1
|
Takita T, Wada M, Yamagata M, Kamata S, Mizutani K, Yogo Y, Hamada M, Yasuda K, Mikami B, Sakaki T, Yasukawa K. Structure-Function Analysis of Streptomyces griseolus CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs. Biochemistry 2025. [PMID: 39752145 DOI: 10.1021/acs.biochem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Streptomyces griseolus CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs. We successfully crystallized complexes of wild-type CYP105A1 (WT) and the R84A variant with diclofenac (DIF) or flufenamic acid (FLF). In the WT, the carboxyl group of DIF formed a charged hydrogen bond with Arg84. In contrast, in R84A, the carboxyl group formed two bidentate charged hydrogen bonds with Arg73. The C4' atom of the benzene ring of DIF, which undergoes hydroxylation by WT and R84A, was positioned approximately 4 Å from the heme iron. Binding of FLF was nearly the same in both WT and R84A. The carboxyl group of FLF formed charged hydrogen bonds with Arg73. In both WT and R84A, FLF appeared to be fixed by this charged hydrogen bonding with Arg73 during the reaction, and the C4' atom, which undergoes hydroxylation, must face the heme iron. Thus, the dihedral angles of the two N-C bonds connecting the two benzene rings of FLF needed to rotate by 78° and -71°, respectively. The temperature factors of the F-G loop, helix F, and helix G of R84A were remarkably higher than those of WT. This suggests that these regions in R84A are much more flexible compared to those of WT, which may consequently affect substrate binding and product release.
Collapse
Affiliation(s)
- Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moeka Wada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaya Yamagata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Seiei Kamata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kimihiko Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuya Yogo
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Song H, Chen WJ, Chen SF, Zhu X, Mishra S, Ghorab MA, Bhatt P, Chen S. Removal of chlorimuron-ethyl from the environment: The significance of microbial degradation and its molecular mechanism. CHEMOSPHERE 2024; 366:143456. [PMID: 39393587 DOI: 10.1016/j.chemosphere.2024.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Chlorimuron-ethyl is a selective pre- and post-emergence herbicide, which is widely used to control broad-leaved weeds in soybean fields. However, herbicide residues have also increased as a result of the pervasive use of chlorimuron-ethyl, which has become a significant environmental concern. Consequently, the removal of chlorimuron-ethyl residues from the environment has garnered significant attention in recent decades. A variety of technologies have been developed to address this issue, including adsorption, aqueous chlorination, photodegradation, Fenton, photo-Fenton, ozonation, and biodegradation. After extensive studies, the biodegradation of chlorimuron-ethyl by microorganisms has now been recognized as an efficient and environmentally friendly degradation process. As research has progressed, a number of microbial strains associated with chlorimuron-ethyl degradation have been identified, such as Pseudomonas sp., Klebsiella sp., Rhodococcus sp., Stenotrophomonas sp., Aspergillus sp., Hansschlegelia sp., and Enterobacter sp. In addition, the enzymes and genes responsible for chlorimuron-ethyl biodegradation are also being investigated. These degradation genes include sulE, pnbA, carE, gst, Kj-CysJ, Kj-eitD-2267, Kj-kdpD-226, Kj-dxs-398, Kj-mhpC-2096, and Kj-mhpC-2289, among others. The degradation enzymes associated with chlorimuron-ethyl biodegradation includes esterases (SulE, PnbA, and E3), carboxylesterase (CarE), Cytochrome P450, flavin monooxygenase (FMO), and glutathione-S-transferase (GST). Regrettably, few reviews have focused on the microbial degradation and molecular mechanisms of chlorimuron-ethyl. Therefore, this review covers the microbial degradation of chlorimuron-ethyl and its degradation pathways, the molecular mechanism of the microbial degradation of chlorimuron-ethyl, and the outlook on the practical application of the microbial degradation of sulfonylurea herbicides are all covered in this review's overview of previous studies into the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xixian Zhu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Pankaj Bhatt
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Homa J, Wilms W, Marcinkowska K, Cyplik P, Ławniczak Ł, Woźniak-Karczewska M, Niemczak M, Chrzanowski Ł. Comparative analysis of bacterial populations in sulfonylurea-sensitive and -resistant weeds: insights into community composition and catabolic gene dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52391-52409. [PMID: 39150664 PMCID: PMC11374828 DOI: 10.1007/s11356-024-34593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to compare the impact of iodosulfuron-methyl-sodium and an iodosulfuron-based herbicidal ionic liquid (HIL) on the microbiomes constituting the epiphytes and endophytes of cornflower (Centaurea cyanus L.). The experiment involved biotypes of cornflower susceptible and resistant to acetolactate synthase inhibition, examining potential bacterial involvement in sulfonylurea herbicide detoxification. We focused on microbial communities present on the surface and in the plant tissues of roots and shoots. The research included the synthesis and physicochemical analysis of a novel HIL, evaluation of shifts in bacterial community composition, analysis of the presence of catabolic genes associated with sulfonylurea herbicide degradation and determination of their abundance in all experimental variants. Overall, for the susceptible biotype, the biodiversity of the root microbiome was higher compared to shoot microbiome; however, both decreased notably after herbicide or HIL applications. The herbicide-resistant biotype showed lower degree of biodiversity changes, but shifts in community composition occurred, particularly in case of HIL treatment.
Collapse
Affiliation(s)
- Jan Homa
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland.
| | - Wiktoria Wilms
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | - Katarzyna Marcinkowska
- Department of Weed Science, Institute of Plant Protection - National Research Institute, 60-318, Poznan, Poland
| | - Paweł Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, 60-624, Poznan, Poland
| | - Łukasz Ławniczak
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| |
Collapse
|
4
|
Mohamed H, Child SA, Doherty DZ, Bruning JB, Bell SG. Structural determination and characterisation of the CYP105Q4 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2024; 754:109950. [PMID: 38430969 DOI: 10.1016/j.abb.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
5
|
Lei Q, Zhong J, Chen SF, Wu S, Huang Y, Guo P, Mishra S, Bhatt K, Chen S. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. ENVIRONMENTAL RESEARCH 2023; 235:116570. [PMID: 37423356 DOI: 10.1016/j.envres.2023.116570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Sulfonylurea herbicides have been widely used worldwide and play a significant role in modern agricultural production. However, these herbicides have adverse biological effects that can damage the ecosystems and harm human health. As such, rapid and effective techniques that remove sulfonylurea residues from the environment are urgently required. Attempts have been made to remove sulfonylurea residues from environment using various techniques such as incineration, adsorption, photolysis, ozonation, and microbial degradation. Among them, biodegradation is regarded as a practical and environmentally responsible way to eliminate pesticide residues. Microbial strains such as Talaromyces flavus LZM1, Methylopila sp. SD-1, Ochrobactrum sp. ZWS16, Staphylococcus cohnii ZWS13, Enterobacter ludwigii sp. CE-1, Phlebia sp. 606, and Bacillus subtilis LXL-7 can almost completely degrade sulfonylureas. The degradation mechanism of the strains is such that sulfonylureas can be catalyzed by bridge hydrolysis to produce sulfonamides and heterocyclic compounds, which deactivate sulfonylureas. The molecular mechanisms associated with microbial degradation of sulfonylureas are relatively poorly studied, with hydrolase, oxidase, dehydrogenase and esterase currently known to play a pivotal role in the catabolic pathways of sulfonylureas. Till date, there are no reports specifically on the microbial degrading species and biochemical mechanisms of sulfonylureas. Hence, in this article, the degradation strains, metabolic pathways, and biochemical mechanisms of sulfonylurea biodegradation, along with its toxic effects on aquatic and terrestrial animals, are discussed in depth in order to provide new ideas for remediation of soil and sediments polluted by sulfonylurea herbicides.
Collapse
Affiliation(s)
- Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Guo
- Zhongshan City Garden Management Center of Guangdong Province, Zhongshan, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Liu B, Wang W, Qiu J, Huang X, Qiu S, Bao Y, Xu S, Ruan L, Ran T, He J. Crystal structures of herbicide-detoxifying esterase reveal a lid loop affecting substrate binding and activity. Nat Commun 2023; 14:4343. [PMID: 37468532 DOI: 10.1038/s41467-023-40103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
SulE, an esterase, which detoxifies a variety of sulfonylurea herbicides through de-esterification, provides an attractive approach to remove environmental sulfonylurea herbicides and develop herbicide-tolerant crops. Here, we determined the crystal structures of SulE and an activity improved mutant P44R. Structural analysis revealed that SulE is a dimer with spacious binding pocket accommodating the large sulfonylureas substrate. Particularly, SulE contains a protruding β hairpin with a lid loop covering the active site of the other subunit of the dimer. The lid loop participates in substrate recognition and binding. P44R mutation altered the lid loop flexibility, resulting in the sulfonylurea heterocyclic ring repositioning to a relative stable conformation thus leading to dramatically increased activity. Our work provides important insights into the molecular mechanism of SulE, and establish a solid foundation for further improving the enzyme activity to various sulfonylurea herbicides through rational design.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Weiwu Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenshen Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixuan Bao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Luyao Ruan
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Ran
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Zhong J, Wu S, Chen WJ, Huang Y, Lei Q, Mishra S, Bhatt P, Chen S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. CHEMOSPHERE 2023; 326:138390. [PMID: 36935058 DOI: 10.1016/j.chemosphere.2023.138390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.
Collapse
Affiliation(s)
- Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Li Q, Wang J, Ma Q, Han X, Zhang W, Ruan Z. Cedecea sulfonylureivorans sp. nov., a novel chlorimuron-ethyldegrading bacterium isolated from an herbicides-degrading consortium. Arch Microbiol 2022; 205:21. [PMID: 36484840 DOI: 10.1007/s00203-022-03362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
A Gram-stain-negative, motile, rod-shaped bacterium, designated strain LAM2020T, was isolated from a sulfonylurea herbicides-degrading bacterial consortium. The optimal temperature and pH for the growth of strain LAM2020T were 30 °C and 7.0, respectively. Strain LAM2020T formed a distinct phylogenetic subclade within the genus Cedecea in the phylogenetic trees built with 16S rRNA gene sequences and shared the highest similarity with Cedecea davisae DSM 4568T (98.4%). The values of digital DNA-DNA hybridization and average nucleotide identity (ANI) based on the genome sequences between LAM2020T and C. davisae DSM 4568T were 22.7% and 80.0%, respectively. It contained 54.0 mol% of G + C in the genomic DNA. The major cellular fatty acids of strain LAM2020T were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0 and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The major polar lipids present in strain LAM2020T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. The respiratory quinone of strain LAM2020T was ubiquinone-8 and ubiquinone-7. Based on the phenotypic characteristics, chemotaxonomic data and genotypic analyses, strain LAM2020T should be classified as a novel species of genus Cedecea, for which the name Cedecea sulfonylureivorans sp. nov. is proposed. The type strain is LAM2020T (= GDMCC 1.2363T = JCM 34640T).
Collapse
Affiliation(s)
- Qingqing Li
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- College of Life Science, Xinjiang Normal University, Urumqi, 830054, China
| | - Qingyun Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyan Han
- Autobio Diagnostics Co., Ltd., Zhengzhou, 450016, China
| | - Wei Zhang
- College of Life Science, Xinjiang Normal University, Urumqi, 830054, China.
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Engineering of Microbial Substrate Promiscuous CYP105A5 for Improving the Flavonoid Hydroxylation. Catalysts 2022. [DOI: 10.3390/catal12101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bacterial cytochrome P450 (CYP) enzymes are versatile biocatalysts that are responsible for the biotransformation of diverse endogenous substances. CYP105A5 from Streptomyces sp. showed substrate flexibility with different flavonoids and was able to catalyze O-demethylation of biochanin A, regioselective C3′-hydroxylation of daidzein, genistein, and naringenin, and additional C8-hydroxylation for daidzein using heterologous redox partners putidaredoxin and putidaredoxin reductase. By rational design of substrate-binding pocket based on experimental data, homology modeling, and molecular docking analysis, we enhanced the product formation rate of flavonoids. The double mutant L100A/I302A and L100A/I408N exhibited greatly enhanced in vivo conversion rates for flavonoid hydroxylation. Particularly, the L100A/I302A mutant’s kcat/Km values and in vivo conversion rate increased by 1.68-fold and 2.57-fold, respectively, for naringenin. Overall, our result might facilitate the potential use of CYP105A5 for future modification and application in whole-cell biocatalysts for the production of valuable polyphenols.
Collapse
|
11
|
Yu Z, Gu W, Yang Y, Li X, Li X, Li T, Wang J, Su Z, Li X, Dai Y, Xu M, Zhang H. Whole-Genome Sequencing of a Chlorimuron-Ethyl-Degrading Strain: Chenggangzhangella methanolivorans CHL1 and Its Degrading Enzymes. Microbiol Spectr 2022; 10:e0182222. [PMID: 35861510 PMCID: PMC9430300 DOI: 10.1128/spectrum.01822-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Chlorimuron-ethyl is a commonly used sulfonylurea herbicide, and its long-term residues cause serious environmental problems. Biodegradation of chlorimuron-ethyl is effective and feasible, and many degrading strains have been obtained, but still, the genes and enzymes involved in this degradation are often unclear. In this study, whole-genome sequencing was performed on chlorimuron-ethyl-degrading strain, Chenggangzhangella methanolivorans CHL1. The complete genome of strain CHL1 contains one circular chromosome of 5,542,510 bp and a G+C content of 68.17 mol%. Three genes, sulE, pnbA, and gst, were predicted to be involved in the degradation of chlorimuron-ethyl, and this was confirmed by gene knockout and gene complementation experiments. The three genes were cloned and expressed in Escherichia coli BL21 (DE3) to allow for the evaluation of the catalytic activities of the respective enzymes. The glutathione-S-transferase (GST) catalyzes the cleavage of the sulfonylurea bridge of chlorimuron-ethyl, and the esterases, PnbA and SulE, both de-esterify it. This study identifies three key functional genes of strain CHL1 that are involved in the degradation of chlorimuron-ethyl and also provides new approaches by which to construct engineered bacteria for the bioremediation of environments polluted with sulfonylurea herbicides. IMPORTANCE Chlorimuron-ethyl is a commonly used sulfonylurea herbicide, worldwide. However, its residues in soil and water have a potent toxicity toward sensitive crops and other organisms, such as microbes and aquatic algae, and this causes serious problems for the environment. Microbial degradation has been demonstrated to be a feasible and promising strategy by which to eliminate xenobiotics from the environment. Many chlorimuron-ethyl-degrading microorganisms have been reported, but few studies have investigated the genes and enzymes that are involved in the degradation. In this work, two esterase-encoding genes (sulE, pnbA) and a glutathione-S-transferase-encoding gene (gst) responsible for the detoxification of chlorimuron-ethyl by strain Chenggangzhangella methanolivorans CHL1 were identified, then cloned and expressed in Escherichia coli BL21 (DE3). These key chlorimuron-ethyl-degrading enzymes are candidates for the construction of engineered bacteria to degrade this pesticide and enrich the resources for bioremediating environments polluted with sulfonylurea herbicides.
Collapse
Affiliation(s)
- Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
12
|
Zhang H, Chen QF, Shang N, Li N, Niu QH, Hong Q, Huang X. The enhanced mechanisms of Hansschlegelia zhihuaiae S113 degrading bensulfuron-methyl in maize rhizosphere by three organic acids in root exudates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112622. [PMID: 34390985 DOI: 10.1016/j.ecoenv.2021.112622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/30/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The residues of bensulfuron-methyl (BSM), a sulfonylurea herbicide, in soil have caused serious damage to the rotation of susceptible crops. Many studies have reported that the removal of BSM in soil was achieved by adding degrading bacteria. However, the mechanisms used by bacteria to degrade BSM in the crop rhizosphere remain unclear. In this study, a BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, was applied to investigate the enhancement of effects mediated by organic acids during the bioremediation of BSM-contaminated maize rhizosphere soil. Organic acids, such as L-malic acid, tartaric acid, and fumaric acid, identified in maize root exudates, significantly stimulated the expression of cheA, which encoded the histidine kinase in strain S113 and contributed to the chemotactic response. This process accelerated the accumulation of strain S113 around the maize roots and promoted the colonization process on maize roots. The growth of strain S113 was significantly increased by L-malic acid but not tartaric acid or fumaric acid. After the S113 suspension was root-irrigated to BSM-contaminated soil, the density of strain S113 colonizing root surfaces and in rhizosphere soil reached 1.1 × 104 cells/g for roots and 4.9 × 104 cells/g in dry soil at 15 d, leading to 80.9% BSM degradation efficiency. The treatment with the addition of a mixture of S113 and L-malic acid completely degraded BSM in rhizosphere soil due to the strong attraction and growth promotion of strain S113 by L-malic acid, with a higher efficiency than that with the extra addition of fumaric acid (89.7%) or tartaric acid (87.0%). This paper revealed the enhancement effects of organic acids identified in root exudates for the in situ bioremediation of BSM-contaminated rhizosphere soil.
Collapse
Affiliation(s)
- Hao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Qi-Feng Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Na Shang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Na Li
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Qiu-Hong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Qing Hong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Iizaka Y, Sherman DH, Anzai Y. An overview of the cytochrome P450 enzymes that catalyze the same-site multistep oxidation reactions in biotechnologically relevant selected actinomycete strains. Appl Microbiol Biotechnol 2021; 105:2647-2661. [PMID: 33710358 DOI: 10.1007/s00253-021-11216-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 enzymes (P450s) are one of the major factors responsible for the diversity of metabolites produced through many biosynthetic and biodegradative processes in actinomycetes. P450s typically catalyze a single oxidative modification; however, several P450s have been identified with the unique ability to iteratively oxidize the same-site of the substrate. These P450s are capable of forming diverse compounds that affect biological processes, including alcohols, ketones, aldehydes, and carboxylic acids. Although further structural and functional studies are needed to elucidate the mechanisms that allow multistep oxidative modification, recent studies have revealed the enzymatic properties and reaction mechanisms of these P450s. This mini-review covers the current knowledge of P450s that catalyze the multistep oxidation reactions and contribute to the production of a wide variety of metabolites by selected actinomycete strains, along with insights into their application and utility. Understanding the characteristics of these remarkable enzymes will facilitate their utilization in biotechnological applications to create biologically active and other high-value compounds. KEY POINTS: • The multistep oxidation by P450s plays a key role in the diversity of metabolites. • The mechanisms that enable P450s to catalyze iterative oxidation remains unknown. • The effective use of P450s that iteratively oxidize the same-site is discussed.
Collapse
Affiliation(s)
- Yohei Iizaka
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
14
|
Zhang Z, Yang D, Wang J, Huo J, Zhang J. Studies on the interactions between nicosulfuron and degradation enzymes. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Zhang C, Hao Q, Zhang S, Zhang Z, Zhang X, Sun P, Pan H, Zhang H, Sun F. Transcriptomic analysis of Chlorimuron-ethyl degrading bacterial strain Klebsiella jilinsis 2N3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109581. [PMID: 31446172 DOI: 10.1016/j.ecoenv.2019.109581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Chlorimuron-ethyl is a sulfonylurea herbicide with a long residual period in the field and is toxic to rotational crops. Klebsiella jilinsis 2N3 is a gram-negative bacterium that can rapidly degrade Chlorimuron-ethyl. In this study, the gene expression changes in strain 2N3 during degradation of Chlorimuron-ethyl was analyzed by RNA-Seq. Results showed that 386 genes were up-regulated and 453 genes were down-regulated. KEGG pathway enrichment analysis revealed the highest enrichment ratio in the pathway of sulfur metabolism. On the basis of the functional annotation and gene expression, we predicted that carboxylesterase, monooxygenase, glycosyltransferase, and cytochrome P450 were involved in the metabolism of Chlorimuron-ethyl biodegradation. Results of qRT-PCR showed that the relative mRNA expression levels of these genes were higher in treatment group than those in control group. The cytochrome P450 encoded by Kj-CysJ and the alkanesulfonate monooxygenase encoded by Kj-SsuD were predicted and further experimentally confirmed by gene knockout as the key enzymes in the biodegradation process. Cultured in basal medium containing Chlorimuron-ethyl (5 mg L-1) in 36 h, the strains of ΔKj-CysJ, ΔKj-SsuD, and WT reached the highest OD600 values of 0.308, 0.873, and 1.085, and the highest degradation rates of Chlorimuron-ethyl of 11.83%, 96.21%, and 95.62%, respectively.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, PR China
| | - Qingkai Hao
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, PR China
| | - Sisheng Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, PR China
| | - Zhengyi Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Peng Sun
- Department of Computer Science, Iowa State University, Ames, IA, USA, 50011
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hao Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA, 30024.
| |
Collapse
|
16
|
Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3. Int J Mol Sci 2019; 20:ijms20123053. [PMID: 31234527 PMCID: PMC6627577 DOI: 10.3390/ijms20123053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ΔORF 0934, ΔORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ΔORF 0934 and ΔORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ΔORF 0934, ΔORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.
Collapse
|
17
|
Liu B, Peng Q, Sheng M, Hu S, Qian M, Fan B, He J. Directed Evolution of Sulfonylurea Esterase and Characterization of a Variant with Improved Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:836-843. [PMID: 30585487 DOI: 10.1021/acs.jafc.8b06198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Esterase SulE detoxicates a variety of sulfonylurea herbicides through de-esterification. SulE exhibits high activity against thifensulfuron-methyl but low activity against other sulfonylureas. In this study, two variants, m2311 (P80R) and m0569 (P80R and G176A), with improved activity were screened from a mutation library constructed by error-prone PCR. Variant m2311 showed a higher activity against sulfonylureas in comparison variant m0569 and was further investigated. The kcat/ Km value of variant m2311 for metsulfuron-methyl, sulfometuron-methyl, chlorimuron-ethyl, tribenuron-methyl, and ethametsulfuron-methyl increased by 3.20-, 1.72-, 2.94-, 2.26- and 2.96-fold, respectively, in comparison with the wild type. Molecular modeling suggested that the activity improvement of variant m2311 is due to the substitution of Pro80 by arginine, leading to the formation of new hydrogen bonds between the enzyme and substrate. This study facilitates further elucidation of the structure and function of SulE and provides an improved gene resource for the detoxification of sulfonylurea residues and the genetic engineering of sulfonylurea-resistant crops.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , People's Republic of China
| | - Qian Peng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , People's Republic of China
| | - Mengyao Sheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , People's Republic of China
| | - Meng Qian
- Laboratory Centre of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , People's Republic of China
| | - Ben Fan
- College of Forest Resources and Environment , Nanjing Forestry University , Nanjing , Jiangsu , People's Republic of China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , People's Republic of China
| |
Collapse
|
18
|
Cheng Y, Zang H, Wang H, Li D, Li C. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:111-120. [PMID: 29614448 DOI: 10.1016/j.ecoenv.2018.03.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Chlorimuron-ethyl is a typical long-term residual sulfonylurea herbicide whose long period of residence poses a serious hazard to rotational crops. Microbial degradation is considered to be the most acceptable method for its removal, but the degradation mechanism is not clear. In this work, we investigated gene expression changes during the degradation of chlorimuron-ethyl by an effective chlorimuron-ethyl-degrading bacterium, Rhodococcus erythropolis D310-1. The genes that correspond to this degradation and their mode of action were identified using RNA-Seq and qRT-PCR. The RNA-Seq results revealed that 500 genes were up-regulated during chlorimuron-ethyl degradation by strain D310-1. KEGG annotation showed that the dominant metabolic pathways were "Toluene degradation" and "Aminobenzoate degradation". Combining GO and KEGG classification with the relevant literature, we predicted that cytochrome P-450, carboxylesterase, and monooxygenase were involved in metabolic chlorimuron-ethyl biodegradation and that the enzyme active site and mode of action coincided with the degradation pathway proposed in our previous study. qRT-PCR experiments suggested that the R. erythropolis D310-1 carboxylesterase, cytochrome P-450 and glycosyltransferase genes were the key genes expressed during chlorimuron-ethyl biodegradation. To the best of our knowledge, this report is the first to describe the transcriptome analysis of a Rhodococcus species during the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Yi Cheng
- College of Science, China Agricultural University, Beijing 100083, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailan Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
19
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
20
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
21
|
Yasuda K, Sugimoto H, Hayashi K, Takita T, Yasukawa K, Ohta M, Kamakura M, Ikushiro S, Shiro Y, Sakaki T. Protein engineering of CYP105s for their industrial uses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:23-31. [PMID: 28583351 DOI: 10.1016/j.bbapap.2017.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/20/2017] [Accepted: 05/27/2017] [Indexed: 12/26/2022]
Abstract
Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Sugimoto
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Keiko Hayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Teisuke Takita
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, KitashirakawaOiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, KitashirakawaOiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miho Ohta
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshitsugu Shiro
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
22
|
SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113. Appl Environ Microbiol 2012; 78:1962-8. [PMID: 22247165 DOI: 10.1128/aem.07440-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag(+), Cd(2+), Zn(2+), methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments.
Collapse
|
23
|
Kleser M, Hannemann F, Hutter M, Zapp J, Bernhardt R. CYP105A1 mediated 3-hydroxylation of glimepiride and glibenclamide using a recombinant Bacillus megaterium whole-cell catalyst. J Biotechnol 2011; 157:405-12. [PMID: 22202177 DOI: 10.1016/j.jbiotec.2011.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/17/2011] [Accepted: 12/12/2011] [Indexed: 11/15/2022]
Abstract
CYP105A1 from Streptomyces griseolus belongs to a widespread family of soluble prokaryotic cytochromes P450. For in vitro studies we established an electron transfer system, consisting of the ferredoxin Etp1(fd) and the ferredoxin reductase Arh1 from the fission yeast Schizosaccharomyces pombe. We investigated the metabolism of glibenclamide and glimepiride, hypoglycemic drugs of sulfonylurea type, and determined corresponding in vitro kinetic parameters. The resulting 3-cyclohexyl-hydroxylation activity towards glibenclamide and glimepiride was demonstrated by NMR analysis. Furthermore, the main product of glibenclamide, cis-3-hydroxy-glibenclamide is identical with the phase-1-metabolite of this drug in human. The orientation of glimepiride and glibenclamide in the active site of the enzyme is shown by a computational docking model. For high scale production of sulfonylurea derivatives, we designed whole-cell biocatalysts based on Bacillus megaterium MS941. Surprisingly, the system expressing only CYP105A1 showed a similar activity towards hydroxylation of glimepiride and glibenclamide compared to the system expressing additionally the redox partners, Arh1 and Etp1(fd)(516-618), indicating that the host strain provides a functional endogenous electron transfer system.
Collapse
Affiliation(s)
- Michael Kleser
- Universität des Saarlandes, Institut für Biochemie, Campus B2.2, 66123 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
24
|
Sakaki T, Sugimoto H, Hayashi K, Yasuda K, Munetsuna E, Kamakura M, Ikushiro S, Shiro Y. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:249-56. [PMID: 20654743 DOI: 10.1016/j.bbapap.2010.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/29/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Bioconversion processes, including specific hydroxylations, promise to be useful for practical applications because chemical syntheses often involve complex procedures. One of the successful applications of P450 reactions is the bioconversion of vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Recently, a cytochrome P450 gene encoding a vitamin D hydroxylase from the CYP107 family was cloned from Pseudonocardia autotrophica and is now applied in the bioconversion process that produces 1α,25-dihydroxyvitamin D₃. In addition, the directed evolution study of CYP107 has significantly enhanced its activity. On the other hand, we found that Streptomyces griseolus CYP105A1 can convert vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Site-directed mutagenesis of CYP105A1 based on its crystal structure dramatically enhanced its activity. To date, multiple vitamin D hydroxylases have been found in bacteria, fungi, and mammals, suggesting that vitamin D is a popular substrate of the enzymes belonging to the P450 superfamily. A combination of these cytochrome P450s would produce a large number of compounds from vitamin D and its analogs. Therefore, we believe that the bioconversion of vitamin D and its analogs is one of the most promising P450 reactions in terms of practical application.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Franzetti A, Gandolfi I, Piscitello M, Porto G, Biasiolo A, Oltolini F, Marangoni T, Bestetti G. Biodegradation of N,N diethylaniline in a contaminated aquifer: laboratory- and field-scale evidences. Biodegradation 2009; 21:193-201. [DOI: 10.1007/s10532-009-9293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
|
26
|
John GH, Walls S, Keith R, Goodfox-Jones J, Tucker K, Abraham KJ. The Presence of a Cytochrome P450-like Protein in the Human Intestinal MicrofloraEubacterium aerofaciens. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106001750071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Gilbert H. John
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Shannon Walls
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Ronald Keith
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Jodi Goodfox-Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Kayleen Tucker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - K. J. Abraham
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
27
|
Hayashi K, Sugimoto H, Shinkyo R, Yamada M, Ikeda S, Ikushiro S, Kamakura M, Shiro Y, Sakaki T. Structure-Based Design of a Highly Active Vitamin D Hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 2008; 47:11964-72. [DOI: 10.1021/bi801222d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiko Hayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugimoto
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Raku Shinkyo
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masato Yamada
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinnosuke Ikeda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshitsugu Shiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Sasaki M, Tsuchido T, Matsumura Y. Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol 2008; 105:1158-69. [PMID: 18492046 DOI: 10.1111/j.1365-2672.2008.03843.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To clone and characterize the genes bisdA and bisdB, encoding Ferredoxin(bisd) (Fd(bisd)) and cytochrome P450(bisd) (P450(bisd)), respectively, from the bisphenol A (BPA) degrading Sphingomonas bisphenolicum strain AO1. METHODS AND RESULTS The 3.7 kb region containing bisdA and bisdB was cloned by genome walking and colony hybridization. The deduced N-terminal amino acid sequences of bisdA and bisdB were consistent with those of Fd(bisd) and P450(bisd) proteins characterized in our previous report. Two transposase genes, tnpA1 and tnpA2, were also located upstream and downstream of bisdAB. From amino acid sequence analysis, P450(bisd) has two conserved regions corresponding to the oxygen and heme binding regions of the bacterial cytochrome P450 family. Fd(bisd) was similar to putidaredoxin-type [2Fe-2S] ferredoxins. Escherichia coli BL21 (DE3) cells bearing bisdB- and bisdAB-recombinant pET19b were able to degrade BPA. A spontaneous mutant, strain AO1L, which was unable to degrade BPA, was isolated from the stock culture, and it was confirmed that strain AO1L had no bisdAB region. CONCLUSIONS P450(bisd) monooxygenase sytem, encoded by bisdAB, is one system required for BPA hydroxylation in S. bisphenolicum strain AO1. SIGNIFICANCE AND IMPACT OF THE STUDY Our results indicate that bisdAB are key genes for BPA degradation in S. bisphenolicum strain AO1.
Collapse
Affiliation(s)
- M Sasaki
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | | | | |
Collapse
|
29
|
Sugimoto H, Shinkyo R, Hayashi K, Yoneda S, Yamada M, Kamakura M, Ikushiro SI, Shiro Y, Sakaki T. Crystal structure of CYP105A1 (P450SU-1) in complex with 1alpha,25-dihydroxyvitamin D3. Biochemistry 2008; 47:4017-27. [PMID: 18314962 DOI: 10.1021/bi7023767] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin D 3 (VD 3), a prohormone in mammals, plays a crucial role in the maintenance of calcium and phosphorus concentrations in serum. Activation of VD 3 requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney by cytochrome P450 (CYP) enzymes. Bacterial CYP105A1 converts VD 3 into 1alpha,25-dihydroxyvitamin D 3 (1alpha,25(OH) 2D 3) in two independent reactions, despite its low sequence identity with mammalian enzymes (<21% identity). The present study determined the crystal structures of a highly active mutant (R84A) of CYP105A1 from Streptomyces griseolus in complex and not in complex with 1alpha,25(OH) 2D 3. The compound 1alpha,25(OH) 2D 3 is positioned 11 A from the iron atom along the I helix within the pocket. A similar binding mode is observed in the structure of the human CYP2R1-VD 3 complex, indicating a common substrate-binding mechanism for 25-hydroxylation. A comparison with the structure of wild-type CYP105A1 suggests that the loss of two hydrogen bonds in the R84A mutant increases the adaptability of the B' and F helices, creating a transient binding site. Further mutational analysis of the active site reveals that 25- and 1alpha-hydroxylations share residues that participate in these reactions. These results provide the structural basis for understanding the mechanism of the two-step hydroxylation that activates VD 3.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T. Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105). Biochem Biophys Res Commun 2007; 361:876-82. [PMID: 17679139 DOI: 10.1016/j.bbrc.2007.07.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 MoxA (P450moxA) from a rare actinomycete Nonomuraea recticatena belongs to the CYP105 family and exhibits remarkably broad substrate specificity. Here, we demonstrate that P450moxA acts on several luciferin derivatives, which were originally identified as substrates of the human microsomal P450s. We also describe the crystal structure of P450moxA in substrate-free form. Structural comparison with various bacterial and human microsomal P450s reveals that the P450moxA structure is most closely related to that of the fungal nitric oxide reductase P450nor (CYP55A1). Final refined model of P450moxA comprises almost all the residues, including the "BC-loop" and "FG-loop" regions pivotal for substrate recognition, and the current structure thus defines a well-ordered substrate-binding pocket. Clear electron density map reveals that the MES molecule is bound to the substrate-binding site, and the sixth coordination position of the heme iron is not occupied by a water molecule, probably due to the presence of MES molecule in the vicinity of the heme. The unexpected binding of the MES molecule might reflect the ability of P450moxA to accommodate a broad range of structurally diverse compounds.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Molnár I, Jungmann V, Stege J, Trefzer A, Pachlatko JP. Biocatalytic conversion of avermectin into 4''-oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme. Biochem Soc Trans 2007; 34:1236-40. [PMID: 17073793 DOI: 10.1042/bst0341236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
4''-Oxo-avermectin is a key intermediate in the manufacture of the insecticide emamectin benzoate from the natural product avermectin. Seventeen Streptomyces strains with the ability to oxidize avermectin to 4''-oxo-avermectin in a regioselective manner have been discovered, and the enzymes responsible for this reaction were found to be CYPs (cytochrome P450 mono-oxygenases). The genes for these enzymes have been cloned, sequenced and compared to reveal a new subfamily of CYPs. The biocatalytic enzymes have been overexpressed in Escherichia coli, Streptomyces lividans and solvent-tolerant Pseudomonas putida strains using different promoters and vectors. FDs (ferredoxins) and FREs (ferredoxin:NADP(+) reductases) were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains, and tested in co-expression systems to optimize the electron transport. Subsequent studies showed that increasing the biocatalytic conversion levels to commercial relevance results in the production of several side products in significant amounts. Chimaeric Ema CYPs were created by sequential rounds of GeneReassembly, a proprietary directed evolution method, and selected for improved substrate specificity by high-throughput screening.
Collapse
Affiliation(s)
- I Molnár
- Syngenta Biotechnology, Inc., Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
32
|
Stevens M, Duxbury T. Aspergillus nigerand aPenicilliumsp. are not directly involved in the degradation of chlorsulfuron. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780360316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Lamb DC, Guengerich FP, Kelly SL, Waterman MR. ExploitingStreptomyces coelicolorA3(2) P450s as a model for application in drug discovery. Expert Opin Drug Metab Toxicol 2006; 2:27-40. [PMID: 16863466 DOI: 10.1517/17425255.2.1.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
One of the surprising discoveries about the genomics of the cytochrome P450 (CYP) superfamily is the large number of CYPs in the bacterial class of actinomycetes. It had previously been imagined that bacteria have small numbers of CYPs or none at all. Particularly intriguing is that the bacterial genus Streptomyces, which produce a large number of secondary metabolites with important medical application, has a large CYP complement reflecting the ecological niche that the organism finds itself in. In 2001 the first complete Streptomyces species genome (Streptomyces coelicolor A3[2]) was published, revealing the presence of 18 CYP genes. Subsequently, genomes for Streptomyces avermitilis, with 33 CYPs, and Streptomyces peucetius, with 15 CYPs, have been reported. Although a certain number of these CYPs have known functions in secondary metabolism, as identified biochemically or through gene locus organisation, in the vast majority of Streptomyces species, CYP functions are unknown. The first detailed analysis of the CYP complement from a Streptomyces species genome has begun in the laboratories of Waterman et al. The long-term goal of this effort is to identify orphan CYP function, to establish their high resolution structure and to establish a strategy for producing novel secondary metabolites that have new biomedical function. This chapter provides an overview of CYP systems in Streptomyces species and provides a plan of how new drugs might be generated from streptomycetes by modifying the structure of specific CYPs.
Collapse
Affiliation(s)
- David C Lamb
- Swansea Medical School, University of Wales Swansea, Swansea, UK
| | | | | | | |
Collapse
|
34
|
Molnár I, Hill DS, Zirkle R, Hammer PE, Gross F, Buckel TG, Jungmann V, Pachlatko JP, Ligon JM. Biocatalytic conversion of avermectin to 4"-oxo-avermectin: heterologous expression of the ema1 cytochrome P450 monooxygenase. Appl Environ Microbiol 2005; 71:6977-85. [PMID: 16269733 PMCID: PMC1287623 DOI: 10.1128/aem.71.11.6977-6985.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1.
Collapse
Affiliation(s)
- István Molnár
- Syngenta Biotechnology, Inc., Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu J, Wan E, Kim CJ, Floss HG, Mahmud T. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. MICROBIOLOGY-SGM 2005; 151:2515-2528. [PMID: 16079331 DOI: 10.1099/mic.0.28138-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rifamycin B biosynthesis by Amycolatopsis mediterranei S699 involves a number of unusual modification reactions in the formation of the unique polyketide backbone and decoration of the molecule. A number of genes believed to be involved in the tailoring of rifamycin B were investigated and the results confirmed that the formation of the naphthalene ring moiety of rifamycin takes place during the polyketide chain extension and is catalysed by Rif-Orf19, a 3-(3-hydroxyphenyl)propionate hydroxylase-like protein. The cytochrome P450-dependent monooxygenase encoded by rif-orf5 is required for the conversion of the Delta12, 29 olefinic bond in the polyketide backbone of rifamycin W into the ketal moiety of rifamycin B. Furthermore, Rif-Orf3 may be involved in the regulation of rifamycin B production, as its knock-out mutant produced about 40 % more rifamycin B than the wild-type. The work also revealed that many of the genes located in the cluster are not involved in rifamycin biosynthesis, but might be evolutionary remnants carried over from an ancestral lineage.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Eva Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Chang-Joon Kim
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Heinz G Floss
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| |
Collapse
|
36
|
Torres S, Fjetland CR, Lammers PJ. Alkane-induced expression, substrate binding profile, and immunolocalization of a cytochrome P450 encoded on the nifD excision element of Anabaena 7120. BMC Microbiol 2005; 5:16. [PMID: 15790415 PMCID: PMC1079853 DOI: 10.1186/1471-2180-5-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/24/2005] [Indexed: 11/29/2022] Open
Abstract
Background Alkanes have been hypothesized to act as universal inducers of bacterial cytochrome P450 gene expression. We tested this hypothesis on an unusual P450 gene (cyp110) found on a conserved 11 kilobase episomal DNA element of unknown function found in filamentous cyanobacteria. We also monitored the binding of potential substrates to the P450 protein and explored the distribution of P450 protein in vegetative cells and nitrogen-fixing heterocysts using immuno-electron microscopy. Results Hexadecane treatments resulted in a two-fold increase in mRNA, and a four-fold increase in P450 protein levels relative to control cultures. Hexane, octane and dodecane were toxic and induced substantial changes in membrane morphology. Long-chain saturated and unsaturated fatty acids were shown to bind the CYP110 protein using a spectroscopic spin-shift assay, but alkanes did not bind. CYP110 protein was detected in vegetative cells but not in differentiated heterocysts where nitrogen fixation occurs. Conclusion Hexadecane treatment was an effective inducer of CYP110 expression in cyanobacteria. Based on substrate binding profiles and amino acid sequence similarities it is hypothesized that CYP110 is a fatty acid ω-hydroxylase in photosynthetic cells. CYP110 was found associated with membrane fractions unlike other soluble microbial P450 proteins, and in this regard CYP110 more closely resembles eukarytotic P450s. Substrate stablization is an unlikely mechanism for alkane induction because alkanes did not bind to purified CYP110 protein.
Collapse
Affiliation(s)
- Sergio Torres
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Conrad R Fjetland
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX, USA
| | - Peter J Lammers
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
37
|
Sielaff B, Andreesen JR. Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5. FEBS J 2005; 272:1148-59. [PMID: 15720389 DOI: 10.1111/j.1742-4658.2005.04550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P450mor system from Mycobacterium sp. strain HE5, supposed to catalyse the hydroxylation of different N-heterocycles, is composed of three components: ferredoxin reductase (FdRmor), Fe3S4 ferredoxin (Fdmor) and cytochrome P450 (P450mor). In this study, we purified Fdmor and P450mor as recombinant proteins as well as FdRmor, which has been isolated previously. Kinetic investigations of the redox couple FdRmor/Fdmor revealed a 30-fold preference for the NADH-dependent reduction of nitroblue tetrazolium (NBT) and an absolute requirement for Fdmor in this reaction, compared with the NADH-dependent reduction of cytochrome c. The quite low Km (5.3 +/- 0.3 nm) of FdRmor for Fdmor, measured with NBT as the electron acceptor, indicated high specificity. The addition of sequences providing His-tags to the N- or C-terminus of Fdmor did not significantly alter kinetic parameters, but led to competitive background activities of these fusion proteins. Production of P450mor as an N-terminal His-tag fusion protein enabled the purification of this protein in its spectral active form, which has previously not been possible for wild-type P450mor. The proposed substrates morpholine, piperidine or pyrrolidine failed to produce substrate-binding spectra of P450mor under any conditions. Pyridine, metyrapone and different azole compounds generated type II binding spectra and the Kd values determined for these substances suggested that P450mor might have a preference for more bulky and/or hydrophobic molecules. The purified recombinant proteins FdRmor, Fdmor and P450mor were used to reconstitute the homologous P450-containing mono-oxygenase, which was shown to convert morpholine.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | |
Collapse
|
38
|
Giacomazzi S, Cochet N. Environmental impact of diuron transformation: a review. CHEMOSPHERE 2004; 56:1021-1032. [PMID: 15276715 DOI: 10.1016/j.chemosphere.2004.04.061] [Citation(s) in RCA: 283] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 04/23/2004] [Accepted: 04/30/2004] [Indexed: 05/24/2023]
Abstract
Diuron is a biologically active pollutant present in soil, water and sediments. A synthesis of literature data on its physicochemical properties, partitioning behaviour, abiotic and biotic transformations, toxicological and ecotoxicological impacts has been here performed. Data have shown that diuron is generally persistent in soil, water and groundwater. It is also slightly toxic to mammals and birds as well as moderately toxic to aquatic invertebrates. However, its principal product of biodegradation, 3,4-dichloroaniline exhibits a higher toxicity and is also persistent in soil, water and groundwater. Thus, diuron indirectly possesses a significant amount of toxicity and could be a potential poisoning pesticide contaminant of groundwater. Unfortunately, groundwater contamination will still persist despite the progressive suppression of diuron (Directive 200/60/CE). Therefore, determining the main factors influencing its degradation and its ecotoxicological effects on the environment and health could provide a basis for further development of bioremediation processes.
Collapse
Affiliation(s)
- S Giacomazzi
- Equipe de Physiologie Microbienne, UMR 6067, CNRS, Génie des Procédés Industriels, Université de Technologie de Compiègne, BP 20529, Compiègne cedex 60205, France
| | | |
Collapse
|
39
|
Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun 2004; 320:156-64. [PMID: 15207715 DOI: 10.1016/j.bbrc.2004.05.140] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Indexed: 11/28/2022]
Abstract
Streptomyces griseolus cytochrome P450SU-1 (CYP105A1) was expressed in Escherichia coli at a level of 1.0 micromol/L culture and purified with a specific content of 18.0 nmol/mg protein. Enzymatic studies revealed that CYP105A1 had 25-hydroxylation activity towards vitamin D2 and vitamin D3. Surprisingly, CYP105A1 also showed 1alpha-hydroxylation activity towards 25(OH)D3. As mammalian mitochondrial CYP27A1 catalyzes a similar two-step hydroxylation towards vitamin D3, the enzymatic properties of CYP105A1 were compared with those of human CYP27A1. The major metabolite of vitamin D2 by CYP105A1 was 25(OH)D2, while the major metabolites by CYP27A1 were both 24(OH)D2 and 27(OH)D2. These results suggest that CYP105A1 recognizes both vitamin D2 and vitamin D3 in a similar manner, while CYP27A1 does not. The Km values of CYP105A1 for vitamin D2 25-hydroxylation, vitamin D3 25-hydroxylation, and 25-hydroxyvitamin D3 1alpha-hydroxylation were 0.59, 0.54, and 0.91 microM, respectively, suggesting a high affinity of CYP105A1 for these substrates.
Collapse
Affiliation(s)
- Natsumi Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Boschin G, D'Agostina A, Arnoldi A, Marotta E, Zanardini E, Negri M, Valle A, Sorlini C. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2003; 38:737-746. [PMID: 14649705 DOI: 10.1081/pfc-120025557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two sulfonylurea herbicides, chlorsulfuron and metsulfuron-methyl, were studied under laboratory conditions, in order to elucidate the biodegradation pathway operated by Aspergillus niger, a common soil fungus, which is often involved in the degradation of xenobiotics. HPLC-UV was used to study the kinetic of degradation, whereas LC-MS was used to identify the metabolites structure. In order to avoid the chemical degradation induced by a decrease in pH, due to the production of citric acid by the fungus, the experiments were performed in a buffered neutral medium. No significant degradation for both compounds was observed in mineral medium with 0.2% sodium acetate. On the contrary, in a rich medium, after 28 days the degradations, chemical degradation excluded, were about 30% for chlorsulfuron and 33% for metsulfuron-methyl. The main microbial metabolites were obtained via cleavage of the sulfonylurea bridge. In addition the fungus seems to be able to hydroxylate the aromatic ring of chlorsulfuron. In the case of metsulfuron-methyl the only detected metabolite was the triazine derivative, while the aromatic portion was completely degraded. Finally, the demethylation of the methoxy group on the triazine ring, previously observed with a Pseudomonas fluorescens strain, was not observed with A. niger.
Collapse
Affiliation(s)
- Giovanna Boschin
- Dipartimento di Scienze Molecolari Agroalimentari, Sezione di Chimica, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hussain HA, Ward JM. Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts. Appl Environ Microbiol 2003; 69:373-82. [PMID: 12514018 PMCID: PMC152428 DOI: 10.1128/aem.69.1.373-382.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.
Collapse
Affiliation(s)
- Haitham A Hussain
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
42
|
Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC. Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 2002; 68:4764-71. [PMID: 12324318 PMCID: PMC126434 DOI: 10.1128/aem.68.10.4764-4771.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.
Collapse
|
43
|
McLean KJ, Cheesman MR, Rivers SL, Richmond A, Leys D, Chapman SK, Reid GA, Price NC, Kelly SM, Clarkson J, Smith WE, Munro AW. Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem 2002; 91:527-41. [PMID: 12237220 DOI: 10.1016/s0162-0134(02)00479-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The CYP121 gene from the pathogenic bacterium Mycobacterium tuberculosis has been cloned and expressed in Escherichia coli, and the protein purified to homogeneity by ion exchange and hydrophobic interaction chromatography. The CYP121 gene encodes a cytochrome P450 enzyme (CYP121) that displays typical electronic absorption features for a member of this superfamily of hemoproteins (major Soret absorption band at 416.5 nm with alpha and beta bands at 565 and 538 nm, respectively, in the oxidized form) and which binds carbon monoxide to give the characteristic Soret band shift to 448 nm. Resonance Raman, EPR and MCD spectra show the protein to be predominantly low-spin and to have a typical cysteinate- and water-ligated b-type heme iron. CD spectra in the far UV region describe a mainly alpha helical conformation, but the visible CD spectrum shows a band of positive sign in the Soret region, distinct from spectra for other P450s recognized thus far. CYP121 binds very tightly to a range of azole antifungal drugs (e.g. clotrimazole, miconazole), suggesting that it may represent a novel target for these antibiotics in the M. tuberculosis pathogen.
Collapse
Affiliation(s)
- Kirsty J McLean
- Department of Biochemistry, The Adrian Building, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ. Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 2002; 184:3898-908. [PMID: 12081961 PMCID: PMC135161 DOI: 10.1128/jb.184.14.3898-3908.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A degenerate set of PCR primers were used to clone a gene encoding a cytochrome P450 (the P450RhF gene) from Rhodococcus sp. strain NCIMB 9784 which is of unique primary structural organization. Surprisingly, analysis of the translation product revealed that the P450 is fused to a reductase domain at the C terminus which displays sequence conservation for dioxygenase reductase proteins. The reductase partner comprises flavin mononucleotide- and NADH-binding motifs and a [2Fe2S] ferredoxin-like center. The gene was engineered for heterologous expression in Escherichia coli, and conditions were found in which the enzyme was produced in a soluble form. A recombinant strain of E. coli was able to mediate the O dealkylation of 7-ethoxycoumarin in good yield, despite the absence of any recombinant redox proteins. This unprecedented finding leads us to propose that P450RhF represents the first example of a new class of cytochromes P450 in which the reducing equivalents are supplied by a novel reductase in a fused arrangement.
Collapse
Affiliation(s)
- Gareth A Roberts
- The Edinburgh Centre for Protein Technology, Department of Chemistry, University of Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Healy FG, Krasnoff SB, Wach M, Gibson DM, Loria R. Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies. J Bacteriol 2002; 184:2019-29. [PMID: 11889110 PMCID: PMC134914 DOI: 10.1128/jb.184.7.2019-2029.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Accepted: 12/28/2001] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the thaxtomin cyclic dipeptide phytotoxins proceeds nonribosomally via the thiotemplate mechanism. Acyladenylation, thioesterification, N-methylation, and cyclization of two amino acid substrates are catalyzed by the txtAB-encoded thaxtomin synthetase. Nucleotide sequence analysis of the region 3' of txtAB in Streptomyces acidiscabies 84.104 identified an open reading frame (ORF) encoding a homolog of the P450 monooxygenase gene family. It was proposed that thaxtomin A phenylalanyl hydroxylation was catalyzed by the monooxygenase homolog. The ORF was mutated in S. acidiscabies 84.104 by using an integrative gene disruption construct, and culture filtrate extracts of the mutant were assayed for the presence of dehydroxy derivatives of thaxtomin A. Reversed-phase high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry indicated that the major component in culture filtrate extracts of the mutant was less polar and smaller than thaxtomin A. Comparisons of electrospray mass spectra as well as (1)H- and (13)C-nuclear magnetic resonance spectra of the purified compound with those previously reported for thaxtomins confirmed the structure of the compound as 12,15-N-dimethylcyclo-(L-4-nitrotryptophyl-L-phenylalanyl), the didehydroxy analog of thaxtomin A. The ORF, designated txtC, was cloned and the recombinant six-His-tagged fusion protein produced in Escherichia coli and purified from cell extracts. TxtC produced in E. coli exhibited spectral properties similar to those of cytochrome P450-type hemoproteins that have undergone conversion to the catalytically inactive P420 form. Based on these properties and the high similarity of TxtC to other well-characterized P450 enzymes, we conclude that txtC encodes a cytochrome P450-type monooxygenase required for postcyclization hydroxylation of the cyclic dipeptide.
Collapse
Affiliation(s)
- F G Healy
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | | | |
Collapse
|
46
|
Li R, Khaleeli N, Townsend CA. Expansion of the clavulanic acid gene cluster: identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J Bacteriol 2000; 182:4087-95. [PMID: 10869089 PMCID: PMC94596 DOI: 10.1128/jb.182.14.4087-4095.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clavulanic acid is a potent inhibitor of beta-lactamase enzymes and is of demonstrated value in the treatment of infections by beta-lactam-resistant bacteria. Previously, it was thought that eight contiguous genes within the genome of the producing strain Streptomyces clavuligerus were sufficient for clavulanic acid biosynthesis, because they allowed production of the antibiotic in a heterologous host (K. A. Aidoo, A. S. Paradkar, D. C. Alexander, and S. E. Jensen, p. 219-236, In V. P. Gullo et al., ed., Development in industrial microbiology series, 1993). In contrast, we report the identification of three new genes, orf10 (cyp), orf11 (fd), and orf12, that are required for clavulanic acid biosynthesis as indicated by gene replacement and trans-complementation analysis in S. clavuligerus. These genes are contained within a 3.4-kb DNA fragment located directly downstream of orf9 (cad) in the clavulanic acid cluster. While the orf10 (cyp) and orf11 (fd) proteins show homologies to other known CYP-150 cytochrome P-450 and [3Fe-4S] ferredoxin enzymes and may be responsible for an oxidative reaction late in the pathway, the protein encoded by orf12 shows no significant similarity to any known protein. The results of this study extend the biosynthetic gene cluster for clavulanic acid and attest to the importance of analyzing biosynthetic genes in the context of their natural host. Potential functional roles for these proteins are proposed.
Collapse
Affiliation(s)
- R Li
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
47
|
Berrie JR, Williams RA, Smith KE. Microbial transformations of steroids-XI. Progesterone transformation by Streptomyces roseochromogenes-purification and characterisation of the 16alpha-hydroxylase system. J Steroid Biochem Mol Biol 1999; 71:153-65. [PMID: 10659704 DOI: 10.1016/s0960-0760(99)00132-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Streptomyces roseochromogenes, NCIB 10984, contains a cytochrome P450 which, in conjunction with two indigenous electron transfer proteins, roseoredoxin and roseoredoxin reductase, hydroxylates exogenous progesterone firstly to 16alpha-hydroxyprogesterone and thereafter in a second phase bioconversion to 2beta,16alpha-dihydroxyprogesterone. The progesterone 16alpha-hydroxylase P450 and the two electron transfer proteins have been purified to homogeneity. A reconstituted incubation containing these three purified proteins and NADH, the natural electron donor, produced identical hydroxy-progesterone metabolites as in intact cells. Peroxy and hydroperoxy compounds act in a shortened form of the cycle known as the 'peroxide shunt' by replacing the natural pathway requirement for the electron donor NADH, the electron transfer proteins and molecular O2, the terminal electron acceptor. In an NaIO4 supported incubation, the initial rate of progesterone hydroxylation was marginally higher (1.62 mmol progesterone/mmol P-450/h) than in the reconstituted natural incubation (1.18 mmol progesterone/mmol P-450/h) but the product yield was significantly lower, 0.45 mol hydroxyprogesterone produced/mol P-450 compared to 6.0 mol hydroxyprogesterone produced/mol P-450. These yield data show that in the reconstituted natural pathway, progesterone 16alpha-hydroxylase P450 supports multiple rounds of hydroxylation in contrast to a likely single oxygenation by a minority of P450s in the peroxide shunt pathway.
Collapse
Affiliation(s)
- J R Berrie
- Department of Biochemistry, Queen Mary and Westfield College, London, UK
| | | | | |
Collapse
|
48
|
Kawahara N, Ikatsu H, Kawata H, Miyoshi SI, Tomochika KI, Sinoda S. Purification and characterization of 2-ethoxyphenol-induced cytochrome P450 fromCorynebacteriumsp. strain EP1. Can J Microbiol 1999. [DOI: 10.1139/w99-082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A soluble cytochrome P450 (P450EP1A) induced by 2-ethoxyphenol was purified to apparent homogeneity from Corynebacterium sp. strain EP1. The P450EP1Ashowed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of about 45 kDa. The CO-reduced difference spectra of P450EP1Ahad a Soret maximum at 447.6 nm. The substrate difference spectra with 2-ethoxyphenol showed an absorption maximum at 394.0 nm. The purified P450EP1Adegraded 2-ethoxyphenol in an assay system composed of spinach ferredoxin-NADP+oxidoreductase and NADPH. The reaction activity decreased to 1.4% of its original activity by addition of CO. The existence of catechol in the reaction mixture was confirmed after the metabolic reaction, indicating that P450EP1Acatalyzes O-dealkylation of 2-ethoxyphenol. In addition to 2-ethoxyphenol, the P450EP1Ametabolized 2-methoxyphenol, 1,1,1-trichloroethane, carbon tetrachloride, benzene, and toluene.Key words: cytochrome P450, Corynebacterium sp., 2-ethoxyphenol, enzyme purification, biodegradation.
Collapse
|
49
|
Fisseha M, Biran D, Kroos L. Identification of the Omega4499 regulatory region controlling developmental expression of a Myxococcus xanthus cytochrome P-450 system. J Bacteriol 1999; 181:5467-75. [PMID: 10464222 PMCID: PMC94057 DOI: 10.1128/jb.181.17.5467-5475.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omega4499 is the site of a Tn5 lac insertion in the Myxococcus xanthus chromosome that fuses lacZ expression to a developmentally regulated promoter. Cell-cell interactions that occur during development, including C signaling, are required for normal expression of Tn5 lac Omega4499. The DNA upstream of the Omega4499 insertion has been cloned, and the promoter has been localized. Analysis of the DNA sequence downstream of the promoter revealed one complete open reading frame and a second partial open reading frame that is interrupted by Tn5 lac Omega4499. The predicted products of these open reading frames are highly similar to reductase and oxidase components of bacterial cytochrome P-450 systems, which allow catabolism or anabolism of unusual compounds. However, the function of the gene products of the Omega4499 locus remains unclear because M. xanthus containing Tn5 lac Omega4499 exhibits no apparent defect in growth, developmental aggregation, fruiting body formation, or sporulation. Deletion analysis of the Omega4499 regulatory region showed that multiple DNA elements spanning more than 500 bp upstream of the transcriptional start site contribute to developmental promoter activity. At least two DNA elements, one downstream of -49 bp and one between -49 and -218 bp, boosted activity of the promoter in response to intercellular C signaling. Three sequences in the Omega4499 promoter region, centered at -55, -33, and -1 bp, nearly match a 7-bp sequence found in other C signal-dependent promoters. We propose that these sequences, matching the consensus sequence 5'-CAYYCCY-3', be called C box sequences, and we speculate that these sequences are cis-acting regulatory elements important for the expression of M. xanthus genes that depend upon intercellular C signaling during development.
Collapse
Affiliation(s)
- M Fisseha
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
50
|
Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG. Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:719-26. [PMID: 10571857 DOI: 10.1046/j.1365-313x.1999.00557.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Efficient negative selection systems are increasingly needed for numerous applications in plant biology. In recent years various counter-selectable genes have been tested in six dicotyledonous species, whereas there are no data available for the use of negative selection markers in monocotyledonous species. In this study, we compared the applicability and reliability of two different conditional negative selection systems in transgenic barley. The bacterial codA gene encoding cytosine deaminase, which converts the non-toxic 5-fluorocytosine (5-FC) into the toxic 5-fluorouracil (5-FU), was used for in vitro selection of germinating seedlings. Development of codA-expressing seedlings was strongly inhibited by germinating the seeds in the presence of 5-FC. For selecting plants in the greenhouse, a bacterial cytochrome P450 mono-oxygenase gene, the product of which catalyses the dealkylation of a sulfonylurea compound, R7402, into its cytotoxic metabolite, was used. T1 plants expressing the selectable marker gene showed striking morphological differences from the non-transgenic plants. In experiments with both negative selectable markers, the presence or absence of the transgene, as predicted from the physiological appearance of the plants under selection, was confirmed by PCR analysis. We demonstrate that both marker genes provide tight negative selection; however, the use of the P450 gene is more amenable to large-scale screening under greenhouse or field conditions.
Collapse
Affiliation(s)
- T Koprek
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA.
| | | | | | | | | |
Collapse
|