1
|
Tripathi S, Voogdt CGP, Bassler SO, Anderson M, Huang PH, Sakenova N, Capraz T, Jain S, Koumoutsi A, Bravo AM, Trotter V, Zimmerman M, Sonnenburg JL, Buie C, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals I: Strategies for efficient library construction. Cell Rep 2024; 43:113517. [PMID: 38142397 DOI: 10.1016/j.celrep.2023.113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.
Collapse
Affiliation(s)
- Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Mary Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nazgul Sakenova
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tümay Capraz
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentine Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Zimmerman
- Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Justin L Sonnenburg
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Sheridan PO, Odat MA, Scott KP. Establishing genetic manipulation for novel strains of human gut bacteria. MICROBIOME RESEARCH REPORTS 2023; 2:1. [PMID: 38059211 PMCID: PMC10696588 DOI: 10.20517/mrr.2022.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 12/12/2022] [Indexed: 12/08/2023]
Abstract
Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.
Collapse
Affiliation(s)
- Paul O. Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Ma’en Al Odat
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Karen P. Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
3
|
Chang SC, Lee CY. Quorum-Sensing Regulator OpaR Directly Represses Seven Protease Genes in Vibrio parahaemolyticus. Front Microbiol 2020; 11:534692. [PMID: 33193123 PMCID: PMC7658014 DOI: 10.3389/fmicb.2020.534692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/08/2020] [Indexed: 01/25/2023] Open
Abstract
Proteases play a key role in numerous bacterial physiological events. Microbial proteases are used in the pharmaceutical industry and in biomedical applications. The genus Vibrio comprises protease-producing bacteria. Proteases transform polypeptides into shorter chains for easier utilization. They also function as a virulence factor in pathogens. The mechanism by which protease genes are regulated in Vibrio parahaemolyticus, an emerging world-wide human pathogen, however, still remains unclear. Quorum sensing is the communication system of bacteria. OpaR is the master quorum-sensing regulator in V. parahaemolyticus. In the present study, quantitative reverse transcriptase-polymerase chain reaction and protease gene promoter-fusion reporter assays revealed that OpaR represses seven protease genes—three metalloprotease genes and four serine protease genes—which are involved in environmental survival and bacterial virulence. Furthermore, the electrophoresis mobility shift assay demonstrated that OpaR is bound directly to the promoter region of each of the seven protease genes. DNase I footprinting identified the sequence of these OpaR-binding sites. ChIP-seq analyses revealed 435 and 835 OpaR-binding sites in the late-log and stationary phases, respectively. These OpaR-binding sequences indicated a conserved OpaR-binding motif: TATTGATAAAATTATCAATA. These results advance our understanding of the protease regulation system in V. parahaemolyticus. This study is the first to reveal the OpaR motif within V. parahaemolyticus in vivo, using ChIP-seq, and to provide a database for OpaR direct regulon.
Collapse
Affiliation(s)
- San-Chi Chang
- Microbiology Laboratory, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Yin Lee
- Microbiology Laboratory, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Shi Y, Tian Z, Gillings MR, Zhang Y, Zhang H, Huyan J, Yang M. Novel Transposon Tn 6433 Variants Accelerate the Dissemination of tet(E) in Aeromonas in an Aerobic Biofilm Reactor under Oxytetracycline Stresses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6781-6791. [PMID: 32384241 DOI: 10.1021/acs.est.0c01272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Little is known about the mechanisms that disseminate antibiotic resistance genes (ARGs) in wastewater microbial communities under antibiotic stress. The role of horizontal transfer mechanisms in dissemination of ARGs in an aerobic biofilm reactor under incremental oxytetracycline doses from 0 to 50 mg/L was studied. Aeromonas strains were the most common culturable bacteria in the reactor, with tet(E) as the most prevalent ARGs (73.3%) being possibly responsible for the oxytetracycline resistance phenotype. Genomic sequencing demonstrated that tet(E) was mainly carried by a Tn3 family transposon named Tn6433, whose incidence increased from 14.6% to 75.0% across the treatments. Tn6433 carrying tet(E) was initially detected in Aeromonas chromosomes at an oxytetracycline dose of 1 mg/L but subsequently detected on plasmids pAeca1-a variants (pAeca1-a, pAeca1-b, and pAeme6) and pAeca2 under higher oxytetracycline stress. The core region of the Tn6433-tet(E) structure was highly conserved, consisting of a transposition and resolution module, a class 1 integron, core passenger genes, and a Tn1722/Tn501-like transposon. Such a structure was found on both the chromosome and plasmids, suggesting that Tn6433 mediated the transposition of tet(E) from the chromosome to plasmid pAeca2 under increasing stresses. Bacteria carrying the transferable plasmid pAeca1-a were dominant in high antibiotic treatments, suggesting that Tn6433 disseminated tet(E), conferring selective advantages to recipients of this ARG.
Collapse
Affiliation(s)
- Yanhong Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiaoqi Huyan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| |
Collapse
|
5
|
Cyriaque V, Jacquiod S, Riber L, Abu Al-Soud W, Gillan DC, Sørensen SJ, Wattiez R. Selection and propagation of IncP conjugative plasmids following long-term anthropogenic metal pollution in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121173. [PMID: 31563088 DOI: 10.1016/j.jhazmat.2019.121173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
For a century, the MetalEurop foundry released metals into the river "La Deûle". Previous work revealed higher microbial diversity in metal impacted sediments, and horizontal gene transfer mediated by conjugative plasmids was suggested to drive the community adaptation to metals. We used an integrative state-of-the-art molecular approach coupling quantitative PCR, conjugation assays, flow cytometry, fluorescence activated cell sorting and 16S rRNA gene amplicon sequencing to investigate the presence of conjugative plasmids and their propagation patterns in sediment microbiomes. We highlighted the existence of a native broad-host range IncP conjugative plasmid population in polluted sediments, confirming their ecological importance for microbial adaptation. However, despite incompatibilities and decreased transfer frequencies with our own alien IncP plasmid, we evidenced that a wide diversity of bacterial members was still prone to uptake the plasmid, indicating that sediment microbial communities are still inclined to receive conjugative plasmids from the same group. We observed that metal pollution favoured exogenous plasmid transfer to specific metal-selected bacteria, which are likely coming from upstream sources (e.g. wastewater treatment plant, farms…). Altogether, our results suggest that MetalEurop sediments are hotspots for gene transfer via plasmids, acting as an "environmental reservoir" for microbes and mobile elements released by human activities.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium; Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark.
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark; Agroécologie, UMR 1347, INRA Centre Dijon, Dijon, France
| | - Leise Riber
- Section of Functional Genomics, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark; Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Qurayyat, Saudi Arabia
| | - David C Gillan
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium
| |
Collapse
|
6
|
Tkacova A, Orieskova M, Halgasova N, Bocanova L, Bukovska G. Identification of Brevibacterium flavum genes related to receptors involved in bacteriophage BFK20 adsorption. Virus Res 2019; 274:197775. [PMID: 31600527 DOI: 10.1016/j.virusres.2019.197775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/28/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022]
Abstract
Phage infection of bacterial cells is a process requiring the interaction between phage receptor binding proteins and receptors on the bacterial cell surface. We prepared a Brevibacterium flavum CCM 251 EZ-Tn5 transposon insertional library and isolated phage-resistant mutants. Analysis of the DNA fragments produced by single-primer PCR was used to determine the EZ-Tn5 transposon insertion sites in the genomes of phage-resistant B. flavum mutants. Seven disrupted genes were identified in forty B. flavum mutants. The phage resistance of these mutants was demonstrated by cultivation analysis in the presence of BFK20, and the adsorption rate of BFK20 to these mutants was tested. B. flavum mutants displayed significantly reduced adsorption rates; the lowest rate was observed for mutants containing interrupted major facilitator superfamily (MFS) protein and glycosyltransferase genes. Uninterrupted forms of these genes were cloned into corynebacterial vector pJUP06 and used for in trans complementation of the corresponding B. flavum mutants. The growth of these complemented mutants when infected with BFK20 closely resembled that of wild-type B. flavum. These complemented mutants also exhibited similar BFK20 adsorption as the wild-type control. We infer that the disrupted MFS protein and glycosyltransferase genes are responsible for the phage-resistant phenotype of these B. flavum transposition mutants.
Collapse
Affiliation(s)
- Adela Tkacova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Maria Orieskova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
7
|
Bukovska G, Ugorcakova J, Halgasova N, Bocanova L, Tkacova A. The BFK20 phage replication origin confers a phage-encoded resistance phenotype to the industrial strain Brevibacterium flavum. FEMS Microbiol Lett 2019; 366:5480461. [DOI: 10.1093/femsle/fnz090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/25/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Jana Ugorcakova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Adela Tkacova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
8
|
Heinze S, Kornberger P, Grätz C, Schwarz WH, Zverlov VV, Liebl W. Transmating: conjugative transfer of a new broad host range expression vector to various Bacillus species using a single protocol. BMC Microbiol 2018; 18:56. [PMID: 29884129 PMCID: PMC5994095 DOI: 10.1186/s12866-018-1198-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. RESULTS In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the PaprE-promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. CONCLUSIONS The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from a multitude of strains. This paves the way for the genetic modification and biotechnological exploitation of the broad diversity of species of Bacillus and related genera as well as different strains from these species.
Collapse
Affiliation(s)
- Simon Heinze
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, D-85354, Freising-Weihenstephan, Germany
| | - Petra Kornberger
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, D-85354, Freising-Weihenstephan, Germany.
| | - Christian Grätz
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, D-85354, Freising-Weihenstephan, Germany
| | - Wolfgang H Schwarz
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, D-85354, Freising-Weihenstephan, Germany
| | - Vladimir V Zverlov
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, D-85354, Freising-Weihenstephan, Germany.,Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182, Moscow, Russia
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, D-85354, Freising-Weihenstephan, Germany
| |
Collapse
|
9
|
Chang SC, Lee CY. OpaR and RpoS are positive regulators of a virulence factor PrtA in Vibrio parahaemolyticus. Microbiology (Reading) 2018; 164:221-231. [DOI: 10.1099/mic.0.000591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- San-Chi Chang
- Department of Agricultural Chemistry, Microbiology Laboratory, National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Yin Lee
- Department of Agricultural Chemistry, Microbiology Laboratory, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
10
|
Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, Das J, Jha G. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun 2017; 8:404. [PMID: 28864820 PMCID: PMC5581363 DOI: 10.1038/s41467-017-00529-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/05/2017] [Indexed: 11/09/2022] Open
Abstract
Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Isha Tyagi
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Li H, Zhang L, Guo W, Xu D. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum. J Microbiol Methods 2016; 131:156-160. [DOI: 10.1016/j.mimet.2016.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
12
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
13
|
Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME JOURNAL 2016; 11:152-165. [PMID: 27482924 DOI: 10.1038/ismej.2016.98] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/30/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023]
Abstract
The environmental stimulants and inhibitors of conjugal plasmid transfer in microbial communities are poorly understood. Specifically, it is not known whether exposure to stressors may cause a community to alter its plasmid uptake ability. We assessed whether metals (Cu, Cd, Ni, Zn) and one metalloid (As), at concentrations causing partial growth inhibition, modulate community permissiveness (that is, uptake ability) against a broad-host-range IncP-type plasmid (pKJK5). Cells were extracted from an agricultural soil as recipient community and a cultivation-minimal filter mating assay was conducted with an exogenous E. coli donor strain. The donor hosted a gfp-tagged pKJK5 derivative from which conjugation events could be microscopically quantified and transconjugants isolated and phylogenetically described at high resolution via FACS and 16S rRNA amplicon sequencing. Metal stress consistently decreased plasmid transfer frequencies to the community, while the transconjugal pool richness remained unaffected with OTUs belonging to 12 bacterial phyla. The taxonomic composition of the transconjugal pools was distinct from their respective recipient communities and clustered dependent on the stress type and dose. However, for certain OTUs, stress increased or decreased permissiveness by more than 1000-fold and this response was typically correlated across different metals and doses. The response to some stresses was, in addition, phylogenetically conserved. This is the first demonstration that community permissiveness is sensitive to metal(loid) stress in a manner that is both partially consistent across stressors and phylogenetically conserved.
Collapse
|
14
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Allard N, Garneau D, Poulin-Laprade D, Burrus V, Brzezinski R, Roy S. A diaminopimelic acid auxotrophic Escherichia coli donor provides improved counterselection following intergeneric conjugation with actinomycetes. Can J Microbiol 2015; 61:565-74. [PMID: 26166710 DOI: 10.1139/cjm-2015-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considering the medical, biotechnological, and economical importance of actinobacteria, there is a continuous need to improve the tools for genetic engineering of a broad range of these microorganisms. Intergeneric conjugation has proven to be a valuable yet imperfect tool for this purpose. The natural resistance of many actinomycetes to nalidixic acid (Nal) is generally exploited to eliminate the sensitive Escherichia coli donor strain following conjugation. Nevertheless, Nal can delay growth and have other unexpected effects on the recipient strain. To provide an improved alternative to antibiotics, we propose a postconjugational counterselection using a diaminopimelic acid (DAP) auxotrophic donor strain. The DAP-negative phenotype was obtained by introducing a dapA deletion into the popular methylase-negative donor strain E. coli ET12567/pUZ8002. The viability of ET12567 and its ΔdapA mutant exposed to DAP deprivation or Nal selection were compared in liquid pure culture and after mating with Streptomyces coelicolor. Results showed that death of the E. coli ΔdapA Nal-sensitive donor strain occurred more efficiently when subjected to DAP deprivation than when exposed to Nal. Our study shows that postconjugational counterselection based on DAP deprivation circumvents the use of antibiotics and will facilitate the transfer of plasmids into actinomycetes with high biotechnological potential, yet currently not accessible to conjugative techniques.
Collapse
Affiliation(s)
- Nancy Allard
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Daniel Garneau
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Dominic Poulin-Laprade
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Ryszard Brzezinski
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Roy
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
16
|
The EcoKI type I restriction-modification system in Escherichia coli affects but is not an absolute barrier for conjugation. J Bacteriol 2014; 197:337-42. [PMID: 25384481 DOI: 10.1128/jb.02418-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer.
Collapse
|
17
|
Załuga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J, Maes M, De Vos P. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genomics 2014; 15:392. [PMID: 24885539 PMCID: PMC4059874 DOI: 10.1186/1471-2164-15-392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/09/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.
Collapse
Affiliation(s)
- Joanna Załuga
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Pieter Stragier
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Steve Baeyen
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Annelies Haegeman
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Johan Van Vaerenbergh
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Martine Maes
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
- />BCCM/LMG Bacteria collection - Laboratory of Microbiology Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| |
Collapse
|
18
|
Bacterial inactivation of the anticancer drug doxorubicin. ACTA ACUST UNITED AC 2013; 19:1255-64. [PMID: 23102220 DOI: 10.1016/j.chembiol.2012.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/10/2012] [Accepted: 08/06/2012] [Indexed: 11/23/2022]
Abstract
Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification.
Collapse
|
19
|
Suzuki N, Inui M. Genome Engineering of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
20
|
Ikeda M, Takeno S. Amino Acid Production by Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Choorapoikayil S, Schoepe J, Buchinger S, Schomburg D. Analysis of in vivo Function of Predicted Isoenzymes—A Metabolomic Approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:668-80. [DOI: 10.1089/omi.2012.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Jan Schoepe
- Institute of Biochemistry, University of Cologne, Köln, Germany
| | - Sebastian Buchinger
- Institute of Biochemistry, University of Cologne, Köln, Germany
- Current address: German Federal Institute of Hydrology, Koblenz 56068, Germany
| | - Dietmar Schomburg
- Institute of Biochemistry, University of Cologne, Köln, Germany
- Current address: Department of Bioinformatics & Biochemistry, TU Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
22
|
Gerova M, Halgasova N, Ugorcakova J, Bukovska G. Endolysin of bacteriophage BFK20: evidence of a catalytic and a cell wall binding domain. FEMS Microbiol Lett 2011; 321:83-91. [DOI: 10.1111/j.1574-6968.2011.02312.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 2011; 38:1911-20. [DOI: 10.1007/s10295-011-0977-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/16/2011] [Indexed: 11/25/2022]
|
24
|
Stolle P, Barckhausen O, Oehlmann W, Knobbe N, Vogt C, Pierik AJ, Cox N, Schmidt PP, Reijerse EJ, Lubitz W, Auling G. Homologous expression of the nrdF gene of Corynebacterium ammoniagenes strain ATCC 6872 generates a manganese-metallocofactor (R2F) and a stable tyrosyl radical (Y˙) involved in ribonucleotide reduction. FEBS J 2010; 277:4849-62. [PMID: 20977673 DOI: 10.1111/j.1742-4658.2010.07885.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ribonucleotide reduction, the unique step in the pathway to DNA synthesis, is catalyzed by enzymes via radical-dependent redox chemistry involving an array of diverse metallocofactors. The nucleotide reduction gene (nrdF) encoding the metallocofactor containing small subunit (R2F) of the Corynebacterium ammoniagenes ribonucleotide reductase was reintroduced into strain C. ammoniagenes ATCC 6872. Efficient homologous expression from plasmid pOCA2 using the tac-promotor enabled purification of R2F to homogeneity. The chromatographic protocol provided native R2F with a high ratio of manganese to iron (30:1), high activity (69 μmol 2'-deoxyribonucleotide·mg⁻¹ ·min⁻¹) and distinct absorption at 408 nm, characteristic of a tyrosyl radical (Y˙), which is sensitive to the radical scavenger hydroxyurea. A novel enzyme assay revealed the direct involvement of Y˙ in ribonucleotide reduction because 0.2 nmol 2'-deoxyribonucleotide was formed, driven by 0.4 nmol Y˙ located on R2F. X-band electron paramagnetic resonance spectroscopy demonstrated a tyrosyl radical at an effective g-value of 2.004. Temperature dependent X/Q-band EPR studies revealed that this radical is coupled to a metallocofactor. Similarities of the native C. ammoniagenes ribonucleotide reductase to the in vitro activated Escherichia coli class Ib enzyme containing a dimanganese(III)-tyrosyl metallocofactor are discussed.
Collapse
Affiliation(s)
- Patrick Stolle
- Institut für Mikrobiologie, Leibniz Universität Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu B, Song J, Beitz E. Novel channel enzyme fusion proteins confer arsenate resistance. J Biol Chem 2010; 285:40081-7. [PMID: 20947511 DOI: 10.1074/jbc.m110.184457] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.
Collapse
Affiliation(s)
- Binghua Wu
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | | |
Collapse
|
26
|
Fiuza M, Letek M, Leiba J, Villadangos AF, Vaquera J, Zanella-Cléon I, Mateos LM, Molle V, Gil JA. Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum. J Biol Chem 2010; 285:29387-97. [PMID: 20622015 DOI: 10.1074/jbc.m110.154427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corynebacteria grow by wall extension at the cell poles, with DivIVA being an essential protein orchestrating cell elongation and morphogenesis. DivIVA is considered a scaffolding protein able to recruit other proteins and enzymes involved in polar peptidoglycan biosynthesis. Partial depletion of DivIVA induced overexpression of cg3264, a previously uncharacterized gene that encodes a novel coiled coil-rich protein specific for corynebacteria and a few other actinomycetes. By partial depletion and overexpression of Cg3264, we demonstrated that this protein is an essential cytoskeletal element needed for maintenance of the rod-shaped morphology of Corynebacterium glutamicum, and it was therefore renamed RsmP (rod-shaped morphology protein). RsmP forms long polymers in vitro in the absence of any cofactors, thus resembling eukaryotic intermediate filaments. We also investigated whether RsmP could be regulated post-translationally by phosphorylation, like eukaryotic intermediate filaments. RsmP was phosphorylated in vitro by the PknA protein kinase and to a lesser extent by PknL. A mass spectrometric analysis indicated that phosphorylation exclusively occurred on a serine (Ser-6) and two threonine (Thr-168 and Thr-211) residues. We confirmed that mutagenesis to alanine (phosphoablative protein) totally abolished PknA-dependent phosphorylation of RsmP. Interestingly, when the three residues were converted to aspartic acid, the phosphomimetic protein accumulated at the cell poles instead of making filaments along the cell, as observed for the native or phosphoablative RsmP proteins, indicating that phosphorylation of RsmP is necessary for directing cell growth at the cell poles.
Collapse
Affiliation(s)
- Maria Fiuza
- Departamento de Biología Molecular, Area de Microbiología, Facultad de Biología, Universidad de León, León 24071, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Morbach S, Sahm H, Eggeling L. Use of Feedback-Resistant Threonine Dehydratases of Corynebacterium glutamicum To Increase Carbon Flux towards l-Isoleucine. Appl Environ Microbiol 2010; 61:4315-20. [PMID: 16535185 PMCID: PMC1388650 DOI: 10.1128/aem.61.12.4315-4320.1995] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of l-isoleucine proceeds via a highly regulated reaction sequence connected with l-lysine and l-threonine synthesis. Using defined genetic Corynebacterium glutamicum strains characterized by different fluxes through the homoserine dehydrogenase reaction, we analyzed the influence of four different ilvA alleles (encoding threonine dehydratase) in vectors with two different copy numbers on the total flux towards l-isoleucine. For this purpose, 18 different strains were constructed and analyzed. The result was that unlike ilvA in vectors with low copy numbers, ilvA in high-copy-number vectors increased the final l-isoleucine yield by about 20%. An additional 40% increase in l-isoleucine yield was obtained by the use of ilvA alleles encoding feedback-resistant threonine dehydratases. The strain with the highest yield was characterized by three hom(Fbr) copies encoding feedback-resistant homoserine dehydrogenase and ilvA(Fbr) encoding feedback-resistant threonine dehydratase on a multicopy plasmid. It accumulated 96 mM l-isoleucine, without any l-threonine as a by-product. The highest specific productivity was 0.052 g of l-isoleucine per g of biomass per h. This comparative flux analysis of isogenic strains showed that high levels of l-isoleucine formation from glucose can be achieved by the appropriate balance of homoserine dehydrogenase and threonine dehydratase activities in a strain background with feedback-resistant aspartate kinase. However, still-unknown limitations are present within the entire reaction sequence.
Collapse
|
28
|
An improved transconjugation protocol for Bacillus megaterium facilitating a direct genetic knockout. Appl Microbiol Biotechnol 2010; 86:1959-65. [PMID: 20217076 DOI: 10.1007/s00253-010-2503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
We provide a simple but very efficient transconjugation protocol for Bacillus megaterium. By combining utile attributes of known transconjugation methods (small size of the transferred DNA, close physical contact between donor and recipient cells, and heat treatment of the latter) and by determining the appropriate donor/recipient ratio, mating approaches yielded 5 x 10(-5) transconjugants/recipient. Counter-selection for eliminating Escherichia coli donor cells from the mating mixture was possible by pasteurization in case a wild type sporulation proficient B. megaterium served as the mating partner. For nonsporulating mutants, the sacB gene from Bacillus subtilis coding for levansucrase was successfully employed to select against the E. coli donor. The transfer efficiency, up to 15,000 transconjugants acquirable in a single experiment, sufficed--for the first time in this species--to directly select a gene (uvrA) knockout in a one-step procedure. By making use of a mobilizable B. megaterium suicide vector, ten out of the 40 sampled putative transconjugants displayed the expected UV sensitivity and were found to harbor the suicide vector at the anticipated position. Along with the soon available information arising from current B. megaterium sequencing projects, the possibility to quickly inactivate genetic loci will considerably speed up genetic work with this biotechnologically relevant species.
Collapse
|
29
|
Analysis of RegA, a pathway-specific regulator of the friulimicin biosynthesis in Actinoplanes friuliensis. J Biotechnol 2008; 140:99-106. [PMID: 19159651 DOI: 10.1016/j.jbiotec.2008.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022]
Abstract
The rare actinomycete Actinoplanes friuliensis is the producer of the lipopeptide antibiotic friulimicin, which is active against a broad range of Gram-positive bacteria such as methicillin-resistant Enterococcus spec. and Staphylococcus aureus (MRE, MRSA) strains. Friulimicin consists of a decapeptide core and an acyl residue linked to an exocyclic amino acid. The complete biosynthetic gene cluster consisting of 24 open reading frames was characterized by sequence analysis and the transcription units were subsequently determined by RT-PCR experiments. In addition to several genes for biosynthesis, self-resistance and transport four different regulatory genes (regA, regB, regC and regD) were identified within the cluster. To analyse the role of the pathway-specific regulatory protein RegA in the friulimicin biosynthesis, the corresponding gene was inactivated resulting in friulimicin non-producing mutants. Furthermore, several protein-binding sites within the friulimicin gene cluster were identified by gel retardation assays. By real-time RT-PCR experiments, it was shown that the majority of the friulimicin biosynthetic genes is positively regulated by RegA.
Collapse
|
30
|
Fiuza M, Canova MJ, Patin D, Letek M, Zanella-Cléon I, Becchi M, Mateos LM, Mengin-Lecreulx D, Molle V, Gil JA. The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum. J Biol Chem 2008; 283:36553-63. [PMID: 18974047 DOI: 10.1074/jbc.m807175200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Maria Fiuza
- Departamento de Biología Molecular, Area de Microbiología, Facultad de Biología, Universidad de León, León 24071, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fiuza M, Canova MJ, Zanella-Cléon I, Becchi M, Cozzone AJ, Mateos LM, Kremer L, Gil JA, Molle V. From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 2008; 283:18099-112. [PMID: 18442973 DOI: 10.1074/jbc.m802615200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corynebacterium glutamicum contains four serine/threonine protein kinases (STPKs) named PknA, PknB, PknG, and PknL. Here we present the first biochemical and comparative analysis of all four C. glutamicum STPKs and investigate their potential role in cell shape control and peptidoglycan synthesis during cell division. In vitro assays demonstrated that, except for PknG, all STPKs exhibited autokinase activity. We provide evidence that activation of PknG is part of a phosphorylation cascade mechanism that relies on PknA activity. Following phosphorylation by PknA, PknG could transphosphorylate its specific substrate OdhI in vitro. A mass spectrometry profiling approach was also used to identify the phosphoresidues in all four STPKs. The results indicate that the nature, number, and localization of the phosphoacceptors varies from one kinase to the other. Disruption of either pknL or pknG in C. glutamicum resulted in viable mutants presenting a typical cell morphology and growth rate. In contrast, we failed to obtain null mutants of pknA or pknB, supporting the notion that these genes are essential. Conditional mutants of pknA or pknB were therefore created, leading to partial depletion of PknA or PknB. This resulted in elongated cells, indicative of a cell division defect. Moreover, overexpression of PknA or PknB in C. glutamicum resulted in a lack of apical growth and therefore a coccoid-like morphology. These findings indicate that pknA and pknB are key players in signal transduction pathways for the regulation of the cell shape and both are essential for sustaining corynebacterial growth.
Collapse
Affiliation(s)
- Maria Fiuza
- Departamento de Biología Molecular, Area de Microbiología, Facultad de Biología, Universidad de León, León, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol 2008; 190:3283-92. [PMID: 18296522 DOI: 10.1128/jb.01934-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVA(Cg)) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVA(Cg)-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVA(Cg) localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.
Collapse
|
33
|
Müller C, Nolden S, Gebhardt P, Heinzelmann E, Lange C, Puk O, Welzel K, Wohlleben W, Schwartz D. Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 2007; 51:1028-37. [PMID: 17220414 PMCID: PMC1803135 DOI: 10.1128/aac.00942-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinoplanes friuliensis produces the lipopeptide antibiotic friulimicin, which is a cyclic peptide with one exocyclic amino acid linked to a branched-chain fatty acid acyl residue. The structural relationship to daptomycin and the excellent antibacterial performance of friulimicin make the antibiotic an attractive drug candidate. The complete friulimicin biosynthetic gene cluster of 24 open reading frames from A. friuliensis was sequenced and analyzed. In addition to genes for regulation, self-resistance, and transport, the cluster contains genes encoding peptide synthetases, proteins involved in the synthesis and linkage of the fatty acid component of the antibiotic, and proteins involved in the synthesis of the nonproteinogenic amino acids pipecolinic acid, methylaspartic acid, and 2,3-diaminobutyric acid. By using heterologous gene expression in Escherichia coli, we provide biochemical evidence for the stereoselective synthesis of L-pipecolinic acid by the deduced protein of the lysine cyclodeaminase gene pip. Furthermore, we show the involvement of the dabA and dabB genes in the biosynthesis of 2,3-diaminobutyric acid by gene inactivation and subsequent feeding experiments.
Collapse
Affiliation(s)
- C Müller
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.ZV., Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Musovic S, Oregaard G, Kroer N, Sørensen SJ. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol 2006; 72:6687-92. [PMID: 17021220 PMCID: PMC1610302 DOI: 10.1128/aem.00013-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host range and transfer frequency of an IncP-1 plasmid (pKJK10) among indigenous bacteria in the barley rhizosphere was investigated. A new flow cytometry-based cultivation-independent method for enumeration and sorting of transconjugants for subsequent 16S rRNA gene classification was used. Indigenous transconjugant rhizosphere bacteria were collected by fluorescence-activated cell sorting and identified by cloning and sequencing of 16S rRNA genes from the sorted cells. The host range of the pKJK10 plasmid was exceptionally broad, as it included not only bacteria belonging to the alpha, beta, and gamma subclasses of the Proteobacteria, but also Arthrobacter sp., a gram-positive member of the Actinobacteria. The transfer frequency (transconjugants per donor) from the Pseudomonas putida donor to the indigenous bacteria was 7.03 x 10(-2) +/- 3.84 x 10(-2). This is the first direct documentation of conjugal transfer between gram-negative donor and gram-positive recipient bacteria in situ.
Collapse
Affiliation(s)
- Sanin Musovic
- Dept. of Microbiology, University of Copenhagen, Institute of Biology, Sølvgade 83H, 1307K Copenhagen K, Denmark
| | | | | | | |
Collapse
|
35
|
Valbuena N, Letek M, Ramos A, Ayala J, Nakunst D, Kalinowski J, Mateos LM, Gil JA. Morphological changes and proteome response of Corynebacterium glutamicum to a partial depletion of FtsI. Microbiology (Reading) 2006; 152:2491-2503. [PMID: 16849811 DOI: 10.1099/mic.0.28773-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Corynebacterium glutamicum, as in many Gram-positive bacteria, the cell division gene ftsI is located at the beginning of the dcw cluster, which comprises cell division- and cell wall-related genes. Transcriptional analysis of the cluster revealed that ftsI is transcribed as part of a polycistronic mRNA, which includes at least mraZ, mraW, ftsL, ftsI and murE, from a promoter that is located upstream of mraZ. ftsI appears also to be expressed from a minor promoter that is located in the intergenic ftsL–ftsI region. It is an essential gene in C. glutamicum, and a reduced expression of ftsI leads to the formation of larger and filamentous cells. A translational GFP-FtsI fusion protein was found to be functional and localized to the mid-cell of a growing bacterium, providing evidence of its role in cell division in C. glutamicum. This study involving proteomic analysis (using 2D SDS-PAGE) of a C. glutamicum strain that has partially depleted levels of FtsI reveals that at least 20 different proteins were overexpressed in the organism. Eight of these overexpressed proteins, which include DivIVA, were identified by MALDI-TOF. Overexpression of DivIVA was confirmed by Western blotting using anti-DivIVA antibodies, and also by fluorescence microscopy analysis of a C. glutamicum RESF1 strain expressing a chromosomal copy of a divIVA-gfp transcriptional fusion. Overexpression of DivIVA was not observed when FtsI was inhibited by cephalexin treatment or by partial depletion of FtsZ.
Collapse
Affiliation(s)
- Noelia Valbuena
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Angelina Ramos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Juan Ayala
- Centro Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, CSIC-UAM, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Diana Nakunst
- Institut fur Genomforschung, Universitat Bielefeld, Universitatsstrasse 25, D-33615 Bielefeld, Germany
| | - Joern Kalinowski
- Institut fur Genomforschung, Universitat Bielefeld, Universitatsstrasse 25, D-33615 Bielefeld, Germany
| | - Luis M Mateos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José A Gil
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| |
Collapse
|
36
|
Srivastava P, Nath N, Deb JK. Characterization of broad host range cryptic plasmid pCR1 from Corynebacterium renale. Plasmid 2006; 56:24-34. [PMID: 16545871 DOI: 10.1016/j.plasmid.2006.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/24/2022]
Abstract
Plasmid pCR1 is a cryptic plasmid harboured by Corynebacterium renale. It is the smallest corynebacterial plasmid known to date. Although its natural host is animal corynebacteria, it can replicate in several strains of soil corynebacteria. It can also replicate in Escherichia coli, in which it is stably maintained. The copy number of pCR1 in this host is higher than that of pUC19, with which it shows unidirectional incompatibility. It is also incompatible with pBK2, a plasmid bearing the common corynebacterial replicon pBL1. Its size is 1488bp, as revealed by DNA sequencing. A total of eight open reading frames (ORF) were detected in this plasmid, the largest of which codes for a putative Rep protein of predicted molecular mass of 21kDa. The plasmid pCR1 can be mobilized by the plasmid R6K from E. coli to other corynebacteria. Sequence analysis revealed the presence of an oriT homologous to that of R64. An E. coli plasmid pKL1 shows more than 90% identity with pCR1. Like many coryenbacterial plasmids, pCR1 also replicates by rolling circle mode.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India
| | | | | |
Collapse
|
37
|
Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 2006; 188:409-23. [PMID: 16385030 PMCID: PMC1347311 DOI: 10.1128/jb.188.2.409-423.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Collapse
Affiliation(s)
- Michal Letek
- Area de Microbiología, Dpto. Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Dogan I, Pagilla KR, Webster DA, Stark BC. Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol 2006; 33:693-700. [PMID: 16491354 DOI: 10.1007/s10295-006-0097-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 01/29/2006] [Indexed: 11/28/2022]
Abstract
The gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb) was electroporated into Gordonia amarae, where it was stably maintained, and expressed at about 4 nmol VHb g(-1) of cells. The maximum cell mass (OD(600)) of vgb-bearing G. amarae was greater than that of untransformed G. amarae for a variety of media and aeration conditions (2.8-fold under normal aeration and 3.4-fold under limited aeration in rich medium, and 3.5-fold under normal aeration and 3.2-fold under limited aeration in mineral salts medium). The maximum level of trehalose lipid from cultures grown in rich medium plus hexadecane was also increased for the recombinant strain, by 4.0-fold in broth and 1.8-fold in cells under normal aeration and 2.1-fold in broth and 1.4-fold in cells under limited aeration. Maximum overall biosurfactant production was also increased in the engineered strain, by 1.4-fold and 2.4-fold for limited and normal aeration, respectively. The engineered strain may be an improved source for producing purified biosurfactant or an aid to microorganisms bioremediating sparingly soluble contaminants in situ.
Collapse
Affiliation(s)
- Ilhan Dogan
- Biology Division, Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, IIT Center, Chicago, IL 60616, USA
| | | | | | | |
Collapse
|
39
|
Tryfona T, Bustard MT. Enhancement of biomolecule transport by electroporation: A review of theory and practical application to transformation ofCorynebacterium glutamicum. Biotechnol Bioeng 2006; 93:413-23. [PMID: 16224791 DOI: 10.1002/bit.20725] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Selective and reversible permeabilization of the cell wall permeability barrier is the focus for many biotechnological applications. In this article, the basic principles for reversible membrane permeabilization, based on biological, chemical, and physical methods are reviewed. Emphasis is given to electroporation (electropermeabilization) which tends to be the most popular method for membrane permeabilization and for introduction of foreign molecules into the cells. The applications of this method in industrial processes as well as the critical factors and parameters which affect the success of this approach are discussed. The different strategies developed throughout the years for increased transformation efficiencies of the industrially important amino acid-overproducing bacterium Corynebacterium glutamicum, are also summarized.
Collapse
Affiliation(s)
- Theodora Tryfona
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
40
|
Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 2005; 71:6206-15. [PMID: 16204540 PMCID: PMC1266000 DOI: 10.1128/aem.71.10.6206-6215.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum is able to grow in media containing up to 12 mM arsenite and 500 mM arsenate and is one of the most arsenic-resistant microorganisms described to date. Two operons (ars1 and ars2) involved in arsenate and arsenite resistance have been identified in the complete genome sequence of Corynebacterium glutamicum. The operons ars1 and ars2 are located some distance from each other in the bacterial chromosome, but they are both composed of genes encoding a regulatory protein (arsR), an arsenite permease (arsB), and an arsenate reductase (arsC); operon ars1 contains an additional arsenate reductase gene (arsC1') located immediately downstream from arsC1. Additional arsenite permease and arsenate reductase genes (arsB3 and arsC4) scattered on the chromosome were also identified. The involvement of ars operons in arsenic resistance in C. glutamicum was confirmed by gene disruption experiments of the three arsenite permease genes present in its genome. Wild-type and arsB3 insertional mutant C. glutamicum strains were able to grow with up to 12 mM arsenite, whereas arsB1 and arsB2 C. glutamicum insertional mutants were resistant to 4 mM and 9 mM arsenite, respectively. The double arsB1-arsB2 insertional mutant was resistant to only 0.4 mM arsenite and 10 mM arsenate. Gene amplification assays of operons ars1 and ars2 in C. glutamicum revealed that the recombinant strains containing the ars1 operon were resistant to up to 60 mM arsenite, this being one of the highest levels of bacterial resistance to arsenite so far described, whereas recombinant strains containing operon ars2 were resistant to only 20 mM arsenite. Northern blot and reverse transcription-PCR analysis confirmed the presence of transcripts for all the ars genes, the expression of arsB3 and arsC4 being constitutive, and the expression of arsR1, arsB1, arsC1, arsC1', arsR2, arsB2, and arsC2 being inducible by arsenite.
Collapse
Affiliation(s)
- Efrén Ordóñez
- Area de Microbiología, Departamento de Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | |
Collapse
|
41
|
Blaesing F, Mühlenweg A, Vierling S, Ziegelin G, Pelzer S, Lanka E. Introduction of DNA into Actinomycetes by bacterial conjugation from E. coli—An evaluation of various transfer systems. J Biotechnol 2005; 120:146-61. [PMID: 16095742 DOI: 10.1016/j.jbiotec.2005.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/19/2005] [Accepted: 06/10/2005] [Indexed: 11/17/2022]
Abstract
Gene transfer is a basic requirement for optimizing bioactive natural substances produced by an increasing number of industrially used microorganisms. We have analyzed quantitatively horizontal gene transfer from Escherichia coli to Actinomycetes. The efficiencies of DNA transfer of four different systems were compared that consist of conjugative and mobilizable plasmids with a broad-host range. Three novel binary vector set-ups were constructed based on: (i) the IncQ group of mobilizable plasmids (RSF1010), (ii) IncQ-like pTF-FC2 and (iii) pSB102 that belongs to a new class of broad-host-range plasmids. The established system based on the IncPalpha group of conjugative plasmids served as the reference. For all plasmids constructed, we confirmed the functional integrity of the selected transfer machineries by intrageneric matings between E. coli strains. We demonstrate that the transfer systems introduced in this study are efficient in mediating gene transfer from E. coli to Actinomycetes and are possible alternatives for gene transfer into Actinomycetes for which the IncPalpha-based transfer system is not applicable. The use of plasmids that integrate into the recipients' chromosomes compared to that of plasmids replicating autonomously is shown to allow the access to a wider range of hosts.
Collapse
Affiliation(s)
- Franca Blaesing
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Ramos A, Letek M, Campelo AB, Vaquera J, Mateos LM, Gil JA. Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology (Reading) 2005; 151:2563-2572. [PMID: 16079335 DOI: 10.1099/mic.0.28036-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Corynebacterium glutamicum is a Gram-positive bacterium that lacks the cell division FtsA protein and actin-like MreB proteins responsible for determining cylindrical cell shape. When the cell division ftsZ gene from C. glutamicum (ftsZCg
) was cloned in different multicopy plasmids, the resulting constructions could not be introduced into C. glutamicum; it was assumed that elevated levels of FtsZ
Cg
result in lethality. The presence of a truncated ftsZCg
and a complete ftsZCg
under the control of Plac led to a fourfold reduction in the intracellular levels of FtsZ, generating aberrant cells displaying buds, branches and knots, but no filaments. A 20-fold reduction of the FtsZ level by transformation with a plasmid carrying the Escherichia coli lacI gene dramatically reduced the growth rate of C. glutamicum, and the cells were larger and club-shaped. Immunofluorescence microscopy of FtsZ
Cg
or visualization of FtsZ
Cg
–GFP in C. glutamicum revealed that most cells showed one fluorescent band, most likely a ring, at the mid-cell, and some cells showed two fluorescent bands (septa of future daughter cells). When FtsZ
Cg
–GFP was expressed from Plac, FtsZ rings at mid-cell, or spirals, were also clearly visible in the aberrant cells; however, this morphology was not entirely due to GFP but also to the reduced levels of FtsZ expressed from Plac. Localization of FtsZ at the septum is not negatively regulated by the nucleoid, and therefore the well-known occlusion mechanism seems not to operate in C. glutamicum.
Collapse
Affiliation(s)
- Angelina Ramos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Ana Belén Campelo
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José Vaquera
- Departamento de Biología Celular, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José A Gil
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| |
Collapse
|
43
|
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 2005; 244:259-66. [PMID: 15766777 DOI: 10.1016/j.femsle.2005.01.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/29/2004] [Accepted: 01/28/2005] [Indexed: 10/25/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 has four enzyme II (EII) genes of the phosphotransferase system in its genome encoding transporters for sucrose, glucose, fructose, and an unidentified EII. To analyze the function of these EII genes, they were inactivated via homologous recombination and the resulting mutants characterized for sugar utilization. Whereas the sucrose EII was the only transport system for sucrose in C. glutamicum, fructose and glucose were each transported by a second transporter in addition to their corresponding EII. In addition, the ptsF ptsG double mutant carrying deletions in the EII genes for fructose and glucose accumulated fructose in the culture broth when growing on sucrose. As no fructokinase gene exists in the C. glutamicum genome, the fructokinase gene from Clostridium acetobutylicum was expressed in C. glutamicum and resulted in the direct phosphorylation of fructose without any fructose efflux. Accordingly, since fructokinase could direct fructose flux to the pentose phosphate pathway for the supply of NADPH, fructokinase expression may be a potential strategy for enhancing amino acid production.
Collapse
Affiliation(s)
- Min-Woo Moon
- Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-600, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Halgasová N, Majtán T, Ugorcáková J, Timko J, Bukovská G. Resistance of corynebacterial strains to infection and lysis by corynephage BFK 20. J Appl Microbiol 2005; 98:184-92. [PMID: 15610431 DOI: 10.1111/j.1365-2672.2004.02448.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Defence mechanisms of the corynebacterial strains against corynephage BFK 20, which causes lysis of Brevibacterium flavum CCM 251. METHODS AND RESULTS We tested adsorption of the phage BFK 20 to the corynebacterial cell surface. We observed strong adsorption ranging from ca 79 to 93% on the cells of B. flavum ATCC strains, but only ca 76% for B. flavum CCM 251. Minor adsorption for Brevibacterium lactofermentum BLOB (ca 13%) and no adsorption for Corynebacterium glutamicum RM3 were determined. BFK 20 infection had no significant effect on growth and viability of C. glutamicum and B. lactofermentum, but significantly influenced growth and viability of B. flavum ATCC 21127, 21128 and 21474. Cell growth stopped in short time after infection but with no lysis. Brevibacterium flavum CCM 251 cell growth was arrested too and lysis occurred. The Southern hybridization confirmed the presence of significant amount of BFK 20 DNA in samples from B. flavum CCM 251 and B. flavum ATCC strains after BFK 20 infection. Only weak hybridization signal was detected for DNA from infected cells of B. lactofermentum BLOB and no signal for C. glutamicum RM3. CONCLUSIONS Based on the above results we suggest presence of a mechanism leading to abortive infection in B. flavum ATCC 21127, 21128 and 21474. In B. lactofermentum BLOB and C. glutamicum RM3 the adsorption barrier is more likely. SIGNIFICANCE AND IMPACT OF THE STUDY This study increases the knowledge on defence mechanisms of corynebacteria against bacteriophages.
Collapse
Affiliation(s)
- N Halgasová
- Institute of Molecular Biology, Centre of Excellence for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
45
|
Heinzelmann E, Berger S, Müller C, Härtner T, Poralla K, Wohlleben W, Schwartz D. An acyl-CoA dehydrogenase is involved in the formation of the Δcis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Microbiology (Reading) 2005; 151:1963-1974. [PMID: 15942003 DOI: 10.1099/mic.0.27844-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lipopeptide antibiotic friulimicin, produced by Actinoplanes friuliensis, is an effective drug against Gram-positive bacteria, such as methicillin-resistant Staphylococcus epidermidis and Staphylococcus aureus strains. Friulimicin consists of a cyclic peptide core of ten amino acids and an acyl residue linked to an exocyclic amino acid. The acyl residue is essential for antibiotic activity, varies in length from C13 to C15, and carries a characteristic double bond at position Δcis3. Sequencing of a DNA fragment adjacent to a previously described fragment encoding some of the friulimicin biosynthetic genes revealed several genes whose gene products resemble enzymes of lipid metabolism. One of these genes, lipB, encodes an acyl-CoA dehydrogenase homologue. To elucidate the function of the LipB protein, a lipB insertion mutant was generated and the friulimicin derivative (FR242) produced by the mutant was purified. FR242 had antibiotic activity lower than friulimicin in a bioassay. Gas chromatography showed that the acyl residue of wild-type friulimicin contains a double bond, whereas a saturated bond was present in FR242. These results were confirmed by the heterologous expression of lipB in Streptomyces lividans T7, which led to the production of unsaturated fatty acids not found in the S. lividans T7 parent strain. These results indicate that the acyl-CoA dehydrogenase LipB is involved in the introduction of the unusual Δcis3 double bond into the acyl residue of friulimicin.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase/metabolism
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/isolation & purification
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Antimicrobial Cationic Peptides
- Bacterial Proteins/genetics
- Chromatography, Gas
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/isolation & purification
- Gene Deletion
- Gene Order
- Genes, Bacterial
- Micromonosporaceae/enzymology
- Molecular Sequence Data
- Molecular Structure
- Mutagenesis, Insertional
- Peptides/chemistry
- Peptides/isolation & purification
- Peptides/metabolism
- Peptides/pharmacology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Streptomyces lividans/genetics
- Streptomyces lividans/metabolism
Collapse
Affiliation(s)
- Eva Heinzelmann
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Susanne Berger
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie-Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Claudia Müller
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie-Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Thomas Härtner
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Karl Poralla
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Dirk Schwartz
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie-Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
46
|
Steger R, Weinand M, Krämer R, Morbach S. LcoP, an osmoregulated betaine/ectoine uptake system fromCorynebacterium glutamicum. FEBS Lett 2004; 573:155-60. [PMID: 15327991 DOI: 10.1016/j.febslet.2004.07.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/13/2004] [Accepted: 07/27/2004] [Indexed: 11/20/2022]
Abstract
In Corynebacterium glutamicum, four uptake systems for compatible solutes have been characterized so far. DHPE (DeltabetPDeltaputPDeltaproPDeltaectP), a derivative of the C. glutamicum type strain ATCC 13032 carrying deletions in the corresponding genes, still showed a low betaine uptake rate of 1.4 nmol/(min mg cdm). Genome analyses revealed the presence of a putative carrier, named low capacity osmoregulated permease (LcoP), which shows similarities to compatible solute transporters of the betaine/carnitine/choline transporter (BCCT)-family. Deletion of lcoP in DHPE resulted in betaine and ectoine uptake deficiency. LcoP, a betaine and ectoine permease is regulated at the expression and the activity level by the external osmolality. Addition of local anesthetics modulated the activity of BCCT-family members BetP, EctP, and LcoP in a different manner, indicating a different type of lipid-protein interaction.
Collapse
Affiliation(s)
- Ralf Steger
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | |
Collapse
|
47
|
Ramos A, Honrubia MP, Vega D, Ayala JA, Bouhss A, Mengin-Lecreulx D, Gil JA. Characterization and chromosomal organization of the murD-murC-ftsQ region of Corynebacterium glutamicum ATCC 13869. Res Microbiol 2004; 155:174-84. [PMID: 15059630 DOI: 10.1016/j.resmic.2003.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/20/2003] [Indexed: 11/28/2022]
Abstract
The sequence of a 4.6-kb region of DNA from Corynebacterium glutamicum ATCC 13869 lying upstream from the ftsQ-ftsZ region has been determined. The region contains four genes with high similarity to the murD, ftsW, murG, and murC genes from different microorganisms. The products of these mur genes probably catalyse several steps in the formation of the precursors for peptidoglycan synthesis in C. glutamicum, whereas ftsW might play also a role in the stabilisation of the FtsZ ring during cell division. The murC gene product was purified to near homogeneity and its UDP-N-acetylmuramate: L-alanine adding activity was demonstrated. Northern analysis indicated that ftsW, murG and ftsQ are poorly expressed in C. glutamicum whereas murC and ftsZ are expressed at higher levels at the beginning of the exponential phase. Dicistronic (ftsQ-ftsZ) and monocistronic (murC and ftsZ) transcripts can be detected using specific probes and are in agreement with the lack of transcriptional terminators in the partially analysed dcw cluster. Disruption experiments performed in C. glutamicum using internal fragments of the ftsW, murG and murC genes allowed us to conclude that FtsW, MurG, and MurC are essential gene products in C. glutamicum.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Cell Wall/genetics
- Cell Wall/metabolism
- Chromosome Mapping
- Cloning, Molecular
- Corynebacterium/enzymology
- Corynebacterium/genetics
- Corynebacterium/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Genes, Essential/physiology
- Genetic Complementation Test
- Molecular Sequence Data
- Mutagenesis, Insertional
- Plasmids
- Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transformation, Genetic
Collapse
Affiliation(s)
- Angelina Ramos
- Area de Microbiología, Departamento de Ecología, Genética y Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Díaz M, Adham SAI, Ramón D, Gil JA, Santamaría RI. Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 2004; 65:401-6. [PMID: 15168093 DOI: 10.1007/s00253-004-1633-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/31/2004] [Accepted: 04/04/2004] [Indexed: 11/25/2022]
Abstract
The Aspergillus nidulans gene xlnA coding for the fungal xylanase X22 has been cloned and expressed in two heterologous bacterial hosts: Streptomyces lividans and Brevibacterium lactofermentum. Streptomyces strains yielded 10 units/ml of xylanase when the protein was produced with its own signal peptide, and 19 units/ml when its signal peptide was replaced by the one for xylanase Xys1 from Streptomyces halstedii. B. lactofermentum was also able to produce xylanase X22, affording 6 units/ml upon using either the Aspergillus xlnA signal peptide or Streptomyces xysA. These production values are higher than those previously reported for the heterologous expression of the A. nidulans xlnA gene in Saccharomyces cerevisiae (1 unit/ml). Moreover, the X22 enzyme produced by Streptomyces lividans showed oenological properties, indicating that this Streptomyces recombinant strain is a good candidate for the production of this enzyme at the industrial scale.
Collapse
Affiliation(s)
- M Díaz
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
49
|
Ramos A, Honrubia MP, Valbuena N, Vaquera J, Mateos LM, Gil JA. Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. MICROBIOLOGY-SGM 2004; 149:3531-3542. [PMID: 14663085 DOI: 10.1099/mic.0.26653-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Brevibacterium lactofermentum, as in many Gram-positive bacteria, a divIVA gene is located downstream from the dcw cluster of cell-division- and cell-wall-related genes. This gene (divIVA(BL)) is mostly expressed during exponential growth, and the protein encoded, DivIVA(BL,) bears some sequence similarity to antigen 84 (Ag84) from mycobacteria and was detected with monoclonal antibodies against Ag84. Disruption experiments using an internal fragment of the divIVA(BL) gene or a disrupted divIVA(BL) cloned in a suicide conjugative plasmid were unsuccessful, suggesting that the divIVA(BL) gene is needed for cell viability in BREV: lactofermentum. Transformation of BREV: lactofermentum with a multicopy plasmid containing divIVA(BL) drastically altered the morphology of the corynebacterial cells, which became larger and bulkier, and a GFP fusion to DivIVA(BL) mainly localized to the ends of corynebacterial cells. This localization pattern, together with the overproduction phenotype, suggests that DivIVA may be important in regulating the apical growth of daughter cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Bacterial
- Antibodies, Monoclonal
- Antigens, Bacterial/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Base Sequence
- Brevibacterium/genetics
- Brevibacterium/immunology
- Brevibacterium/metabolism
- Brevibacterium/ultrastructure
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/immunology
- Cell Cycle Proteins/metabolism
- Cloning, Molecular
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Gene Targeting
- Genes, Bacterial
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Multigene Family
- Plasmids/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombination, Genetic
- Sequence Homology, Amino Acid
- Transformation, Genetic
Collapse
Affiliation(s)
- Angelina Ramos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - María Pilar Honrubia
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Noelia Valbuena
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José Vaquera
- Departamento de Biología Celular, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José A Gil
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| |
Collapse
|
50
|
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 2003; 104:287-99. [PMID: 12948646 DOI: 10.1016/s0168-1656(03)00148-2] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the last decades, the gram-positive soil bacterium Corynebacterium glutamicum has been shown to be a very versatile microorganism for the large-scale fermentative production of L-amino acids. Up to now, a vast amount of techniques and tools for genetic engineering and amplification of relevant structural genes have been developed. The objectives of this study are to summarize the published literature on tools for genetic engineering in C. glutamicum and to focus on new sophisticated and highly efficient methods in the fields of DNA transfer techniques, cloning vectors, integrative genetic tools, and antibiotic-free self-cloning. This repertoire of C. glutamicum methodology provides an experimental basis for efficient genetic analyses of the recently completed genome sequence.
Collapse
Affiliation(s)
- Oliver Kirchner
- Lehrstuhl für Gentechnologie/Mikrobiologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | |
Collapse
|