1
|
Zhao X, Li Y, Duan Y, Amin A, Xie Y, Shi C, Ma C. A simple methodology for RNA isolation from bacteria by integration of formamide extraction and chitosan-modified silica purification. Anal Bioanal Chem 2021; 413:6469-6477. [PMID: 34505946 DOI: 10.1007/s00216-021-03644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
RNA isolation from bacteria is technically difficult due to the RNA characteristic of labile and vulnerable degradation. Many reagents were explored for cellular lysis and complete inhibition of RNase. However, the available methods for RNA isolation are either of low efficiency or time-consuming. Here, we developed a rapid and accessible protocol for RNA isolation that combined a simplified cell lysis and RNA release by formamide-based solution and RNA purification by chitosan-modified silica membrane for the first time. With this method, we obtained about ~ 28 μg of total RNA from 108 Escherichia coli cells. The entire procedure can be done within 15 min without redundant pipetting steps. The purity of extracted RNA was comparable to that of commercial kits, but the cost was much lower. Furthermore, the yielded RNA was successfully used in downstream enzymatic reactions, such as reverse transcription and quantitative real-time PCR. This new method would be of benefit for an extensive range of gene expression analyses in bacterial organisms.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yake Duan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Amr Amin
- Biology Department, College of Science, UAE University, Al Ain, 15551, UAE
| | - Yingqiu Xie
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| |
Collapse
|
2
|
The Chaperone and Redox Properties of CnoX Chaperedoxins Are Tailored to the Proteostatic Needs of Bacterial Species. mBio 2018; 9:mBio.01541-18. [PMID: 30482828 PMCID: PMC6282202 DOI: 10.1128/mbio.01541-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
How proteins are protected from stress-induced aggregation is a crucial question in biology and a long-standing mystery. While a long series of landmark studies have provided important contributions to our current understanding of the proteostasis network, key fundamental questions remain unsolved. In this study, we show that the intrinsic features of the chaperedoxin CnoX, a folding factor that combines chaperone and redox protective function, have been tailored during evolution to fit to the specific needs of their host. Whereas Escherichia coli CnoX needs to be activated by bleach, a powerful oxidant produced by our immune system, its counterpart in Caulobacter crescentus, a bacterium living in bleach-free environments, is a constitutive chaperone. In addition, the redox properties of E. coli and C. crescentus CnoX also differ to best contribute to their respective cellular redox homeostasis. This work demonstrates how proteins from the same family have evolved to meet the needs of their hosts. Hypochlorous acid (bleach), an oxidizing compound produced by neutrophils, turns the Escherichia coli chaperedoxin CnoX into a powerful holdase protecting its substrates from bleach-induced aggregation. CnoX is well conserved in bacteria, even in non-infectious species unlikely to encounter this oxidant, muddying the role of CnoX in these organisms. Here, we found that CnoX in the non-pathogenic aquatic bacterium Caulobacter crescentus functions as a holdase that efficiently protects 50 proteins from heat-induced aggregation. Remarkably, the chaperone activity of Caulobacter CnoX is constitutive. Like E. coli CnoX, Caulobacter CnoX transfers its substrates to DnaK/J/GrpE and GroEL/ES for refolding, indicating conservation of cooperation with GroEL/ES. Interestingly, Caulobacter CnoX exhibits thioredoxin oxidoreductase activity, by which it controls the redox state of 90 proteins. This function, which E. coli CnoX lacks, is likely welcome in a bacterium poorly equipped with antioxidant defenses. Thus, the redox and chaperone properties of CnoX chaperedoxins were fine-tuned during evolution to adapt these proteins to the specific needs of each species.
Collapse
|
3
|
Schramm FD, Heinrich K, Thüring M, Bernhardt J, Jonas K. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. PLoS Genet 2017; 13:e1007148. [PMID: 29281627 PMCID: PMC5760092 DOI: 10.1371/journal.pgen.1007148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Hsp70 chaperones are well known for their important functions in maintaining protein homeostasis during thermal stress conditions. In many bacteria the Hsp70 homolog DnaK is also required for growth in the absence of stress. The molecular reasons underlying Hsp70 essentiality remain in most cases unclear. Here, we demonstrate that DnaK is essential in the α-proteobacterium Caulobacter crescentus due to its regulatory function in gene expression. Using a suppressor screen we identified mutations that allow growth in the absence of DnaK. All mutations reduced the activity of the heat shock sigma factor σ32, demonstrating that the DnaK-dependent inactivation of σ32 is a growth requirement. While most mutations occurred in the rpoH gene encoding σ32, we also identified mutations affecting σ32 activity or stability in trans, providing important new insight into the regulatory mechanisms controlling σ32 activity. Most notably, we describe a mutation in the ATP dependent protease HslUV that induces rapid degradation of σ32, and a mutation leading to increased levels of the house keeping σ70 that outcompete σ32 for binding to the RNA polymerase. We demonstrate that σ32 inhibits growth and that its unrestrained activity leads to an extensive reprogramming of global gene expression, resulting in upregulation of repair and maintenance functions and downregulation of the growth-promoting functions of protein translation, DNA replication and certain metabolic processes. While this re-allocation from proliferative to maintenance functions could provide an advantage during heat stress, it leads to growth defects under favorable conditions. We conclude that Caulobacter has co-opted the DnaK chaperone system as an essential regulator of gene expression under conditions when its folding activity is dispensable. Molecular chaperones of the Hsp70 family belong to the most conserved cellular machineries throughout the tree of life. These proteins play key roles in maintaining protein homeostasis, especially under heat stress conditions. In diverse bacteria the Hsp70 homolog DnaK is essential for growth even in the absence of stress. However, the molecular mechanisms underlying the essential nature of DnaK have in most cases not been studied. We found in the α-proteobacterium Caulobacter crescentus that the function of DnaK as a folding catalyst is dispensable in the absence of stress. Instead, its sole essential function under such conditions is to inhibit the activity of the heat shock sigma factor σ32. Our findings highlight that some bacteria have co-opted chaperones as essential regulators of gene expression under conditions when their folding activity is not required. Furthermore, our work illustrates that essential genes can perform different essential functions in discrete growth conditions.
Collapse
Affiliation(s)
- Frederic D. Schramm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Kristina Heinrich
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Marietta Thüring
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
4
|
Proper Control of Caulobacter crescentus Cell Surface Adhesion Requires the General Protein Chaperone DnaK. J Bacteriol 2016; 198:2631-42. [PMID: 27044628 DOI: 10.1128/jb.00027-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Growth in a surface-attached bacterial community, or biofilm, confers a number of advantages. However, as a biofilm matures, high-density growth imposes stresses on individual cells, and it can become less advantageous for progeny to remain in the community. Thus, bacteria employ a variety of mechanisms to control attachment to and dispersal from surfaces in response to the state of the environment. The freshwater oligotroph Caulobacter crescentus can elaborate a polysaccharide-rich polar organelle, known as the holdfast, which enables permanent surface attachment. Holdfast development is strongly inhibited by the small protein HfiA; mechanisms that control HfiA levels in the cell are not well understood. We have discovered a connection between the essential general protein chaperone, DnaK, and control of C. crescentus holdfast development. C. crescentus mutants partially or completely lacking the C-terminal substrate binding "lid" domain of DnaK exhibit enhanced bulk surface attachment. Partial or complete truncation of the DnaK lid domain increases the probability that any single cell will develop a holdfast by 3- to 10-fold. These results are consistent with the observation that steady-state levels of an HfiA fusion protein are significantly diminished in strains that lack the entire lid domain of DnaK. While dispensable for growth, the lid domain of C. crescentus DnaK is required for proper chaperone function, as evidenced by observed dysregulation of HfiA and holdfast development in strains expressing lidless DnaK mutants. We conclude that DnaK is an important molecular determinant of HfiA stability and surface adhesion control. IMPORTANCE Regulatory control of cell adhesion ensures that bacterial cells can transition between free-living and surface-attached states. We define a role for the essential protein chaperone, DnaK, in the control of Caulobacter crescentus cell adhesion. C. crescentus surface adhesion is mediated by an envelope-attached organelle known as the holdfast. Holdfast development is tightly controlled by HfiA, a small protein inhibitor that directly interacts with a WecG/TagA-family glycosyltransferase required for holdfast biosynthesis. We demonstrate that the C-terminal lid domain of DnaK is not essential for growth but is necessary for proper control of HfiA levels in the cell and for control of holdfast adhesin development.
Collapse
|
5
|
Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 2010; 74:13-41. [PMID: 20197497 DOI: 10.1128/mmbr.00040-09] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Caulobacter crescentus is an aquatic Gram-negative alphaproteobacterium that undergoes multiple changes in cell shape, organelle production, subcellular distribution of proteins, and intracellular signaling throughout its life cycle. Over 40 years of research has been dedicated to this organism and its developmental life cycles. Here we review a portion of many developmental processes, with particular emphasis on how multiple processes are integrated and coordinated both spatially and temporally. While much has been discovered about Caulobacter crescentus development, areas of potential future research are also highlighted.
Collapse
|
6
|
Abstract
The tmRNA-SmpB system releases ribosomes stalled on truncated mRNAs and tags the nascent polypeptides to target them for proteolysis. In many species, mutations that disrupt tmRNA activity cause defects in growth or development. In Caulobacter crescentus cells lacking tmRNA activity there is a delay in the initiation of DNA replication, which disrupts the cell cycle. To understand the molecular basis for this phenotype, 73 C. crescentus proteins were identified that are tagged by tmRNA under normal growth conditions. Among these substrates, proteins involved in DNA replication, recombination, and repair were overrepresented, suggesting that misregulation of these factors in the absence of tmRNA activity might be responsible for the delay in initiation of DNA replication. Analysis of the tagging sites within these substrates revealed a conserved nucleotide motif 5' of the tagging site, which is required for wild-type tmRNA tagging.
Collapse
|
7
|
McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 2007; 25:584-92. [PMID: 17401361 DOI: 10.1038/nbt1294] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 03/01/2007] [Indexed: 11/08/2022]
Abstract
Using 62 probe-level datasets obtained with a custom-designed Caulobacter crescentus microarray chip, we identify transcriptional start sites of 769 genes, 53 of which are transcribed from multiple start sites. Transcriptional start sites are identified by analyzing probe signal cross-correlation matrices created from probe pairs tiled every 5 bp upstream of the genes. Signals from probes binding the same message are correlated. The contribution of each promoter for genes transcribed from multiple promoters is identified. Knowing the transcription start site enables targeted searching for regulatory-protein binding motifs in the promoter regions of genes with similar expression patterns. We identified 27 motifs, 17 of which share no similarity to the characterized motifs of other C. crescentus transcriptional regulators. Using these motifs, we predict coregulated genes. We verified novel promoter motifs that regulate stress-response genes, including those responding to uranium challenge, a stress-response sigma factor and a stress-response noncoding RNA.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Physics, Stanford University, Varian Physics, 382 Via Pueblo Mall, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wen Y, Feng J, Scott DR, Marcus EA, Sachs G. The HP0165-HP0166 two-component system (ArsRS) regulates acid-induced expression of HP1186 alpha-carbonic anhydrase in Helicobacter pylori by activating the pH-dependent promoter. J Bacteriol 2007; 189:2426-34. [PMID: 17220228 PMCID: PMC1899393 DOI: 10.1128/jb.01492-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The periplasmic alpha-carbonic anhydrase of Helicobacter pylori is essential for buffering the periplasm at acidic pH. This enzyme is an integral component of the acid acclimation response that allows this neutralophile to colonize the stomach. Transcription of the HP1186 alpha-carbonic anhydrase gene is upregulated in response to low environmental pH. A binding site for the HP0166 response regulator (ArsR) has been identified in the promoter region of the HP1186 gene. To investigate the mechanism that regulates the expression of HP1186 in response to low pH and the role of the HP0165-HP0166 two-component system (ArsRS) in this acid-inducible regulation, Northern blot analysis was performed with RNAs isolated from two different wild-type H. pylori strains (26695 and 43504) and mutants with HP0165 histidine kinase (ArsS) deletions, after exposure to either neutral pH or low pH (pH 4.5). ArsS-dependent upregulation of HP1186 alpha-carbonic anhydrase in response to low pH was found in both strains. Western blot analysis of H. pylori membrane proteins confirmed the regulatory role of ArsS in HP1186 expression in response to low pH. Analysis of the HP1186 promoter region revealed two possible transcription start points (TSP1 and TSP2) located 43 and 11 bp 5' of the ATG start codon, respectively, suggesting that there are two promoters transcribing the HP1186 gene. Quantitative primer extension analysis showed that the promoter from TSP1 (43 bp 5' of the ATG start codon) is a pH-dependent promoter and is regulated by ArsRS in combating environmental acidity, whereas the promoter from TSP2 may be responsible for control of the basal transcription of HP1186 alpha-carbonic anhydrase.
Collapse
Affiliation(s)
- Yi Wen
- The Membrane Biology Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, USA.
| | | | | | | | | |
Collapse
|
9
|
Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 2006; 188:8044-53. [PMID: 16980445 PMCID: PMC1698207 DOI: 10.1128/jb.00824-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
10
|
Gould P, Maguire M, Lund PA. Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 2006; 187:1-14. [PMID: 16944097 DOI: 10.1007/s00203-006-0164-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/25/2006] [Accepted: 08/04/2006] [Indexed: 01/16/2023]
Abstract
We investigated the regulation of the two of the three groE operons (cpn.1 and cpn.2) of the root-nodulating bacterium R. leguminosarum strain A34. Both are heat inducible, and both have a CIRCE sequence in their upstream regions, suggesting regulation by an HrcA repressor. Mutagenesis of the CIRCE sequence upstream of cpn.1 led to an increase in the levels of cpn.1 mRNA, and knock-out of the hrcA gene increased the level of Cpn60.1 protein (the GroEL homologue encoded by the cpn.1 operon). Inactivation of the hrcA gene also caused increased expression of a 29 kDa protein that was identified as RhiA, a component of a quorum-sensing system. However, neither loss of the upstream CIRCE sequence, nor loss of HrcA function, had any effect on expression from the cpn.2 promoter. Further analysis of the cpn.2 upstream region suggested regulation could be mediated by an RpoH system, and this was confirmed by deleting the rpoH gene from the chromosome, which led to a decreased level of Cpn60.2 expression. Inactivation of RpoH led to a reduction in growth rate which could be partly compensated for by inactivation of HrcA, indicating an overlap in the in vivo function of the proteins regulated by these two systems.
Collapse
Affiliation(s)
- Phillip Gould
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK,
| | | | | |
Collapse
|
11
|
Simão RCG, Susin MF, Alvarez-Martinez CE, Gomes SL. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Mol Microbiol 2005; 57:592-603. [PMID: 15978087 DOI: 10.1111/j.1365-2958.2005.04713.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heat shock response in Caulobacter crescentus was previously shown to be positively regulated by the alternative sigma factor of RNA polymerase (RNAP) sigma(32), and negatively modulated by DnaK during the induction phase of the heat shock response but not during the recovery phase. In the present work we have investigated the involvement of the chaperone ClpB in the control of the heat shock response in C. crescentus. Data obtained indicated a role of ClpB in downregulation of heat shock protein (HSP) synthesis, as cells lacking this chaperone showed a prolonged shutoff phase of the heat shock response. In Escherichia coli, it has been proposed that the DnaK chaperone system switches transcription back to constitutively expressed genes through simultaneous reactivation of heat-aggregated sigma(70), as well as sequestration of sigma(32) away from RNAP. In C. crescentus, results obtained with a clpB null mutant indicate that ClpB could be involved in the reactivation of the major sigma factor sigma(73). In support of this hypothesis, we showed that transcription directed from sigma(73)-dependent promoters is not switched back in the clpB null mutant during the recovery phase. Furthermore, we observed that resolubilization of heat-aggregated sigma(73) is dependent on the presence of ClpB. Our findings also indicated that the absence of ClpB made cells more sensitive to heat shock and ethanol but not to other stresses, and unable to acquire thermotolerance.
Collapse
Affiliation(s)
- Rita C G Simão
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | |
Collapse
|
12
|
England JC, Gober JW. Role of core promoter sequences in the mechanism of swarmer cell-specific silencing of gyrB transcription in Caulobacter crescentus. BMC Microbiol 2005; 5:25. [PMID: 15904494 PMCID: PMC1175088 DOI: 10.1186/1471-2180-5-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 05/17/2005] [Indexed: 12/02/2022] Open
Abstract
Background Each Caulobacter crescentus cell division yields two distinct cell types: a flagellated swarmer cell and a non-motile stalked cell. The swarmer cell is further distinguished from the stalked cell by an inability to reinitiate DNA replication, by the physical properties of its nucleoid, and its discrete program of gene expression. Specifically, with regard to the latter feature, many of the genes involved in DNA replication are not transcribed in swarmer cells. Results We show that for one of these genes involved in DNA replication, gyrB, its pattern of temporal expression depends upon an 80 base pair promoter region with strong resemblance to the Caulobacter crescentus σ73 consensus promoter sequence; regulation does not appear to be affected by the general strength of the promoter activity, as mutations that increased its conformity with the consensus did not affect its cell-cycle expression pattern. Transcription from the gyrB promoter in vitro required only the presence of the σ73 RNA polymerase (from E. coli) and the requisite nucleoside triphosphates, although a distinct binding activity, present in crude whole-cell extracts, formed a complex gyrB promoter DNA. We also assayed the effect on gyrB expression in strains containing mutations in either smc or dps, two genes encoding proteins that condense DNA. However we found there was no change in the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Conclusion These experiments demonstrate that gyrB transcription does not require any auxiliary factors, suggesting that temporal regulation is not dependent upon an activator protein. Swarmer-specific silencing may not be attributable to the observed physical difference in the swarmer cell nucleoid, since mutations in either smc or dps, two genes encoding proteins that condense DNA, did not alter the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Rather a repressor that specifically recognizes sequences in the gyrB promoter region that are also probably essential for transcription, is likely to be responsible for controlling cell cycle expression.
Collapse
Affiliation(s)
- Jennifer C England
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, 90095-1569, USA
| | - James W Gober
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
13
|
Susin MF, Perez HR, Baldini RL, Gomes SL. Functional and structural analysis of HrcA repressor protein from Caulobacter crescentus. J Bacteriol 2004; 186:6759-67. [PMID: 15466027 PMCID: PMC522201 DOI: 10.1128/jb.186.20.6759-6767.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large number of bacteria regulate chaperone gene expression during heat shock by the HrcA-CIRCE system, in which the DNA element called CIRCE serves as binding site for the repressor protein HrcA under nonstress conditions. In Caulobacter crescentus, the groESL operon presents a dual type of control. Heat shock induction is controlled by a sigma32-dependent promoter and the HrcA-CIRCE system plays a role in regulation of groESL expression under physiological temperatures. To study the activity of HrcA in vitro, we purified a histidine-tagged version of the protein, and specific binding to the CIRCE element was obtained by gel shift assays. The amount of retarded DNA increased significantly in the presence of GroES/GroEL, suggesting that the GroE chaperonin machine modulates HrcA activity. Further evidence of this modulation was obtained using lacZ transcription fusions with the groESL regulatory region in C. crescentus cells, producing different amounts of GroES/GroEL. In addition, we identified the putative DNA-binding domain of HrcA through extensive protein sequence comparison and constructed various HrcA mutant proteins containing single amino acid substitutions in or near this region. In vitro and in vivo experiments with these mutated proteins indicated several amino acids important for repressor activity.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 São Paulo, SP 05508-900, Brazil
| | | | | | | |
Collapse
|
14
|
da Silva ACA, Simão RCG, Susin MF, Baldini RL, Avedissian M, Gomes SL. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. Mol Microbiol 2003; 49:541-53. [PMID: 12828648 DOI: 10.1046/j.1365-2958.2003.03581.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Expression of heat shock genes in Gram-negative proteobacteria is positively modulated by the transcriptional regulator RpoH, the sigma(32) subunit of RNA polymerase (RNAP). In this study we investigated the chaperones DnaK/DnaJ and GroES/GroEL as possible modulators of the heat response in Caulobacter crescentus. We have shown that cells overexpressing DnaK show poor induction of heat shock protein (HSP) synthesis, even though sigma(32) levels present a normal transient increase upon heat stress. On the other hand, depletion of DnaK led to higher levels of sigma(32) and increased transcription of HSP genes, at normal growth temperature. In contrast, changes in the amount of GroES/EL had little effect on sigma(32) levels and HSP gene transcription. Despite the strong effect of DnaK levels on the induction phase of the heat shock response, downregulation of HSP synthesis was not affected by changes in the amount this chaperone. Thus, we propose that competition between sigma(32) and sigma(73), the major sigma factor, for the core RNAP could be the most important factor controlling the shut-off of HSP synthesis during recovery phase. In agreement with this hypothesis, we have shown that expression of sigma(73) gene is heat shock inducible.
Collapse
Affiliation(s)
- Antonio C A da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Jensen RB, Wang SC, Shapiro L. Dynamic localization of proteins and DNA during a bacterial cell cycle. Nat Rev Mol Cell Biol 2002; 3:167-76. [PMID: 11994737 DOI: 10.1038/nrm758] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A cellular differentiation programme that culminates in an asymmetric cell division is an integral part of the cell cycle in the bacterium Caulobacter crescentus. Recent work has uncovered mechanisms that ensure the execution of many events at different times during the cell cycle and at specific places in the cell. Surprisingly, in this one-micron bacterial cell, the dynamic spatial disposition of regulatory proteins, structural proteins and specific regions of the chromosome are important components of both cell-cycle progression and the generation of daughter cells with different cell fates.
Collapse
Affiliation(s)
- Rasmus B Jensen
- Genencor International Inc., 925 Page Mill Road, Palo Alto, California 94304-1013, USA
| | | | | |
Collapse
|
16
|
Keiler KC, Shapiro L. Conserved promoter motif is required for cell cycle timing of dnaX transcription in Caulobacter. J Bacteriol 2001; 183:4860-5. [PMID: 11466289 PMCID: PMC99540 DOI: 10.1128/jb.183.16.4860-4865.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells use highly regulated transcriptional networks to control temporally regulated events. In the bacterium Caulobacter crescentus, many cellular processes are temporally regulated with respect to the cell cycle, and the genes required for these processes are expressed immediately before the products are needed. Genes encoding factors required for DNA replication, including dnaX, dnaA, dnaN, gyrB, and dnaK, are induced at the G(1)/S-phase transition. By analyzing mutations in the dnaX promoter, we identified a motif between the -10 and -35 regions that is required for proper timing of gene expression. This motif, named RRF (for repression of replication factors), is conserved in the promoters of other coordinately induced replication factors. Because mutations in the RRF motif result in constitutive gene expression throughout the cell cycle, this sequence is likely to be the binding site for a cell cycle-regulated transcriptional repressor. Consistent with this hypothesis, Caulobacter extracts contain an activity that binds specifically to the RRF in vitro.
Collapse
Affiliation(s)
- K C Keiler
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
17
|
Brassinga AK, Siam R, Marczynski GT. Conserved gene cluster at replication origins of the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii. J Bacteriol 2001; 183:1824-9. [PMID: 11160121 PMCID: PMC95075 DOI: 10.1128/jb.183.5.1824-1829.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 30-kb region surrounding the replication origin in Caulobacter crescentus was analyzed. Comparison to the genome sequence of another alpha-proteobacterium, Rickettsia prowazekii, revealed a conserved cluster of genes (RP001, hemE, hemH, and RP883) that overlaps the established origin of replication in C. crescentus and the putative origin of replication in R. prowazekii. The genes flanking this cluster differ between these two organisms. We therefore propose that this conserved gene cluster can be used to identify the origin of replication in other alpha-proteobacteria.
Collapse
Affiliation(s)
- A K Brassinga
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
18
|
Macario AJ, Lange M, Ahring BK, Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923-67, table of contents. [PMID: 10585970 PMCID: PMC98981 DOI: 10.1128/mmbr.63.4.923-967.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of approximately 60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication-hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
19
|
Walker ND, McEwan NR, Wallace RJ. Overlapping sequences with high homology to functional proteins coexist on complementary strands of DNA in the rumen bacterium Prevotella albensis. Biochem Biophys Res Commun 1999; 263:58-62. [PMID: 10486253 DOI: 10.1006/bbrc.1999.1316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential for two complementary fragments of DNA from a clone from the ruminal bacterium Prevotella albensis to encode sequences with homology to at least part of functional proteins is described. One strand contains a sequence with high homology to dnaK, a member of the hsp70 family, and the other strand contains a sequence with some homology to glutamate dehydrogenase genes. Overlapping of these two genes on opposite strands has been reported in eukaryotic species, and is now reported for the first time in a bacterial species. Further investigation of previously described dnaK genes demonstrates that it is more widespread than might be anticipated, with all thirty other dnaK genes investigated also retaining long sequences encoding at least part of a sequence with high homology to a glutamate dehydrogenase gene.
Collapse
Affiliation(s)
- N D Walker
- Rowett Research Institute, Greenburn Road, Aberdeen, Bucksburn, AB21 9SB, Scotland
| | | | | |
Collapse
|
20
|
Keith LM, Partridge JE, Bender CL. dnaK and the heat stress response of Pseudomonas syringae pv. glycinea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:563-574. [PMID: 10478477 DOI: 10.1094/mpmi.1999.12.7.563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dnaK gene from Pseudomonas syringae pv. glycinea PG4180 was cloned and sequenced. The dnaK coding region was 1,917 bp and contained a putative sigma 32 heat shock promoter 86 bp upstream of the translational start site. grpE, another heat shock gene, was found immediately upstream of the putative dnaK promoter. The predicted amino acid sequence of dnaK showed relatedness to the ATPase and substrate binding domains commonly found in heat shock proteins, as well as the highly conserved signature sequence motifs belonging to the Hsp70 protein family. Furthermore, the PG4180 dnaK gene complemented an Escherichia coli dnaK mutant for growth at temperatures above 37 degrees C, indicating that a fully functional dnaK homologue had been cloned from P. syringae pv. glycinea. All attempts to eliminate dnaK function by insertion mutagenesis failed, possibly because DnaK performs essential functions in P. syringae pv. glycinea. Expression of dnaK in P. syringae pv. glycinea PG4180 was investigated by constructing dnaK::uidA transcriptional fusions; expression of dnaK increased markedly when cells were preincubated at 18 degrees C and then shifted to 35 degrees C. An anti-DnaK monoclonal antibody was used to detect DnaK; in P. syringae pv. glycinea race 4, DnaK levels followed cell density during a 6-h incubation at 26 degrees C. When cells were shifted from 26 degrees C to either 32 or 38 degrees C, DnaK levels increased transiently, and then decreased rapidly. Although the cells continued to grow when incubated at 32 degrees C, growth was not supported at 38 degrees C. Our results indicate that P. syringae pv. glycinea responds to heat shock by producing DnaK, but DnaK does not aid in acclimation to sustained elevated temperatures.
Collapse
Affiliation(s)
- L M Keith
- Department of Entomology and Plant Pathology, Noble Research Center, Oklahoma State University, Stillwater 74078-3032, USA
| | | | | |
Collapse
|
21
|
Parsons LM, Waring AL, Limberger RJ, Shayegani M. The dnaK/dnaJ operon of Haemophilus ducreyi contains a unique combination of regulatory elements. Gene 1999; 233:109-19. [PMID: 10375627 DOI: 10.1016/s0378-1119(99)00149-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Haemophilus ducreyi, which causes the genital ulcer disease chancroid, requires high basal levels of the 60-kDa heat-shock (hs) protein GroEL in order to survive and adhere to host cells in the presence of common environmental stresses. In contrast, the 70-kDa hs protein, DnaK, a negative modulator of the hs response in prokaryotes, is not produced at as high a level as GroEL. Because of these differences, we were interested in identifying regulatory elements affecting the expression of the H. ducreyi dnaK/dnaJ operon. First, the genes encoding H. ducreyi DnaK (Hsp70) and DnaJ (Hsp40) were sequenced. The deduced amino acid sequences shared 82.8 and 63. 9% identity with the Escherichia coli DnaK and DnaJ homologs, respectively. Despite the presence of highly similar (but not identical) hs promoter sequences preceding both the H. ducreyi groES/groEL and dnaK/dnaJ operons, transcription levels for groEL were found to exceed that of dnaK. Subsequently, other genetic elements that could contribute to a lower basal expression of dnaK in H. ducreyi were identified. These elements include: (1) a complex promoter for dnaK consisting of four transcriptional start points (two for sigma32 and two for sigma70) identified by primer extension; (2) a putative binding site for Fur (a transcriptional repressor of iron-regulated genes) that overlaps the initiating AUG of dnaK; and (3) the potential for extensive secondary structure of the long leader sequences of the dnaK transcripts, which could interfere with efficient translation of DnaK. This unique combination of regulatory elements may be responsible for the relatively low-level expression of dnaK in this fastidious genital pathogen.
Collapse
Affiliation(s)
- L M Parsons
- Wadsworth Center, New York State Department of Health, Albany, New York, and School of Public Health, Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
22
|
HlaváÄek O, Adamec J, Vomastek T, Babková L, Sedlák M, Vohradský J, Váchová L, Chaloupka J. Expression of dnaKand groESLoperons during sporulation of Bacillus megaterium. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13144.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Baldini RL, Avedissian M, Gomes SL. The CIRCE element and its putative repressor control cell cycle expression of the Caulobacter crescentus groESL operon. J Bacteriol 1998; 180:1632-41. [PMID: 9537357 PMCID: PMC107072 DOI: 10.1128/jb.180.7.1632-1641.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The groESL operon is under complex regulation in Caulobacter crescentus. In addition to strong induction after exposure to heat shock, under physiological growth conditions, its expression is subject to cell cycle control. Transcription and translation of the groE genes occur primarily in predivisional cells, with very low levels of expression in stalked cells. The regulatory region of groESL contains both a sigma32-like promoter and a CIRCE element. Overexpression of C. crescentus sigma32 gives rise to higher levels of GroEL and increased levels of the groESL transcript coming from the sigma32-like promoter. Site-directed mutagenesis in CIRCE has indicated a negative role for this cis-acting element in the expression of groESL only at normal growth temperatures, with a minor effect on heat shock induction. Furthermore, groESL-lacZ transcription fusions carrying mutations in CIRCE are no longer cell cycle regulated. Analysis of an hrcA null strain, carrying a disruption in the gene encoding the putative repressor that binds to the CIRCE element, shows constitutive synthesis of GroEL throughout the Caulobacter cell cycle. These results indicate a negative role for the hrcA gene product and the CIRCE element in the temporal control of the groESL operon.
Collapse
Affiliation(s)
- R L Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
24
|
Minami J, Matsumoto S, Yamada T. Putative heat shock protein 70 gene from Actinobacillus actinomycetemcomitans: molecular cloning and sequence analysis of its gene. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:113-9. [PMID: 9573802 DOI: 10.1111/j.1399-302x.1998.tb00721.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have cloned and sequenced two overlapping fragments of chromosomal DNA from Actinobacillus actinomycetemcomitans. The nucleotide sequence contained two open reading frames. The deduced amino acid sequences of the two open reading frames showed significant homology with the heat shock proteins hsp70 and hsp40 of other organisms respectively. The upstream open reading frame consisted of 1902 bp, corresponding to 634-amino-acid residues. The CAA codon for glutamines was frequently seen in hsp70, i.e., in 30 of 32 glutamines (93.8%). The spacing region between the two open reading frames was unusually long compared with other prokaryotic organisms. A number of unique and distinguishing features of the sequences in the hsp70 family were verified, and it was found that a particular spacing sequence between the hsp70 and hsp40 gene loci can be used to identify A. actinomycetemcomitans from the periodontal pocket.
Collapse
Affiliation(s)
- J Minami
- Department of Removable Prosthodontics, Nagasaki University School of Dentistry, Japan
| | | | | |
Collapse
|
25
|
Winzeler E, Wheeler R, Shapiro L. Transcriptional analysis of the Caulobacter 4.5 S RNA ffs gene and the physiological basis of an ffs mutant with a Ts phenotype. J Mol Biol 1997; 272:665-76. [PMID: 9368649 DOI: 10.1006/jmbi.1997.1261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A temperature-sensitive (ts) mutation in the ffs gene, encoding 4.5 S RNA, gives rise to cell division and DNA replication defects in Caulobacter crescentus. The ffs gene is transcribed throughout the cell-cycle and is transcribed at similar rates in mutant (ffs36) and wild-type strains, but in the mutant the 4.5 S RNA is unstable leading to lower 4.5 S RNA levels. The ffs36 phenotype results from a single base change in one of the non-conserved stems of the mature RNA, and is completely rescued by a compensating mutation in the opposite strand, providing confirmation of the predicted secondary structure of the 4.5 S RNA. The Caulobacter ffs gene was shown to be functionally comparable to the Escherichia coli ffs gene by complementation. Comparison of the ffs36 strain to a ts secA strain of Caulobacter, also having cell-cycle and DNA replication phenotypes, showed that both exhibit a permanent induction of a heat shock response at the restrictive temperature. To explain the phenotype of both the secA and ffs36 strains, we propose that a cell-cycle checkpoint prevents further progression through the cell-cycle in response to increased intracellular levels of heat shock and misfolded proteins.
Collapse
Affiliation(s)
- E Winzeler
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305-5427, USA
| | | | | |
Collapse
|
26
|
Wu J, Ohta N, Benson AK, Ninfa AJ, Newton A. Purification, characterization, and reconstitution of DNA-dependent RNA polymerases from Caulobacter crescentus. J Biol Chem 1997; 272:21558-64. [PMID: 9261176 DOI: 10.1074/jbc.272.34.21558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell differentiation in the Caulobacter crescentus cell cycle requires differential gene expression that is regulated primarily at the transcriptional level. Until now, however, a defined in vitro transcription system for the biochemical study of developmentally regulated transcription factors had not been available in this bacterium. We report here the purification of C. crescentus RNA polymerase holoenzymes and resolution of the core RNA polymerase from holoenzymes by chromatography on single-stranded DNA cellulose. The three RNA polymerase holoenzymes Esigma54, Esigma32, and Esigma73 were reconstituted exclusively from purified C. crescentus core and sigma factors. Reconstituted Esigma54 initiated transcription from the sigma54-dependent fljK promoter of C. crescentus in the presence of the transcription activator FlbD, and active Esigma32 specifically initiated transcription from the sigma32-dependent promoter of the C. crescentus heat-shock gene dnaK. For reconstitution of the Esigma73 holoenzyme, we overexpressed the C. crescentus rpoD gene in Escherichia coli and purified the full-length sigma73 protein. The reconstituted Esigma73 recognized the sigma70-dependent promoters of the E. coli lacUV5 and neo genes, as well as the sigma73-dependent housekeeping promoters of the C. crescentus pleC and rsaA genes. The ability of the C. crescentus Esigma73 RNA polymerase to recognize E. coli sigma70-dependent promoters is consistent with relaxed promoter specificity of this holoenzyme previously observed in vivo.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The expression of the Caulobacter crescentus homolog of dnaX, which in Escherichia coli encodes both the gamma and tau subunits of the DNA polymerase III holoenzyme, is subject to cell cycle control. We present evidence that the first amino acid in the predicted DnaX protein corresponds to the first codon in the mRNA transcribed from the dnaX promoter; thus, the ribosome must recognize the mRNA at a site downstream of the start codon in an unusual but not unprecedented fashion. Inserting four bases in front of the AUG at the 5' end of dnaX mRNA abolishes translation in the correct frame. The sequence upstream of the translational start site shows little homology to the canonical Shine-Dalgarno ribosome recognition sequence, but the region downstream of the start codon is complementary to a region of 16S rRNA implicated in downstream box recognition. The region downstream of the dnaX AUG, which is important for efficient translation, exhibits homology with the corresponding region from the Caulobacter hemE gene adjacent to the replication origin. The hemE gene also appears to be translated from a leaderless mRNA. Additionally, as was found for hemE, an upstream untranslated mRNA also extends into the dnaX coding sequence. We propose that translation of leaderless mRNAs may provide a mechanism by which the ribosome can distinguish between productive and nonproductive templates.
Collapse
Affiliation(s)
- E Winzeler
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
28
|
Colombi D, Gomes SL. An alkB gene homolog is differentially transcribed during the Caulobacter crescentus cell cycle. J Bacteriol 1997; 179:3139-45. [PMID: 9150207 PMCID: PMC179090 DOI: 10.1128/jb.179.10.3139-3145.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A Caulobacter crescentus alkB gene homolog was identified in a clone previously shown to contain the heat shock genes dnaK and dnaJ; the homolog is located upstream of dnaK and is transcribed in the opposite orientation. An analysis of the alkB gene has shown that the deduced amino acid sequence is that of a 21-kDa protein, which is 42% identical and 78% similar to Escherichia coli AlkB. Furthermore, an alkB-null mutant was constructed by gene disruption and was shown to be highly sensitive to the alkylating agent methyl methanesulfonate (MMS). However, the alkB gene of C. crescentus, unlike its E. coli counterpart, is not located downstream of the ada gene, and its transcription is not induced by alkylating agents. In addition, no acquired enhanced resistance to MMS toxicity by treatment with low MMS doses was observed, suggesting that no adaptive response occurs in C. crescentus. Nevertheless, transcription of the alkB gene is cell cycle controlled, with a pattern of expression similar to that of several Caulobacter genes involved in DNA replication.
Collapse
Affiliation(s)
- D Colombi
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Brazil
| | | |
Collapse
|
29
|
Iizumi T, Nakamura K. Cloning, nucleotide sequence, and regulatory analysis of the Nitrosomonas europaea dnaK gene. Appl Environ Microbiol 1997; 63:1777-84. [PMID: 9143112 PMCID: PMC168472 DOI: 10.1128/aem.63.5.1777-1784.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dnaK gene of an ammonia-oxidizing bacterium, Nitrosomonas europaea, was cloned and sequenced. It was found that the dnaK gene product was highly homologous to previously analyzed dnaK gene products from other organisms at the amino acid level. Two partial open reading frames located upstream and downstream of the dnaK gene were also found and identified as grpE and dnaJ genes, respectively, by the predicted amino acid homology of their gene products to other bacterial GrpE and DnaJ proteins. Transcription of the dnaK gene was strongly induced by a heat shock from 30 to 37 degrees C. An analysis of the expression of the dnaK gene fused to the lacZ translational reporter gene also showed eightfold increase in beta-galactosidase activity after the heat shock induction. Heat-inducible transcription start sites of the dnaK gene, revealed by primer extension analysis, were located 16 and 17 nucleotides upstream from the translational start codon of the dnaK gene, and the predicted promoter sequence showed a homology to the consensus sequence of sigma 32-dependent heat shock promoters of gram-negative bacteria. The upstream region of the dnaK gene did not contain the inverted repeat structure that was involved in the regulation of the heat shock gene of several gram-negative and gram-positive bacteria. Therefore, we conclude that the heat shock regulatory mechanism of the N. europaea dnaK gene may be similar to the sigma 32-dependent mechanism observed in other gram-negative bacteria.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- Codon, Initiator
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Gram-Negative Bacteria/genetics
- HSP40 Heat-Shock Proteins
- HSP70 Heat-Shock Proteins/genetics
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/physiology
- Heat-Shock Response/genetics
- Lac Operon
- Molecular Sequence Data
- Nitrosomonas/genetics
- Open Reading Frames
- Plasmids
- Promoter Regions, Genetic
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Homology, Amino Acid
- Sigma Factor/genetics
- Sigma Factor/physiology
- Transcription Factors
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- T Iizumi
- Kurita Central Laboratories, Kurita Water Industries Ltd., Atsugi, Japan
| | | |
Collapse
|
30
|
Gupta RS, Bustard K, Falah M, Singh D. Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes. J Bacteriol 1997; 179:345-57. [PMID: 8990285 PMCID: PMC178703 DOI: 10.1128/jb.179.2.345-357.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 70-kDa heat shock protein (hsp70) sequences define one of the most conserved proteins known to date. The hsp70 genes from Deinococcus proteolyticus and Thermomicrobium roseum, which were chosen as representatives of two of the most deeply branching divisions in the 16S rRNA trees, were cloned and sequenced. hsp70 from both these species as well as Thermus aquaticus contained a large insert in the N-terminal quadrant, which has been observed before as a unique characteristic of gram-negative eubacteria and eukaryotes and is not found in any gram-positive bacteria or archaebacteria. Phylogenetic analysis of hsp70 sequences shows that all of the gram-negative eubacterial species examined to date (which includes members from the genera Deinococcus and Thermus, green nonsulfur bacteria, cyanobacteria, chlamydiae, spirochetes, and alpha-, beta-, and gamma-subdivisions of proteobacteria) form a monophyletic group (excluding eukaryotic homologs which are derived from this group via endosybitic means) strongly supported by the bootstrap scores. A closer affinity of the Deinococcus and Thermus species to the cyanobacteria than to the other available gram-negative sequences is also observed in the present work. In the hsp7O trees, D. proteolyticus and T. aquaticus were found to be the most deeply branching species within the gram-negative eubacteria. The hsp70 homologs from gram-positive bacteria branched separately from gram-negative bacteria and exhibited a closer relationship to and shared sequence signatures with the archaebacteria. A polyphyletic branching of archaebacteria within gram-positive bacteria is strongly favored by different phylogenetic methods. These observations differ from the rRNA-based phylogenies where both gram-negative and gram-positive species are indicated to be polyphyletic. While it remains unclear whether parts of the genome may have variant evolutionary histories, these results call into question the general validity of the currently favored three-domain dogma.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Wu J, Newton A. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter. J Bacteriol 1997; 179:514-21. [PMID: 8990305 PMCID: PMC178723 DOI: 10.1128/jb.179.2.514-521.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sigma factor sigma32, encoded by rpoH, is required for the recognition of heat shock genes during normal growth conditions and in response to heat shock and other stresses. Unlike the well-studied Escherichia coli rpoH gene, which is transcribed from four promoters recognized by either a sigma70 (sigmaD)- or sigma24 (sigmaE)-containing RNA polymerase, the Caulobacter crescentus rpoH gene is transcribed from two promoters, P1 and P2. In this study, we have examined the structure and expression of these promoters and shown that the rpoH P2 promoter is sigma32 dependent. We present evidence here that P2 is specifically recognized and transcribed by the reconstituted C. crescentus Esigma32 RNA polymerase holoenzyme. We show that site-directed mutations within either the -10 or the -35 regions of P2 have substantial effects on the levels of transcription by the Esigma32 polymerase predicted from the sigma32 promoter consensus sequence. The mutations have similar effects in vivo as assayed with rpoH-lacZ transcription fusions. Analysis of the rpoH P1 promoter provided evidence that it is sigma70 dependent. S1 nuclease protection assays of rpoH P1- and P2-specific expression after heat shock at 42 or 50 degrees C and during synchronous cell division cycles under normal growth conditions showed that the two promoters are differentially regulated. Mutations within the rpoH P2 promoter consensus sequences abolished the response to heat shock induction in C. crescentus. We conclude from these results that, unlike rpoH genes studied previously in other bacteria, the major transcriptional response of the C. crescentus rpoH gene to heat shock depends on positive autoregulation of the sigma32-dependent promoter.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
32
|
Drzymalla C, Schroda M, Beck CF. Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1996; 31:1185-1194. [PMID: 8914534 DOI: 10.1007/bf00040835] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear heat shock gene HSP70B of Chlamydomonas reinhardtii is inducible by heat stress and light. Induction by either environmental cue resulted in a transient elevation in HSP70B protein. Here we describe the organization and nucleotide sequence of the HSP70B gene. The deduced protein exhibits a distinctly higher homology to prokaryotic HSP70s than to those of eukaryotes, including the cytosolic HSP70A of Chlamydomonas reinhardtii. The HSP70B protein, as previously demonstrated by in vitro translation, is synthesized with a cleavable presequence. Using an HSP70B-specific antibody, this heat shock protein was localized to the chloroplast by cell fractionation experiments. A stromal location was suggested by the presence of a conserved sequence motif used for cleavage of presequences by a signal peptidase of the stroma. Amino acid alignments of HSP70 proteins from various organisms and different cellular compartments allowed the identification of sequence motifs, which are diagnostic for HSP70s of chloroplasts and cyanobacteria.
Collapse
Affiliation(s)
- C Drzymalla
- Institut für Biologie III, Universität Freiburg, Germany
| | | | | |
Collapse
|
33
|
Abstract
groEL and dnaK are the most highly conserved protein-coding genes known. Most groEL operons and several dnaK and dnaJ operons contain a highly conserved inverted repeat (IR) sequence in their regulatory region. So far, this IR has been found only as part of the groE, dnaK and dnaJ operons and genes. In most cases, the IR is part of the operon transcript, and is involved in the regulation of expression at both the DNA and mRNA levels. A detailed analysis of groE and dnaK operons indicates that the organization of the groE operons is highly conserved. They contain only the groES and groEL genes and always in the same order. In contrast, the organization of the dnaK operons has changed during evolution: genes have been added and deleted from it, and the gene order within the operon is variable.
Collapse
Affiliation(s)
- R Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | | |
Collapse
|
34
|
Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 1996; 178:1829-41. [PMID: 8606155 PMCID: PMC177876 DOI: 10.1128/jb.178.7.1829-1841.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to elevated temperature, both prokaryotic and eukaryotic cells increase expression of a small family of chaperones. The regulatory network that functions to control the transcription of the heat shock genes in bacteria includes unique structural motifs in the promoter region of these genes and the expression of alternate sigma factors. One of the conserved structural motifs, the inverted repeat CIRCE element, is found in the 5' region of many heat shock operons, including the Caulobacter crescentus groESL operon. We report the identification of another C. crescentus heat shock operon containing two genes, hrcA (hrc for heat shock regulation at CIRCE elements) and a grpE homolog. Disruption of the hrcA gene, homologs of which are also found upstream of grpE in other bacteria, increased transcription of the groESL operon, and this effect was dependent on the presence of an intact CIRCE element. This suggests a role for HrcA in negative regulation of heat shock gene expression. We identified a major promoter transcribing both hrcA and grpE and a minor promoter located within the hrcA coding sequence just upstream of grpE. Both promoters were heat shock inducible, with maximal expression 10 to 20 min after heat shock. Both promoters were also expressed constitutively throughout the cell cycle under physiological conditions. C. crescentus GrpE, shown to be essential for viability at low and high temperatures, complemented an Escherichia coli delta grpE strain in spite of significant differences in the N- and C-terminal regions of these two proteins, demonstrating functional conservation of this important stress protein.
Collapse
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Reisenauer A, Mohr CD, Shapiro L. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. J Bacteriol 1996; 178:1919-27. [PMID: 8606166 PMCID: PMC177887 DOI: 10.1128/jb.178.7.1919-1927.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
High temperature and other environmental stresses induce the expression of several heat shock proteins in Caulobacter crescentus, including the molecular chaperones DnaJ, DnaK, GrpE, and GroEL and the Lon protease. We report here the isolation of the rpoH gene encoding a homolog of the Escherichia coli RNA polymerase sigma32 subunit, the sigma factor responsible for the transcription of heat shock promoters. The C. crescentus sigma32 homolog, predicted to be a 33.7-kDa protein, is 42% identical to E. coli sigma32 and cross-reacts with a monoclonal antibody to E. coli sigma32. Functional homology was demonstrated by complementing the temperature-sensitive growth defect of an E. coli rpoH deletion mutant with the C. crescentus rpoH gene. Immunoblot analysis showed a transient rise in sigma32 levels after a temperature shift from 30 to 42 degrees C similar to that described for E. coli. In addition, increasing the cellular content of sigma32 by introducing a plasmid-encoded copy of rpoH induced DnaK expression in C. crescentus cultures grown at 30 degrees C. The C. crescentus rpoH gene was transcribed from either of two heat shock consensus promoters. rpoH transcription and sigma32 levels increased coordinately following heat shock, indicating that transcriptional regulation contributes to sigma32 expression in this organism. Both the rpoH gene and sigma32 protein were expressed constitutively throughout the cell cycle at 30 degrees C. The isolation of rpoH provides an important tool for future studies of the role of sigma32 in the normal physiology of C. crescentus.
Collapse
Affiliation(s)
- A Reisenauer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5427, USA
| | | | | |
Collapse
|
37
|
Wu J, Newton A. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. J Bacteriol 1996; 178:2094-101. [PMID: 8606189 PMCID: PMC177910 DOI: 10.1128/jb.178.7.2094-2101.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the identification of the Caulobacter crescentus heat shock factor sigma32 as a 34-kDa protein that copurifies with the RNA polymerase holoenzyme. The N-terminal amino acid sequence of this protein was determined and used to design a degenerate oligonucleotide as a probe to identify the corresponding gene, rpoH, which encodes a predicted protein with a molecular mass of 33,659 Da. The amino acid sequence of this protein is similar to those of known bacterial heat shock sigma factors of Escherichia coli (41% identity), Pseudomonas aeruginosa (40% identity), and Citrobacter freundii (38% identity). The isolated C. crescentus gene complements the growth defect of an E. coli rpoH deletion strain at 37 degrees C, and Western blot (immunoblot) analysis confirmed that the gene product is related to the E. coli sigma32 protein. The purified RpoH protein in the presence of RNA polymerase core enzyme specifically recognizes the heat shock-regulated promoter P1 of the C. crescentus dnaK gene, and base pair substitutions in either the -10 or -35 region of this promoter abolish transcription. S1 nuclease mapping indicates that rpoH transcripts originate from two promoters, P1 and P2, under the normal growth conditions. The P2 promoter is similar to the sigma32 promoter consensus, and the P2-specific transcript increases dramatically during heat shock, while the P1-specific transcript remains relatively constant. These results suggest that although the structure and function of C. crescentus sigma32 appear to be very similar to those of its E. coli counterpart, the C. crescentus rpoH gene contains a novel promoter structure and may be positively autoregulated in response to environmental stress.
Collapse
Affiliation(s)
- J Wu
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
38
|
Farinha MA, Mockett R, Went CJ, Jardine S, Naczynski LM, Kropinski AM. Physical mapping of several heat-shock genes in Pseudomonas aeruginosa and the cloning of the mopA (GroEL) gene. Can J Microbiol 1996; 42:326-34. [PMID: 8857035 DOI: 10.1139/m96-048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a series of oligonucleotides synthesized on the basis of conserved nucleotide or amino acid motifs in heat-shock genes/proteins, we have physically mapped the dnaK, lon, and hptG genes of Pseudomonas aeruginosa. Hybridization data suggest that there is a single copy of the mopBA (GroES/GroEL) operon but several additional copies of mopA. In addition, the map coordinates for the rpoD, rpoS, and rpoH genes were determined. The mopA gene from the mopBA operon was cloned and sequenced. The protein product of this gene showed 79% amino acid identity to the Escherichia coli GroEL and 98% identity to the GroEL sequence from P. aeruginosa ATCC 27853. A number of discrepancies were found with the latter sequence.
Collapse
Affiliation(s)
- M A Farinha
- Department of Biological Sciences, University of North Texas, Denton, USA
| | | | | | | | | | | |
Collapse
|
39
|
Auger I, Escola JM, Gorvel JP, Roudier J. HLA-DR4 and HLA-DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70-kD heat shock proteins. Nat Med 1996; 2:306-10. [PMID: 8612229 DOI: 10.1038/nm0396-306] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most patients with rheumatoid arthritis express particular HLA-DR alleles. The DRbeta1 chains of these alleles share a highly homologous amino acid motif, in their third hypervariable (HV3) region, and this motif seems to help the development of rheumatoid arthritis via unknown mechanisms. In an attempt to identify a ligand of this motif, we screened bacterial proteins. HV3 peptides from HLA-DRB1 alleles containing a QKRAA or RRRAA motif bound the 70-kD heat shock protein (HSP) from Escherichia coli, dnaK. In lymphoblastoid cells homozygous for these same HLA-DRB1 alleles the constitutive 70-kD HSP, HSP73, that targets selected proteins to lysosomes coprecipitated with HLA-DR. Thus the QKRAA and RRRAA amino acid motifs of HLA-DR mediate binding of HLA-DR to HSP73. This property may influence the intracellular route, processing or peptide associations of the HLA-DRbeta1 chain in these two rheumatoid arthritis-associated alleles.
Collapse
Affiliation(s)
- I Auger
- Laboratoire d'Immuno-Rhumatologie, Faculté de Médecine de Marseille, France
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
41
|
Nakahigashi K, Yanagi H, Yura T. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 1995; 23:4383-90. [PMID: 7501460 PMCID: PMC307394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The rpoH genes encoding homologs of Escherichia coli sigma 32 (heat shock sigma factor) were isolated and sequenced from five gram negative proteobacteria (gamma or alpha subgroup): Enterobacter cloacae (gamma), Serratia marcescens (gamma), Proteus mirabilis (gamma), Agrobacterium tumefaciens (alpha) and Zymomonas mobilis (alpha). Comparison of these and three known genes from E.coli (gamma), Citrobacter freundii (gamma) and Pseudomonas aeruginosa (gamma) revealed marked similarities that should reflect conserved function and regulation of sigma 32 in the heat shock response. Both the sequence complementary to part of 16S rRNA (the 'downstream box') and a predicted mRNA secondary structure similar to those involved in translational control of sigma 32 in E.coli were found for the rpoH genes from the gamma, but not the alpha, subgroup, despite considerable divergence in nucleotide sequence. Moreover, a stretch of nine amino acid residues Q(R/K)(K/R)LFFNLR, designated the 'RpoH box', was absolutely conserved among all sigma 32 homologs, but absent in other sigma factors; this sequence overlapped with the segment of polypeptide thought to be involved in DnaK/DnaJ chaperone-mediated negative control of synthesis and stability of sigma 32. In addition, a putative sigma E (sigma 24)-specific promoter was found in front of all rpoH genes from the gamma, but not alpha, subgroup. These results suggest that the regulatory mechanisms, as well as the function, of the heat shock response known in E.coli are very well conserved among the gamma subgroup and partially conserved among the alpha proteobacteria.
Collapse
|
42
|
Chatterjee J, Meighen EA. BIOTECHNOLOGICAL APPLICATIONS OF BACTERIAL BIOLUMINESCENCE (lux) GENES. Photochem Photobiol 1995. [DOI: 10.1111/j.1751-1097.1995.tb08711.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Segal G, Ron EZ. The dnaKJ operon of Agrobacterium tumefaciens: transcriptional analysis and evidence for a new heat shock promoter. J Bacteriol 1995; 177:5952-8. [PMID: 7592349 PMCID: PMC177424 DOI: 10.1128/jb.177.20.5952-5958.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The dnaKJ operon of Agrobacterium tumefaciens was cloned and sequenced and was found to be highly homologous to previously analyzed dnaKJ operons. Transcription of this operon in A. tumefaciens was stimulated by heat shock as well as by exposure to ethanol and hydrogen peroxide. There were two transcripts representing the dnaKJ operon: one containing the dnaK and dnaJ genes and the second containing only the dnaK gene. Primer extension analysis indicated that transcription started from the same site in heat-shocked cells and in untreated cells. The upstream regulatory region of the dnaKJ operon of A. tumefaciens does not contain the highly conserved inverted repeat sequence previously found in the groESL operon of this bacterium, as well as in many other groE and dnaK operons. Sequence analysis of the promoter region of several groESL and dnaK operons from alpha-purple proteobacteria indicates the existence of a putative promoter sequence different from the known consensus promoter sequences recognized by the Escherichia coli vegetative or heat shock sigma factor. This promoter may constitute the heat shock promoter of these alpha-purple proteobacteria.
Collapse
Affiliation(s)
- G Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | | |
Collapse
|
44
|
Malakooti J, Wang SP, Ely B. A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J Bacteriol 1995; 177:4372-6. [PMID: 7543475 PMCID: PMC177186 DOI: 10.1128/jb.177.15.4372-4376.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Caulobacter crescentus differentiates prior to each cell division to form two different daughter cells: a monoflagellated swarmer cell and a nonmotile stalked cell. Thus, one might expect that developmentally expressed genes would be regulated by mechanisms different from those used to regulate the expression of the biosynthetic genes. To determine a consensus promoter sequence for genes involved in biosynthetic or housekeeping functions, DNA fragments containing the regulatory regions of the ilvD, ilvR, cysC, pleC, and fdxA genes were cloned. S1 nuclease protection mapping and primer extension techniques were used to identify the transcription initiation sites. Comparison of the regulatory regions of these genes with those of the published sequences of the ilvBN, rrnA, trpFBA, dnaA, dnaK, hemE, and rsaA genes has resulted in the identification of a putative promoter consensus sequence. The -35 region contains the sequence TTGACGS, which is similar to the Escherichia coli -35 region, while the -10 region, GCTANAWC, has a more balanced GC content than the corresponding region in E. coli. Oligonucleotide-directed site-specific mutagenesis of both the ilvBN and pleC promoters indicates that mutations that make a promoter more like the consensus result in increased promoter activity, while mutations decreasing similarity to the consensus result in decreased promoter activity.
Collapse
Affiliation(s)
- J Malakooti
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | | | | |
Collapse
|
45
|
Marczynski GT, Lentine K, Shapiro L. A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev 1995; 9:1543-57. [PMID: 7601356 DOI: 10.1101/gad.9.12.1543] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Only one of the two chromosomes in the asymmetric Caulobacter predivisional cell initiates replication in the progeny cells. Transcription from a strong promoter within the origin occurs uniquely from the replication-competent chromosome at the stalked pole of the predivisional cell. This regulated promoter has an unusual sequence organization, and transcription from this promoter is essential for regulated (cell type-specific) replication. Our analysis defines a new class of bacterial origins and suggests a coupling between transcription and replication that is consistent with the phylogenetic relationship of Caulobacter to the ancestral mitochondrion.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427, USA
| | | | | |
Collapse
|
46
|
Avedissian M, Lessing D, Gober JW, Shapiro L, Gomes SL. Regulation of the Caulobacter crescentus dnaKJ operon. J Bacteriol 1995; 177:3479-84. [PMID: 7768857 PMCID: PMC177052 DOI: 10.1128/jb.177.12.3479-3484.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The bacterial heat shock proteins DnaK and DnaJ are members of a class of molecular chaperones that are required for a wide variety of cellular functions at normal growth temperatures. In Caulobacter crescentus, the expression of the dnaKJ operon is regulated both temporally during the normal cell cycle and by heat shock. Analysis of deletions and base substitutions in the 5' region of the operon established the presence of two functional promoters: a heat shock-inducible promoter, P1, with characteristics of a sigma 32 promoter, and an adjacent sigma 70-like promoter, P2. Transcription initiating at the sigma 70-like promoter is under strict temporal control, whereas transcription initiating at the heat shock promoter at 30 degrees C is not. Transcription of dnaKJ occurs during a short period in the cell cycle, concomitant with the onset of DNA replication. Deletions in the 5' region have also revealed that all cis-acting sites required for temporal control of transcription reside within 50 bases of the P2 start site. Transcripts initiating from either the P1 or the P2 promoter have an RNA leader sequence with a high probability of forming an extensive secondary structure. Deletion of this leader sequence resulted in an increased rate of expression in both transcriptional and translational fusions. Although the temporal control of expression at physiological temperatures is not affected by the presence or absence of the leader sequence, changes in mRNA secondary structure may contribute to the modulation of DnaK and DnaJ levels at normal temperatures and during heat shock.
Collapse
Affiliation(s)
- M Avedissian
- Departamento de Bioquímica, Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
47
|
Abstract
In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells reinitiate chromosomal DNA replication immediately following cell division. The establishment of these differential programs of DNA replication may be due to the polar localization of DNA replication proteins, differences in chromosome higher-order structure, or pole-specific transcription. The best-understood aspect of Caulobacter development is biogenesis of the polar flagellum. The genes encoding the flagellum are expressed under cell cycle control predominantly in the predivisional cell type. Transcription of flagellar genes is regulated by a trans-acting hierarchy that responds to both flagellar assembly and cell cycle cues. As the flagellar genes are expressed, their products are targeted to the swarmer pole of the predivisional cell, where assembly occurs. Specific protein targeting and compartmentalized transcription are two mechanisms that contribute to the positioning of flagellar gene products at the swarmer pole of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
48
|
Kurzik-Dumke U, Gundacker D, Renthrop M, Gateff E. Tumor suppression in Drosophila is causally related to the function of the lethal(2) tumorous imaginal discs gene, a dnaJ homolog. DEVELOPMENTAL GENETICS 1995; 16:64-76. [PMID: 7758246 DOI: 10.1002/dvg.1020160110] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Drosophila melanogaster tumor suppressor gene lethal(2)tumorous imaginal discs (l(2)tid) causes in homozygotes malignant growth of cells of the imaginal discs and the death of the mutant larvae at the time of puparium formation. We describe the molecular cloning of the l(2)tid+ gene and its temporal expression pattern in the wild-type and mutant alleles. Germ line rescue of the tumor phenotype was achieved with a 7.0 kb Hindlll-fragment derived from the polytene chromosome band 59F5. The l(2)tid+ gene spans approximately 2.5 kb of genomic DNA. The protein coding region, 1,696 bps long, is divided by an intron into two exons. The predicted Tid56 protein contains 518 amino acids and possesses a theoretical molecular weight of 56 kDa. It shows significant homology to all known DnaJ related proteins from bacteria, yeast, and man. The possible function of the Tid56 protein in tumor suppression is delineated.
Collapse
Affiliation(s)
- U Kurzik-Dumke
- Institut für Genetik, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | |
Collapse
|
49
|
|
50
|
Goldberg MB, Theriot JA, Sansonetti PJ. Regulation of surface presentation of IcsA, a Shigella protein essential to intracellular movement and spread, is growth phase dependent. Infect Immun 1994; 62:5664-8. [PMID: 7960150 PMCID: PMC303317 DOI: 10.1128/iai.62.12.5664-5668.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
After lysing the phagocytic vacuole, Shigella spp. accumulate filaments of polymerized actin on their surface at one pole, leading to the formation of actin tails that enable them to move through the cytoplasm. We have recently demonstrated that the Shigella protein IcsA is located at the pole that is adjacent to the growing end of the actin tail (M. B. Goldberg, O. Barzu, C. Parsot, and P. J. Sansonetti, J. Bacteriol. 175:2189-2196, 1993). Not every bacterium that is observed within the cytoplasm has an actin tail. The factors that determine when a bacterium will form a tail are unknown. Here we demonstrate that at the moment of initiation of movement, Shigella spp. are frequently in the process of division. Furthermore, the expression of IcsA on the surface of the bacteria occurs in a growth phase-dependent fashion, suggesting that the surface expression of IcsA per se determines the observed association of bacterial division with movement.
Collapse
Affiliation(s)
- M B Goldberg
- Unite de Pathogenie Microbienne Moleculaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|