those of respiratory nitrate reductase and nitrous oxide reductase were comparable to wild-type levels. Since the transcription of the structural genes nirS and norCB, coding for nitrite reductase and the nitric oxide reductase complex, respectively, proceeded unabated, our data indicate a posttranslational process for the two key enzymes of denitrification depending on RpoN.
Collapse
Affiliation(s)
- E Härtig
- Lehrstuhl für Mikrobiologie der Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
14
|
Michiels J, Moris M, Dombrecht B, Verreth C, Vanderleyden J. Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. J Bacteriol 1998; 180:3620-8. [PMID: 9658006 PMCID: PMC107331 DOI: 10.1128/jb.180.14.3620-3628.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rhizobium etli rpoN1 gene, encoding the alternative sigma factor sigma54 (RpoN), was recently characterized and shown to be involved in the assimilation of several nitrogen and carbon sources during free-living aerobic growth (J. Michiels, T. Van Soom, I. D'hooghe, B. Dombrecht, T. Benhassine, P. de Wilde, and J. Vanderleyden, J. Bacteriol. 180:1729-1740, 1998). We identified a second rpoN gene copy in R. etli, rpoN2, encoding a 54.0-kDa protein which displays 59% amino acid identity with the R. etli RpoN1 protein. The rpoN2 gene is cotranscribed with a short open reading frame, orf180, which codes for a protein with a size of 20.1 kDa that is homologous to several prokaryotic and eukaryotic proteins of similar size. In contrast to the R. etli rpoN1 mutant strain, inactivation of the rpoN2 gene did not produce any phenotypic defects during free-living growth. However, symbiotic nitrogen fixation was reduced by approximately 90% in the rpoN2 mutant, whereas wild-type levels of nitrogen fixation were observed in the rpoN1 mutant strain. Nitrogen fixation was completely abolished in the rpoN1 rpoN2 double mutant. Expression of rpoN1 was negatively autoregulated during aerobic growth and was reduced during microaerobiosis and symbiosis. In contrast, rpoN2-gusA and orf180-gusA fusions were not expressed aerobically but were strongly induced at low oxygen tensions or in bacteroids. Expression of rpoN2 and orf180 was abolished in R. etli rpoN1 rpoN2 and nifA mutants under all conditions tested. Under free-living microaerobic conditions, transcription of rpoN2 and orf180 required the RpoN1 protein. In symbiosis, expression of rpoN2 and orf180 occurred independently of the rpoN1 gene, suggesting the existence of an alternative symbiosis-specific mechanism of transcription activation.
Collapse
Affiliation(s)
- J Michiels
- F. A. Janssens Laboratory of Genetics, K. U. Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
15
|
Michiels J, Van Soom T, D'hooghe I, Dombrecht B, Benhassine T, de Wilde P, Vanderleyden J. The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol 1998; 180:1729-40. [PMID: 9537369 PMCID: PMC107084 DOI: 10.1128/jb.180.7.1729-1740.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The rpoN region of Rhizobium etli was isolated by using the Bradyrhizobium japonicum rpoN1 gene as a probe. Nucleotide sequence analysis of a 5,600-bp DNA fragment of this region revealed the presence of four complete open reading frames (ORFs), ORF258, rpoN, ORF191, and ptsN, coding for proteins of 258, 520, 191, and 154 amino acids, respectively. The gene product of ORF258 is homologous to members of the ATP-binding cassette-type permeases. ORF191 and ptsN are homologous to conserved ORFs found downstream from rpoN genes in other bacterial species. Unlike in most other microorganisms, rpoN and ORF191 are separated by approximately 1.6 kb. The R. etli rpoN gene was shown to control in free-living conditions the production of melanin, the activation of nifH, and the metabolism of C4-dicarboxylic acids and several nitrogen sources (ammonium, nitrate, alanine, and serine). Expression of the rpoN gene was negatively autoregulated and occurred independently of the nitrogen source. Inactivation of the ptsN gene resulted in a decrease of melanin synthesis and nifH expression. In a search for additional genes controlling the synthesis of melanin, an R. etli mutant carrying a Tn5 insertion in ptsA, a gene homologous to the Escherichia coli gene coding for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system, was obtained. The R. etli ptsA mutant also displayed reduced expression of nifH. The ptsN and ptsA mutants also displayed increased sensitivity to the toxic effects of malate and succinate. Growth of both mutants was inhibited by these C4-dicarboxylates at 20 mM at pH 7.0, while wild-type cells grow normally under these conditions. The effect of malate occurred independently of the nitrogen source used. Growth inhibition was decreased by lowering the pH of the growth medium. These results suggest that ptsN and ptsA are part of the same regulatory cascade, the inactivation of which renders the cells sensitive to toxic effects of elevated concentrations of malate or succinate.
Collapse
Affiliation(s)
- J Michiels
- F. A. Janssens Laboratory of Genetics, K.U. Leuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri S. nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol Microbiol 1998; 27:1039-50. [PMID: 9535093 DOI: 10.1046/j.1365-2958.1998.00761.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulators of the lysR family largely control the expression of bacterial symbiotic genes. Rhizobium sp. NGR234 contains at least four members of this family: two resemble nodD, while two others are more closely related to syrM. Part of the extremely broad host range of NGR234 can be attributed to nodD1, although the second gene shares a high degree of DNA sequence homology with nodD2 of R. fredii USDA191. A nodD2 mutant of NGR234 was constructed by insertional mutagenesis. This mutant (NGR omega nodD2) was deficient in nitrogen fixation on Vigna unguiculata and induced pseudonodules on Tephrosia vogelii. Several other host plants were tested, but no correlation could be drawn between the phenotype and nodule morphology. Moreover, nodD2 has a negative effect on the production of Nod factors: mutation of this gene results in a fivefold increase in Nod factor production. Surprisingly, while the structure of Nod factors from free-living cultures of NGR omega nodD2 remained unchanged, those from V. unguiculata nodules induced by the same strain are non-fucosylated and have a lower degree of oligomerization. In other words, developmental regulation of Nod factor production is also abolished in this mutant. Competitive RNA hybridizations, gene fusions and mobility shift assays confirmed that nodD2 downregulates expression of the nodABC operon.
Collapse
Affiliation(s)
- R Fellay
- LBMPS, Université de Genève, Chambésy/Genève, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature 1997; 387:394-401. [PMID: 9163424 DOI: 10.1038/387394a0] [Citation(s) in RCA: 461] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Access to mineral nitrogen often limits plant growth, and so symbiotic relationships have evolved between plants and a variety of nitrogen-fixing organisms. These associations are responsible for reducing 120 million tonnes of atmospheric nitrogen to ammonia each year. In agriculture, independence from nitrogenous fertilizers expands crop production and minimizes pollution of water tables, lakes and rivers. Here we present the complete nucleotide sequence and gene complement of the plasmid from Rhizobium sp. NGR234 that endows the bacterium with the ability to associate symbiotically with leguminous plants. In conjunction with transcriptional analyses, these data demonstrate the presence of new symbiotic loci and signalling mechanisms. The sequence and organization of genes involved in replication and conjugal transfer are similar to those of Agrobacterium, suggesting a recent lateral transfer of genetic information.
Collapse
Affiliation(s)
- C Freiberg
- Institut für Molekulare Biotechnologie, Abteilung Genomanalyse, Jena, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Keseler IM, Kaiser D. sigma54, a vital protein for Myxococcus xanthus. Proc Natl Acad Sci U S A 1997; 94:1979-84. [PMID: 9050890 PMCID: PMC20028 DOI: 10.1073/pnas.94.5.1979] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/1996] [Indexed: 02/03/2023] Open
Abstract
The rpoN gene encoding the transcription factor sigma54 in Myxococcus xanthus has been cloned using a heterologous rpoN probe. The sequence of the cross-hybridizing DNA confirmed the existence of an ORF 1518 bp long that encodes a well conserved member of the sigma54 family of sigma factors. Low- as well as high-stringency hybridizations detected only a single rpoN gene in the M. xanthus chromosome. In other bacteria, sigma54 is an alternative sigma, and null mutants are viable. However, all attempts to construct a strain containing a null mutation in the M. xanthus rpoN have been unsuccessful. Partial diploids of rpoN+/rpoN null are viable. Recombination experiments with such partial diploids showed the impossibility of constructing, either by segregation or by transduction, a viable null haploid under any of a wide range of growth conditions. The product of the rpoN gene, sigma54, therefore appears to be essential for growth in M. xanthus.
Collapse
Affiliation(s)
- I M Keseler
- Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307, USA
| | | |
Collapse
|
19
|
Hérouart D, Sigaud S, Moreau S, Frendo P, Touati D, Puppo A. Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. J Bacteriol 1996; 178:6802-9. [PMID: 8955300 PMCID: PMC178579 DOI: 10.1128/jb.178.23.6802-6809.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the involvement of bacterial catalases of the symbiotic gram-negative bacterium Rhizobium meliloti in the development of Medicago-Rhizobium functional nodules, we cloned a putative kat gene by screening a cosmid library with a catalase-specific DNA probe amplified by PCR from the R. meliloti genome. Nucleotide sequence analysis of a 1.8-kb DNA fragment revealed an open reading frame, called katA, encoding a peptide of 562 amino acid residues with a calculated molecular mass of 62.9 kDa. The predicted amino acid sequence showed a high homology with the primary structure of monofunctional catalases from eucaryotes and procaryotes. The katA gene was localized on the chromosome, and the katA gene product was essentially found in the periplasmic space. A katA::Tn5 mutant was obtained and showed a drastic sensitivity to hydrogen peroxide, indicating an essential protective role of KatA. However, neither Nod nor Fix phenotypes were impaired in the mutant, suggesting that KatA is not essential for nodulation and establishment of nitrogen fixation. Exposure to a sublethal concentration of H2O2 enhanced KatA activity (100-fold) and also increased survival to subsequent H2O2 exposure at higher concentrations. No protection is observed in katA::Tn5, indicating that KatA is the major component of an adaptive response.
Collapse
Affiliation(s)
- D Hérouart
- Laboratoire de Biologie Végétale et Microbiologie, Unité de Recherche Associée, Centre National de la Recherche Scientifique, Université de Nice Sophia-Antipolis, France.
| | | | | | | | | | | |
Collapse
|
20
|
Osterås M, Stanley J, Finan TM. Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol 1995; 177:5485-94. [PMID: 7559334 PMCID: PMC177356 DOI: 10.1128/jb.177.19.5485-5494.1995] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Analysis of the DNA regions upstream of the phosphoenolpyruvate carboxykinase gene (pckA) in Rhizobium meliloti and Rhizobium sp. strain NGR234 identified an open reading frame which was highly homologous to the Agrobacterium tumefaciens chromosomal virulence gene product ChvI. A second gene product, 500 bp downstream of the chvI-like gene in R. meliloti, was homologous to the A. tumefaciens ChvG protein. The homology between the R. meliloti and A. tumefaciens genes was confirmed, because the R. meliloti chvI and chvG genes complemented A. tumefaciens chvI and chvG mutants for growth on complex media. We were unable to construct chvI or chvG insertion mutants of R. meliloti, whereas mutants carrying insertions outside of these genes were readily obtained. A 108-bp repeat element characterized by two large palindromes was identified in the chvI and chvG intergenic regions of both Rhizobium species. This element was duplicated in Rhizobium sp. strain NGR234. Another structurally similar element with a size of 109 bp was present in R. meliloti but not in Rhizobium sp. strain NGR234. These elements were named rhizobium-specific intergenic mosaic elements (RIMEs), because their distribution seems to be limited to members of the family Rhizobiaceae. A homology search in GenBank detected six more copies of the first element (RIME1), all in Rhizobium species, and three extra copies of the second element (RIME2), only in R. meliloti. Southern blot analysis with a probe specific to RIME1 showed the presence of several copies of the element in the genome of R. meliloti, Rhizobium sp. strain NGR234, Rhizobium leguminosarum, and Agrobacterium rhizogenes, but none was present in A. tumefaciens and Bradyrhizobium japonicum.
Collapse
Affiliation(s)
- M Osterås
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
21
|
Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 1995; 270:4822-39. [PMID: 7876255 DOI: 10.1074/jbc.270.9.4822] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two rpoN-linked delta Tn10-kan insertions suppress the conditionally lethal erats allele. One truncates rpoN while the second disrupts another gene (ptsN) in the rpoN operon and does not affect classical nitrogen regulation. Neither alter expression of era indicating that suppression is post-translational. Plasmid clones of ptsN prevent suppression by either disruption mutation indicating that this gene is important for lethality caused by erats. rpoN and six neighboring genes were sequenced and compared with sequences in the database. Two of these genes encode proteins homologous to Enzyme IIAFru and HPr of the phosphoenolpyruvate:sugar phosphotransferase system. We designate these proteins IIANtr (ptsN) and NPr (npr). Purified IIANtr and NPr exchange phosphate appropriately with Enzyme I, HPr, and Enzyme IIA proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Several sugars and tricarboxylic acid cycle intermediates inhibited growth of the ptsN disruption mutant on medium containing an amino acid or nucleoside base as a combined source of nitrogen, carbon, and energy. This growth inhibition was relieved by supplying the ptsN gene or ammonium salts but was not aleviated by altering levels of exogenously supplied cAMP. These results support our previous proposal of a novel mechanism linking carbon and nitrogen assimilation and relates IIANtr to the unknown process regulated by the essential GTPase Era.
Collapse
Affiliation(s)
- B S Powell
- Laboratory of Chromosome Biology, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Osterås M, Driscoll BT, Finan TM. Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene. J Bacteriol 1995; 177:1452-60. [PMID: 7883700 PMCID: PMC176759 DOI: 10.1128/jb.177.6.1452-1460.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The pckA gene of Rhizobium meliloti, encoding phosphoenolpyruvate carboxykinase, was isolated from a genomic cosmid library by complementation of the succinate growth phenotype of a Pck- mutant. The gene region was mapped by subcloning and Tn5 insertion mutagenesis. The DNA sequence for a 2-kb region containing the structural gene and its promoter was determined. The pckA gene encodes as 536-amino-acid protein that shows homology with other ATP-dependent Pck enzymes. The promoter was identified following primer extension analysis and is similar to sigma 70-like promoters. Expression analysis with a pckA::lacZ gene fusion indicated that the pckA gene was strongly induced at the onset of stationary phase in complex medium. When defined carbon sources were tested, the expression level of the pckA gene was found to be high when cells were grown in minimal media with succinate or arabinose as the sole carbon source but almost absent when glucose, sucrose, or glycerol was the sole carbon source. Glucose and sucrose were not found to strongly repress pckA induction by succinate.
Collapse
Affiliation(s)
- M Osterås
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
23
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
24
|
Ehrt S, Ornston LN, Hillen W. RpoN (sigma 54) is required for conversion of phenol to catechol in Acinetobacter calcoaceticus. J Bacteriol 1994; 176:3493-9. [PMID: 8206826 PMCID: PMC205536 DOI: 10.1128/jb.176.12.3493-3499.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the sigma 54 protein family, encoded by rpoN, are required for the transcription of genes associated with specialized metabolic functions. The ability to grow with phenol appears to be a specialized trait because it is expressed by few of the microorganisms that grow with catechol, the metabolic product of phenol monooxygenase. A mutation preventing the expression of phenol monooxygenase in the bacterial strain Acinetobacter calcoaceticus NCIB8250 was complemented by wild-type DNA segments containing an open reading frame encoding a member of the sigma 54 protein family. DNA sequencing revealed a second open reading frame, designated ORF2, directly downstream of A. calcoaceticus rpoN. The locations of both ORF2 and the 113-residue amino acid sequence of its product are highly conserved in other bacteria. The mutation preventing the expression of rpoN results in an opal codon that terminates the translation of RpoN at a position corresponding to Trp-91 in the 483-residue amino acid sequence of the wild-type protein. Negative autoregulation of rpoN was suggested by the fact that the mutation inactivating RpoN enhanced the transcription of rpoN. Primer extension revealed independent transcription start sites for rpoN and ORF2.
Collapse
Affiliation(s)
- S Ehrt
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
25
|
Jin S, Ishimoto K, Lory S. Nucleotide sequence of the rpoN gene and characterization of two downstream open reading frames in Pseudomonas aeruginosa. J Bacteriol 1994; 176:1316-22. [PMID: 8113171 PMCID: PMC205195 DOI: 10.1128/jb.176.5.1316-1322.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The rpoN gene of Pseudomonas aeruginosa is required for the expression of a number of diverse genes, ranging from several classes of bacterial adhesins to enzymes for amino acid biosynthesis. The nucleotide sequence of the rpoN gene and its flanking region has been determined. The deduced amino acid sequence of the rpoN product is highly homologous to sequences of RpoN proteins of other microorganisms. Moreover, two open reading frames (ORF1 and ORF2) encoding peptides of 103 and 154 amino acids long, respectively, were found downstream of the rpoN gene. These two ORF products have a high degree of amino acid sequence homology with products of similar ORFs located adjacent to the rpoN genes in other microorganisms. Mutations in either ORF lead to a significant increase in P. aeruginosa generation time when propagated on minimal medium. These mutations had no effect on the expression of pilin or flagellin genes, whose expression depends on RpoN. Complementation analysis showed that the two ORFs are in the same transcriptional unit and the growth defects of the two ORF mutants on minimal medium are due to mutational effects on ORF2. The adverse effect of the ORF mutations on the growth of P. aeruginosa in minimal media can be suppressed by the addition of glutamine but not arginine, glutamate, histidine, or proline. Since rpoN mutants of P. aeruginosa display this same amino acid requirement for growth, the ORF2 product very likely functions as a coinducer of some but not all of the RpoN-controlled genes.
Collapse
Affiliation(s)
- S Jin
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
26
|
Cullen PJ, Foster-Hartnett D, Gabbert KK, Kranz RG. Structure and expression of the alternative sigma factor, RpoN, in Rhodobacter capsulatus; physiological relevance of an autoactivated nifU2-rpoN superoperon. Mol Microbiol 1994; 11:51-65. [PMID: 8145646 DOI: 10.1111/j.1365-2958.1994.tb00289.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The alternative sigma factor, RpoN (sigma 54) is responsible for recruiting core RNA polymerase to the promoters of genes required for diverse physiological functions in a variety of eubacterial species. The RpoN protein in Rhodobacter capsulatus is a putative sigma factor specific for nitrogen fixation (nif) genes. Insertional mutagenesis was used to define regions important for the function of the R. capsulatus RpoN protein. Insertions of four amino acids in the predicted helixturn-helix or in the highly conserved C-terminal eight amino acid residues (previously termed the RpoN box), and an in-frame deletion of the glutamine-rich N-terminus completely inactivated the R. capsulatus RpoN protein. Two separate insertions in the second hydrophobic heptad repeat, a putative leucine zipper, resulted in a partially functional RpoN protein. Eight other linkers in the rpoN open reading frame (ORF) resulted in a completely or partially functional RpoN protein. The rpoN gene in R. capsulatus is downstream from the nifHDKU2 genes, in a nifU2-rpoN operon. Results of genetic experiments on the nifU2-rpoN locus show that the rpoN gene is organized in a nifU2-rpoN superoperon. A primary promoter directly upstream of the rpoN ORF is responsible for the initial expression of rpoN. Deletion analysis and insertional mutagenesis were used to define the primary promoter to 50 bp, between 37 and 87 nucleotides upstream of the predicted rpoN translational start site. This primary promoter is expressed constitutively with respect to nitrogen, and it is necessary and sufficient for growth under nitrogen-limiting conditions typically used in the laboratory. A secondary promoter upstream of nifU2 is autoactivated by RpoN and NifA to increase the expression of rpoN, which ultimately results in higher expression of RpoN-dependent genes. Moreover, rpoN expression from this secondary promoter is physiologically beneficial under certain stressful conditions, such as nitrogen-limiting environments that contain high salt (> 50 mM NaCl) or low iron (< 400 nM FeSO4).
Collapse
Affiliation(s)
- P J Cullen
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | |
Collapse
|
27
|
Meijer WG, Tabita FR. Isolation and characterization of the nifUSVW-rpoN gene cluster from Rhodobacter sphaeroides. J Bacteriol 1992; 174:3855-66. [PMID: 1317839 PMCID: PMC206092 DOI: 10.1128/jb.174.12.3855-3866.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rpoN gene from Rhodobacter sphaeroides was isolated from a genomic library via complementation of a Rhodobacter capsulatus rpoN mutant. The rpoN gene was located on a 7.5-kb HindIII-EcoRI fragment. A Tn5 insertion analysis of this DNA fragment showed that a minimal DNA fragment of 5.3 kb was required for complementation. Nucleotide sequencing of the complementing region revealed the presence of nifUSVW genes upstream from rpoN. The rpoN gene was mutagenized via insertion of a gene encoding kanamycin resistance. The resulting rpoN mutant was not impaired in diazotrophic growth and was in all respects indistinguishable from the wild-type strain. Southern hybridizations using the cloned rpoN gene as a probe indicated the presence of a second rpoN gene. Deletion of the nifUS genes resulted in strongly reduced diazotrophic growth. Two conserved regions were identified in a NifV LeuA amino acid sequence alignment. Similar regions were found in pyruvate carboxylase and oxaloacetate decarboxylase. It is proposed that these conserved regions represent keto acid-binding sites.
Collapse
Affiliation(s)
- W G Meijer
- Department of Microbiology, Ohio State University, Columbus 43210-1292
| | | |
Collapse
|
28
|
Wu ZL, Charles TC, Wang H, Nester EW. The ntrA gene of Agrobacterium tumefaciens: identification, cloning, and phenotype of a site-directed mutant. J Bacteriol 1992; 174:2720-3. [PMID: 1556090 PMCID: PMC205914 DOI: 10.1128/jb.174.8.2720-2723.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A 3.6-kb EcoRI fragment containing the ntrA gene of Agrobacterium tumefaciens was cloned by using the homologous ntrA gene of Rhizobium meliloti as a probe. Construction of an ntrA mutant of A. tumefaciens by site-directed insertional mutagenesis demonstrated the requirement of the ntrA gene for nitrate utilization and C4-dicarboxylate transport but not for vir gene expression or tumorigenesis.
Collapse
Affiliation(s)
- Z L Wu
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
29
|
Slooten JC, Stanley J. Molecular analysis of an essential gene upstream of rpoNin RhizobiumNGR234. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04864.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
30
|
Coppard JR, Merrick MJ. Cassette mutagenesis implicates a helix-turn-helix motif in promoter recognition by the novel RNA polymerase sigma factor sigma 54. Mol Microbiol 1991; 5:1309-17. [PMID: 1787787 DOI: 10.1111/j.1365-2958.1991.tb00777.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cassette mutagenesis has been used to study the role of a helix-turn-helix (HTH) motif in the novel RNA polymerase sigma factor sigma 54 of Klebsiella pneumoniae. Of the four residues which are predicted to be solvent-exposed in the second helix, the first (Glu-378) tolerated all substitutions, and some mutations of this residue increased expression from sigma 54-dependent promoters. Certain substitutions in the third exposed residue (Ser-382) produced a promoter-specific phenotype and all substitutions in the fourth residue (Arg-383) inactivated the protein, identifying this residue as being likely to be involved in base-specific interactions with the promoter. In vivo footprinting indicated that the inactive HTH mutants of sigma 54 were defective in interaction with both the -24 and -12 regions of the glnAp2 promoter.
Collapse
Affiliation(s)
- J R Coppard
- AFRC Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | |
Collapse
|
31
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:691-5. [PMID: 2011545 PMCID: PMC333691 DOI: 10.1093/nar/19.3.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol 1991; 173:1125-38. [PMID: 1991712 PMCID: PMC207233 DOI: 10.1128/jb.173.3.1125-1138.1991] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recognition of -24/-12-type promoters by RNA polymerase requires a special sigma factor, sigma 54 (RpoN NtrA GlnF). In the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum, two functional, highly conserved rpoN genes (rpoN1 and rpoN2) were identified and sequenced. The two predicted B. japonicum RpoN protein sequences were 87% identical, and both showed different levels of homology to the RpoN proteins of other bacteria. Downstream of rpoN2 (but not of rpoN1), two additional open reading frames were identified that corresponded to open reading frames located at similar positions in Klebsiella pneumoniae and Pseudomonas putida. Both B. japonicum rpoN genes complemented the succinate- and nitrate-negative phenotypes of a Rhizobium meliloti rpoN mutant. B. japonicum strains carrying single or double rpoN mutations were still able to utilize C4-dicarboxylates as a carbon source and histidine, proline, or arginine as a nitrogen source, whereas the ability to assimilate nitrate required expression of at least one of the two rpN genes. In symbiosis both rpoN genes could replace each other functionally. The rpoN1/2 double mutant induced about twice as many nodules on soybeans as did the wild type, and these nodules lacked nitrogen fixation activity completely. Transcription of a nifH'-'lacZ fusion was not activated in the rpoN1/2 mutant background, whereas expression of a fixR'-'lacZ fusion in this mutant was affected only marginally. By using rpoN'-'lacZ fusions, rpoN1 expression was shown to be activated at least sevenfold in microaerobiosis as compared with that in aerobiosis, and this type of regulation involved fixLJ. Expression of rpoN2 was observed under all conditions tested and was increased fivefold in an rpoN2 mutant. The data suggested that the rpoN1 gene was regulated in response to oxygen, whereas the rpoN2 gene was negatively autoregulated.
Collapse
|
33
|
Kondorosi A, Kondorosi E, John M, Schmidt J, Schell J. The Role of Nodulation Genes in Bacterium-Plant Communication. GENETIC ENGINEERING 1991; 13:115-36. [PMID: 1367410 DOI: 10.1007/978-1-4615-3760-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- A Kondorosi
- Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|