1
|
Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome. PLoS One 2020; 15:e0228338. [PMID: 31978143 PMCID: PMC6980619 DOI: 10.1371/journal.pone.0228338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we gained insights into the effects of the supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) in the chicken drinking water on crop and caeca microbiomes. The probiotic was supplemented at the concentrations of 0.2 g Lactobacillus acidophilus/day/bird and 0.02 g Lactobacillus acidophilus/day/bird and its effect on the crop and caeca microbiomes was assessed at 14 and 35 days of rearing. The results showed that mean relative abundance of Lactobacillus acidophilus in the caeca did not show significative differences in the treated and control birds, although Lactobacillus acidophilus as well as Faecalibacterium prausnitzii, Lactobacillus crispatus and Lactobacillus reuteri significantly increased over time. Moreover, the treatment with the high dose of probiotic significantly increased the abundance of Clostridium asparagiforme, Clostridium hathewayi and Clostridium saccharolyticum producing butyrate and other organic acids supporting the chicken health. Finally, at 35 days, the Cell division protein FtsH (EC 3.4.24.-) and the Site-specific recombinase genes were significantly increased in the caeca of birds treated with the high dose of probiotic in comparison to the control group. The results of this study showed that Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in the drinking water at the concentrations of 0.2 and 0.02 g Lactobacillus acidophilus/day/bird improved beneficial microbes and functional genes in broiler crops and caeca. Nevertheless, the main site of action of the probiotic is the crop, at least in the early stage of the chicken life. Indeed, at 14 days Lactobacillus acidophilus was significantly higher in the crops of chickens treated with the high dose of LA in comparison to the control (14.094 vs 1.741%, p = 0.036).
Collapse
|
2
|
Jajamovich GH, Wang X, Arkin AP, Samoilov MS. Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites. Nucleic Acids Res 2011; 39:e146. [PMID: 21948794 PMCID: PMC3241671 DOI: 10.1093/nar/gkr745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI-a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/~guido/BAMBI or http://genomics.lbl.gov/BAMBI/.
Collapse
Affiliation(s)
- Guido H Jajamovich
- Electrical Engineering Department, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
3
|
Pleteneva EA, Shaburova OV, Sykilinda NN, Miroshnikov KA, Kadykov VA, Krylov SV, Mesyanzhinov VV, Krylov VN. Study of the diversity in a group of phages of Pseudomonas aeruginosa species PB1 (Myoviridae) and their behavior in adsorbtion-resistant bacterial mutants. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795408020051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Tominaga A, Kutsukake K. Expressed and cryptic flagellin genes in the H44 and H55 type strains of Escherichia coli. Genes Genet Syst 2007; 82:1-8. [PMID: 17396015 DOI: 10.1266/ggs.82.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial H antigens are specified by flagellin molecules, which constitute the flagellar filament. Escherichia coli 781-55 and E2987-73 are the type strains for H44 and H55 antigens, respectively. Unlike E. coli K-12, they possess two flagellin genes, fliC and fllA, on their chromosomes. However, they are monophasic, expressing exclusively the fllA genes, which specify the type antigens. In this study, the flagellin genes were cloned from these strains and their structure and expression were analyzed. It was found that the fliC genes encode apparently intact flagellin subunits but possess inefficient sigma28-dependent promoters, which may result in these genes being silent. The chromosomal locations of the fllA genes are approximately, but not exactly, identical with that of the phase-2 flagellin gene, fljB, of diphasic Salmonella strains. However, unlike the Salmonella fljB gene, the invertible H segment and the fljA gene responsible for the control of flagellar phase variation are both absent from the fllA loci. The fllA genes are highly homologous to the E. coli fliC gene but distantly related to the Salmonella fljB gene. These results suggest a hypothesis that the fllA genes may have emerged by an intra-species lateral transfer of the fliC gene. This hypothesis is further supported by the observation that the fllA genes are flanked by several IS elements and located within cryptic prophage elements.
Collapse
Affiliation(s)
- Akira Tominaga
- Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University, Japan
| | | |
Collapse
|
5
|
Kutsukake K, Nakashima H, Tominaga A, Abo T. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 2006; 188:950-7. [PMID: 16428399 PMCID: PMC1347348 DOI: 10.1128/jb.188.3.950-957.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.
Collapse
Affiliation(s)
- Kazuhiro Kutsukake
- Department of Biology, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|
6
|
Tominaga A, Lan R, Reeves PR. Evolutionary changes of the flhDC flagellar master operon in Shigella strains. J Bacteriol 2005; 187:4295-302. [PMID: 15937193 PMCID: PMC1151726 DOI: 10.1128/jb.187.12.4295-4302.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella strains are nonmotile. The master operon of flagellar synthesis, flhDC, was analyzed for genetic damage in 46 Shigella strains representing all known serotypes. In 11 strains (B1, B3, B6, B8, B10, B18, D5, F1B, D10, F3A, and F3C) the flhDC operon was completely deleted. PCR and sequence analysis of the flhDC region of the remaining 35 strains revealed many insertions or deletions associated with insertion sequences, and the majority of the strains were found to be defective in their flhDC genes. As these genes also play a role in regulation of non-flagellar genes, the loss may have other consequences or be driven by selection pressures other than those against flagellar motility. It has been suggested that Shigella strains fall mostly into three clusters within Escherichia coli, with five outlier strains, four of which are also within E. coli (G. M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567-10572, 2000). The distribution of genetic changes in the flhDC region correlated very well with the three clusters and outlier strains found using housekeeping gene DNA sequences, enabling us to follow the sequence of mutational change in the flhDC locus. Two cluster 2 strains were found to have unique flhDC sequences, which are most probably due to recombination during the exchange of the adjacent O-antigen gene clusters.
Collapse
Affiliation(s)
- Akira Tominaga
- School of Molecular and Microbial Biosciences (GO8), The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
7
|
Martínez-Granero F, Capdevila S, Sánchez-Contreras M, Martín M, Rivilla R. Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology (Reading) 2005; 151:975-983. [PMID: 15758242 DOI: 10.1099/mic.0.27583-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biocontrol agent Pseudomonas fluorescens F113 undergoes phenotypic variation during rhizosphere colonization, and this variation has been related to the activity of a site-specific recombinase encoded by the sss gene. Here, it is shown that a second recombinase encoded by the xerD gene is also implicated in phenotypic variation. A putative xerD gene from this strain was cloned, and sequence analysis confirmed that it encoded a site-specific recombinase of the λ integrase family. Mutants affected in the sss or xerD genes produced a very low quantity of phenotypic variants compared to the wild-type strain, both under prolonged cultivation in the laboratory and after rhizosphere colonization, and they were severely impaired in competitive root colonization. Overexpression of the genes encoding either recombinase resulted in a substantial increment in the production of phenotypic variants under both culture and rhizosphere colonization conditions, implying that both site-specific recombinases are involved in phenotypic variation. Overexpression of the sss gene suppressed the phenotype of a xerD mutant, but overexpression of the xerD gene had no effect on the phenotype of an sss mutant. Genetic analysis of the phenotypic variants obtained after overexpression of the genes encoding both the recombinases showed that they carried mutations in the gacA/S genes, which are necessary to produce a variety of secondary metabolites. These results indicate that the Gac system is affected by the activity of the site-specific recombinases. Transcriptional fusions of the sss and xerD genes with a promoterless lacZ gene showed that both genes have a similar expression pattern, with maximal expression during stationary phase. Although the expression of both genes was independent of diffusible compounds present in root exudates, it was induced by the plant, since bacteria attached to the root showed enhanced expression.
Collapse
Affiliation(s)
| | - Silvia Capdevila
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Sánchez-Contreras
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Tominaga A. Characterization of six flagellin genes in the H3, H53 and H54 standard strains of Escherichia coli. Genes Genet Syst 2005; 79:1-8. [PMID: 15056931 DOI: 10.1266/ggs.79.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Six flagellin genes in three H standard Escherichia coli strains for H3, H53 and H54 were characterized. Each strain has two flagellin genes, one of which is expressed as its standard H antigen. A pair of flagellin genes flkA3 (encoding for H3 antigen) and fliC16 (H16) was cloned from Bi7327-41, flkA53 (H53) and fliC-53 from E480-68, and flmA54 (H54) and fliC-54 from E223-69. Two fliC genes, fliC-53 and fliC-54, are nonfunctional owing to the insertions of IS1 and IS1222, respectively. The flkA and flmA regions are located in the 3' end of the rnpB gene and near the nlpA gene, respectively. Each of them is followed by a gene homologous to fljA, which is known to repress the expression of fliC(i) in Salmonella enterica serovar Typhimurium. These results suggest that they are derived from the same origin of the fljBA operon. However, these regions contain neither the hin gene nor the invertible H segment. The four flagellin genes, fliC16, flkA3, flkA53 and flmA54, share high homology in nucleotide and amino-acid sequences with one another and with the S. enterica serovar Typhimurium flagellin genes. The promoter sequence of fliC16 is homologous to that of fliC(i), whereas the promoter sequences of flkA and flmA are homologous to that of fljB. The terminator sequences of the fliC16, fliC-53 and fliC-54 genes are conserved among themselves and identical with that of the E. coli fliC48 gene. Three FljA repressors, FljA3, FljA53 and FljA54, are homologous highly with one another and moderately with FljA of Salmonella. These results indicate that six flagellin genes analyzed are markedly similar to the Salmonella flagellin genes, suggesting their lateral transfer from Salmonella.
Collapse
Affiliation(s)
- Akira Tominaga
- Department of Biology, Faculty of Science, Okayama University, Japan.
| |
Collapse
|
9
|
Gaudriault S, Thaler JO, Duchaud E, Kunst F, Boemare N, Givaudan A. Identification of a P2-related prophage remnant locus ofPhotorhabdus luminescensencoding an R-type phage tail-like particle. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09486.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Amavisit P, Lightfoot D, Browning GF, Markham PF. Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol 2003; 185:3624-35. [PMID: 12775700 PMCID: PMC156220 DOI: 10.1128/jb.185.12.3624-3635.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although four of the five Salmonella pathogenicity islands (SPIs) have been characterized in detail for Salmonella enterica serovar Typhimurium, and the fifth has been characterized for Salmonella enterica serovar Dublin, there have been limited studies to examine them in detail in a range of pathogenic serovars of S. enterica. The aim of this study was to examine these regions, shown to be crucial in virulence, in pathogenic serovars to identify any major deletions or insertions that may explain variation in virulence and provide further understanding of the elements involved in the evolution of these regions. Multiple strains of each of the 13 serovars were compared by Southern blot hybridization using a series of probes that together encompassed the full length of all five SPIs. With the exception of serovar Typhimurium, all strains of the same serovar were identical in all five SPIs. Those serovars that differed from serovar Typhimurium in SPI-1 to SPI-4 and from serovar Dublin in SPI-5 were examined in more detail in the variant regions by PCR, and restriction endonuclease digestion and/or DNA sequencing. While most variation in hybridization patterns was attributable to loss or gain of single restriction endonuclease cleavage sites, three regions, in SPI-1, SPI-3, and SPI-5, had differences due to major insertions or deletions. In SPI-1 the avrA gene was replaced by a 200-base fragment in three serovars, as reported previously. In SPI-5, two serovars had acquired an insertion with similarity to the pagJ and pagK genes between pipC and pipD. In SPI-3 the genes sugR and rhuM were deleted in most serovars and in some were replaced by sequences that were very similar to either the Escherichia coli fimbrial operon, flanked by two distinct insertion sequence elements, or to the E. coli retron phage PhiR73. The distribution of these differences suggests that there have been a number of relatively recent horizontal transfers of genes into S. enterica and that in some cases the same event has occurred in multiple lineages of S. enterica. Thus, it seems that insertion sequences and retron phages are likely to be involved in continuing evolution of the pathogenicity islands of pathogenic Salmonella serovars.
Collapse
Affiliation(s)
- P Amavisit
- Department of Veterinary Science, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Wolf DM, Arkin AP. Fifteen minutes of fim: control of type 1 pili expression in E. coli. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2002; 6:91-114. [PMID: 11881836 DOI: 10.1089/15362310252780852] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pili are used by Escherichia coli to attach to and invade mammalian tissues during host infection and colonization. Expression of type 1 pili, believed to act as virulence factors in urinary tract infections, is under control of the 'firm' genetic network. This network is able to sense the environment and actuate phase variation control. It is a prime exemplar of an integrative regulatory system because of its role in mediating a complex infection process, and because it instantiates a number of regulatory motifs, including DNA inversion and stochastic variation. With the help of a mathematical model, we explore the mechanisms and architecture of the fim network. We explain (1) basic network operation, including the roles of the recombinase and global regulatory protein concentrations, their DNA binding affinities, and their switching rates in observed phase variation behavior; (2) why there are two recombinases when one would seem to suffice; (3) the source of on-to-off switching specificity of FimE; (4) the role of fimE orientational control in switch dynamics; and (5) how temperature tuning of piliation is achieved. In the process, we identify a general regulatory motif that tunes phenotype to an environmental variable, and explain a number of apparent experimental inconsistencies.
Collapse
Affiliation(s)
- Denise M Wolf
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | |
Collapse
|
12
|
Tominaga A, Mahmoud MA, Al Mamun AA, Mukaihara T. Characterization of cryptic flagellin genes in Shigella boydii and Shigella dysenteriae. Genes Genet Syst 2001; 76:111-20. [PMID: 11434456 DOI: 10.1266/ggs.76.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flagellin (fliC) genes of 12 Shigella boydii and five Shigella dysenteriae strains were characterized. Though these strains are nonmotile, the cryptic fliCSB gene, cloned from S. boydii strain C3, is functional for expression of flagellin. It consists of 1,704 bp, and encodes 568 amino acid residues (57,918 Da). The fliCSD gene from S. dysenteriae strain 16 consists of 1,650 bp encoding 549 amino acid residues (57,591 Da) and contains an IS1 element inserted in its 3' end. The two genes are composed of the 5'-constant, central variable and 3'-constant sequences, like other known fliC genes. The two genes share high homology in nucleotide and amino acid sequences with each other and also with the Escherichia coli fliCE gene, indicating that both genes are closely related to the fliCE gene. Comparison of the central variable sequences of six different fliC genes showed that the fliCSB and fliCSD genes share low homology in amino acid sequence with the other fliC genes, suggesting that they encode antigenic determinants intrinsic to respective subgroups. However, Southern blotting using as probes the central variable sequences of several fliC genes showed that four of 12 S. boydii strains have a fliC gene similar to that of Shigella flexneri, and that among five fliC genes from S. dysenteriae strains, one is similar to that of S. flexneri, two are similar to that of S. boydii, and only one is unique to S. dysenteriae. Some of these variant alleles were verified by immunoblotting with flagellins produced from cloned fliC genes. The presence of variant fliC alleles in S. boydii and S. dysenteriae indicates that subdivision into subgroups does not reflect the ancestral flagella H antigenic relationships. These data will be useful in considering the evolutionary divergence of the Shigella spp..
Collapse
Affiliation(s)
- A Tominaga
- Department of Biology, Faculty of Science, Okayama University, Japan.
| | | | | | | |
Collapse
|
13
|
Abstract
Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. This ability requires an S. enterica specific locus termed Salmonella pathogenicity island 2 (SPI-2). SPI-2 encodes a type III secretion system that injects effectors encoded within the island into host cell cytosol to promote virulence. SsrAB is a two-component regulator encoded within SPI-2 that was assumed to activate SPI-2 genes exclusively. Here, it is shown that SsrB in fact activates a global regulon. At least 10 genes outside SPI-2 are SsrB regulated within epithelial and macrophage cells. Nine of these 10 SsrB-regulated genes outside SPI-2 reside within previously undescribed regions of the Salmonella genome. Most share no sequence homology with current database entries. However, one is remarkably homologous to human glucosyl ceramidase, an enzyme involved in the ceramide signalling pathway. The SsrB regulon is modulated by the two-component regulatory systems PhoP/PhoQ and OmpR/EnvZ, and is upregulated in the intracellular microenvironment.
Collapse
Affiliation(s)
- M J Worley
- Department of Microbiology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201, USA.
| | | | | |
Collapse
|
14
|
Tétart F, Desplats C, Krisch HM. Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 1998; 282:543-56. [PMID: 9737921 DOI: 10.1006/jmbi.1998.2047] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption specificity of the T-even phages is determined by the protein sequence near the tip of the long tail fibers. These adhesin sequences are highly variable in both their sequence and specificity for bacterial receptors. The tail fiber adhesin domains are located in different genes in closely related phages of the T-even type. In phage T4, the adhesin sequence is encoded by the C-terminal domain of the large tail fiber gene (gene 37), but in T2, the adhesin is a separate gene product (gene 38) that binds to the tip of T2 tail fibers. Analysis of phage T6 and Ac3 sequences reveals additional variant forms of this locus. The tail fiber host specificity determinants can be exchanged, although the different loci have only limited homology. Chimeric fibers can be created by crossovers either between small homologies within the structural part of the fiber gene or in conserved motifs of the adhesin domain. For example, the T2 adhesin determinants are flanked by G-rich DNA motifs and exchanges involving these sequences can replace the specificity determinants. These features of the distal tail fiber loci genetically link their different forms and can mediate acquisition of diverse host range determinants, including those that allow it to cross species boundaries and infect taxonomically distant hosts.
Collapse
Affiliation(s)
- F Tétart
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, 118 Route de Narbonne, Toulouse Cedex, UPR 9007, France
| | | | | |
Collapse
|
15
|
Gunn JS, Belden WJ, Miller SI. Identification of PhoP-PhoQ activated genes within a duplicated region of the Salmonella typhimurium chromosome. Microb Pathog 1998; 25:77-90. [PMID: 9712687 DOI: 10.1006/mpat.1998.0217] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonellae virulence requires the PhoP-PhoQ two-component regulatory system. PhoP-PhoQ activate the transcription of genes following phagocytosis by macrophages which are necessary for survival within the phagosome environment. Thirteen previously undefined PhoP-activated gene fusions generated by MudJ and TnphoA (pag A, and E-P, respectively) were cloned and sequenced. Most pag products show no similarity to proteins in the database, while others are predicted to encode: a UDP-glucose dehydrogenase (pagA); a protein with similarity to the product of an E. coli aluminium-induced gene (pagH); a protein encoded within a Salmonella-unique region adjacent to the sinR gene (pagN); a protein similar to a product of the Yersinia virulence plasmid (pagO); and a protein with similarity to CrcA which is necessary for resistance of E. coli to camphor (pagP). Of the pag characterized, only pagK, M and O were closely linked. pagJ and pagK were shown to be unlinked but nearly identical in DNA sequence, as each was located within a 1.6 kb DNA duplication. The translations of sequences surrounding pagJ and pagK show similarity to proteins from extrachromosomal elements as well as those involved in DNA transposition and rearrangement, suggesting that this region may have been or is a mobile element. The transcriptional start sites of pagK, M, and J were determined; however, comparison to other known pag gene promoters failed to reveal a consensus sequence for PhoP-regulated activation. DNA sequences hybridizing to a Salmonella typhimurium pagK specific probe were found in S. enteritidis but absent in other Salmonella serotypes and Enterobacteriaceae tested, suggesting that these genes are specific for broad host range Salmonellae that cause diarrhoea in humans. Cumulatively, these data further demonstrate: (1) that PhoP-PhoQ is a global regulator of the production of diverse envelope or secreted proteins; (2) that PhoP-PhoQ regulate the production of proteins of redundant function; and (3) that pag are often located in regions of horizontally acquired DNA that are absent in other Enterobacteriaceae.
Collapse
Affiliation(s)
- J S Gunn
- Department of Medicine, University of Washington, HSB K-140, Box 357710, Seattle, WA 98195, USA
| | | | | |
Collapse
|
16
|
Bäumler AJ, Heffron F. Mosaic structure of the smpB-nrdE intergenic region of Salmonella enterica. J Bacteriol 1998; 180:2220-3. [PMID: 9555907 PMCID: PMC107151 DOI: 10.1128/jb.180.8.2220-2223.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The Salmonella enterica smpB-nrdE intergenic region contains about 45 kb of DNA that is not present in Escherichia coli. This DNA region was not introduced by a single horizontal transfer event, but was generated by multiple insertions and/or deletions that gave rise to a mosaic structure in this area of the chromosome.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Medical Microbiology and Immunology, Texas A&M University, College Station 77843-1114, USA.
| | | |
Collapse
|
17
|
Hardt WD, Urlaub H, Galán JE. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci U S A 1998; 95:2574-9. [PMID: 9482928 PMCID: PMC19418 DOI: 10.1073/pnas.95.5.2574] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium) that is homologous to the SopE protein of Salmonella dublin implicated in bacterial entry into cultured epithelial cells. The sopE locus is located within a cluster of genes that encode tail and tail fiber proteins of a cryptic P2-like prophage, outside of the centisome 63 pathogenicity island that encodes the invasion-associated type III secretion system. Southern hybridization analysis revealed that sopE is present in only a subset of S. enterica serovars and that the flanking bacteriophage genes are also highly polymorphic. Encoding effector proteins that are delivered through type III secretion systems in highly mobile genetic elements may allow pathogens to adapt rapidly by facilitating the assembly of an appropriate set of effector proteins required for successful replication in a new environment.
Collapse
Affiliation(s)
- W D Hardt
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
18
|
Huan PT, Whittle BL, Bastin DA, Lindberg AA, Verma NK. Shigella flexneri type-specific antigen V: cloning, sequencing and characterization of the glucosyl transferase gene of temperate bacteriophage SfV. Gene 1997; 195:207-16. [PMID: 9305766 DOI: 10.1016/s0378-1119(97)00144-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With lysogeny by bacteriophage SfV, Shigella flexneri serotype Y is converted to serotype 5a. The glucosyl transferase gene (gtr) from bacteriophage SfV of S. flexneri, involved in serotype-specific conversion, was cloned and characterized. The DNA sequence of a 3.7 kb EcoRI-BamHI fragment of bacteriophage SfV which includes the gtr gene was determined. This gene, encoding a polypeptide of 417 aa with 47.67 kDa molecular mass, caused partial serotype conversion of S. flexneri from serotype Y to type V antigen as demonstrated by Western blotting and the sensitivity of the hybrid strain to phage Sf6. The deduced protein of the partially sequenced open reading frame upstream of the gtr showed similarity to various glycosyl transferases of other bacteria. Orf3, separated from the gtr by a non-coding region and transcribed convergently, codes for a 167 aa (18.8 kDa) protein found to have homology with tail fibre genes of phage lambda and P2.
Collapse
Affiliation(s)
- P T Huan
- Division of Biochemistry and Molecular Biology, School of Life Sciences, The Australian National University, Canberra
| | | | | | | | | |
Collapse
|
19
|
Crellin PK, Rood JI. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J Bacteriol 1997; 179:5148-56. [PMID: 9260958 PMCID: PMC179374 DOI: 10.1128/jb.179.16.5148-5156.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tn4451 is a 6.3-kb chloramphenicol resistance transposon from Clostridium perfringens and is found on the conjugative plasmid pIP401. The element undergoes spontaneous excision from multicopy plasmids in Escherichia coli and C. perfringens and conjugative excision from pIP401 in C. perfringens. Tn4451 is excised as a circular molecule which is probably the transposition intermediate. Excision of Tn4451 is dependent upon the site-specific recombinase TnpX, which contains potential motifs associated with both the resolvase/invertase and integrase families of recombinases. Site-directed mutagenesis of conserved amino acid residues within these domains was used to show that the resolvase/invertase domain was essential for TnpX-mediated excision of Tn4451 from multicopy plasmids in E. coli. An analysis of Tn4451 target sites revealed that the transposition process showed target site specificity. The Tn4451 target sequence resembled the junction of the circular form, and insertion occurred at a GA dinucleotide. Tn4451 insertions were flanked by directly repeated GA dinucleotides, and there was also a GA at the junction of the circular form, where the left and right termini of Tn4451 were fused. We propose a model for Tn4451 excision and insertion in which the resolvase/invertase domain of TnpX introduces 2-bp staggered cuts at these GA dinucleotides. Analysis of Tn4451 derivatives with altered GA dinucleotides provided experimental evidence to support the model.
Collapse
Affiliation(s)
- P K Crellin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
20
|
Al Mamun AA, Tominaga A, Enomoto M. Cloning and characterization of the region III flagellar operons of the four Shigella subgroups: genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei. J Bacteriol 1997; 179:4493-500. [PMID: 9226258 PMCID: PMC179284 DOI: 10.1128/jb.179.14.4493-4500.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To detect genetic defects that might have caused loss of flagella in Shigella boydii and Shigella sonnei, the region III flagellar (fli) operons were cloned from certain strains and analyzed with reference to the restriction maps and genetic maps of Escherichia coli fli operons. S. boydii NCTC9733 (strain C5 in this paper) had the 988-bp internal deletion in the fliF gene that encodes a large substructural protein of the basal body. Two strains (C1 and C8) had deletions of the entire fliF operon, and the remaining three (C3, C4, and C9) differed in the size of the restriction fragments carrying the fliF and fliL operons. Loss of flagella in S. boydii appears to originate in some defect in the fliF operon. S. sonnei IID969 lacked the fliD gene and, in place of it, carried two IS600 elements as inverted repeats. Genes downstream from fliD were not detected in the cloned fragment despite its large size but did appear elsewhere in the chromosome. The fliD gene encodes a cap protein of the flagellar filament, and its deletion results in overexpression of class 3 operons by the increased amount of FliA (sigmaF) caused by the excess export of the anti-sigma factor FlgM. Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei. The lack of FliF or FliD in each subgroup is discussed in connection with the maintenance of virulence and bacterial growth. We also discuss the process of loss of flagella in relation to transposition of IS elements and alterations of the noncoding region, which were found to be common to at least three subgroups.
Collapse
Affiliation(s)
- A A Al Mamun
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | |
Collapse
|
21
|
Tominaga A. The site-specific recombinase encoded by pinD in Shigella dysenteriae is due to the presence of a defective Mu prophage. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):2057-2063. [PMID: 9202481 DOI: 10.1099/00221287-143-6-2057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DNA inversion systems are made up of an invertible DNA segment and a site-specific recombinase gene. Five systems are known in prokaryotes: the Salmonella typhimurium H segment and hin gene (H-hin), phage Mu G-gin, phage P1 C-cin, Escherichia coli e14 P-pin, and Shigella sonnei B-pinB systems. In this report a site-specific recombinase (pinD) gene of Shigella dysenteriae was cloned and sequenced. pinD mediated inversion of five known segments at the same extent in E. coli. Although one inv sequence was identified, no invertible region was detected in a cloned fragment. The predicted amino acid sequences of PinD and three ORFs showed high homology to those of Gin and its flanking gene products. An ORF homologous to Mom of Mu conserved a functional activity to modify intracellular plasmid DNA. Southern analysis showed that the cloned fragment contains two homologous regions corresponding to the left and right ends of the Mu genome. Together these results indicated that the pinD gene in S. dysenteriae is derived from a Mu-like prophage.
Collapse
Affiliation(s)
- Akira Tominaga
- Department of Biology, Faculty of Science, Okayama UniversityOkayama 700, Japan
| |
Collapse
|
22
|
Mukaihara T, Enomoto M. Deletion formation between the two Salmonella typhimurium flagellin genes encoded on the mini F plasmid: Escherichia coli ssb alleles enhance deletion rates and change hot-spot preference for deletion endpoints. Genetics 1997; 145:563-72. [PMID: 9055067 PMCID: PMC1207842 DOI: 10.1093/genetics/145.3.563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deletion formation between the 5'-mostly homologous sequences and between the 3'-homeologous sequences of the two Salmonella typhimurium flagellin genes was examined using plasmid-based deletion-detection systems in various Escherichia coli genetic backgrounds. Deletions in plasmid pLC103 occur between the 5' sequences, but not between the 3' sequences, in both RecA-independent and RecA-dependent ways. Because the former is predominant, deletion formation in a recA background depends on the length of homologous sequences between the two genes. Deletion rates were enhanced 30- to 50-fold by the mismatch repair defects, mutS, mutL and uvrD, and 250-fold by the ssb-3 allele, but the effect of the mismatch defects was canceled by the delta recA allele. Rates of the deletion between the 3' sequences in plasmid pLC107 were enhanced 17- to 130-fold by ssb alleles, but not by other alleles. For deletions in pLC107, 96% of the endpoints in the recA+ background and 88% in delta recA were in the two hot spots of the 60- and 33-nucleotide (nt) homologous sequences, whereas in the ssb-3 background > 50% of the endpoints were in four- to 14-nt direct repeats dispersed in the entire 3' sequences. The deletion formation between the homeologous sequences in RecA-independent but depends on the length of consecutive homologies. The mutant ssb allele lowers this dependency and results in the increase in deletion rates. Roles of mutant SSB are discussed with relation to misalignment in replication slippage.
Collapse
Affiliation(s)
- T Mukaihara
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | |
Collapse
|
23
|
Al Mamun AA, Tominaga A, Enomoto M. Detection and characterization of the flagellar master operon in the four Shigella subgroups. J Bacteriol 1996; 178:3722-6. [PMID: 8682772 PMCID: PMC232628 DOI: 10.1128/jb.178.13.3722-3726.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Strains in the genus Shigella are nonmotile, but they retain some cryptic flagellar operons whether functional or defective (A.Tominaga, M. A.-H. Mahmoud, T. Mukaihara, and M. Enomoto, Mol. Microbiol. 12:277-285, 1994). To disclose the cause of motility loss in shigellae, the presence or defectiveness of the flhD and flhC genes, composing the master operon whose mutation causes inactivation of the entire flagellar regulon, was examined in the four Shigella subgroups. The flhD operon cloned from Shigella boydii and Shigella sonnei can activate, though insufficiently, the regulon in the Escherichia coli flhD or flhC mutant background. The clone from Shigella dysenteriae has a functional flhD gene and nonfunctional flhC gene, and its inactivation has been caused by the IS1 element inserted in its 5' end. The operon of Shigella flexneri is nonfunctional and has suffered an IS1-insertion mutation at the 5' end of the flhD gene. Comparison of restriction maps indicates that only the central 1.8-kb region, including part of the flhC gene and its adjacent mot operon, is conserved among the four Shigella subgroups as well as in E. coli, but in Salmonella typhimurium the whole map is quite different from the others. Motility loss in shigellae is not attributable to genetic damage in the master operon of a common ancestor, but it occurs separately in respective ancestors of the four subgroups, and in both S. dysenteriae and S.flexneri IS1 insertion in the master operon might be the primary cause of motility loss.
Collapse
Affiliation(s)
- A A Al Mamun
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | |
Collapse
|
24
|
Abstract
A remarkable property of some DNA-binding proteins that can interact with and pair distant DNA segments is that they mediate their biological function only when their binding sites are arranged in a specific configuration. Xer site-specific recombination at natural plasmid recombination sites (e.g., cer in ColE1) is preferentially intramolecular, converting dimers to monomers. In contrast, Xer recombination at the Escherichia coli chromosomal site dif can occur intermolecularly and intramolecularly. Recombination at both types of site requires the cooperative interactions of two related recombinases, XerC and XerD, with a 30-bp recombination core site. The dif core site is sufficient for recombination when XerC and XerD are present, whereas recombination at plasmid sites requires approximately 200 bp of adjacent accessory sequences and accessory proteins. These accessory factors ensure that recombination is intramolecular. Here we use a model system to show that selectivity for intramolecular recombination, and the consequent requirement for accessory factors, can arise by increasing the spacing between XerC- and XerD-binding sites from 6 to 8 bp. This reduces the affinity of the recombinases for the core site and changes the geometry of the recombinase/DNA complex. These changes are correlated with altered interactions of the recombinases with the core site and a reduced efficiency of XerC-mediated cleavage. We propose that the accessory sequences and proteins compensate for these changes and provide a nucleoprotein structure of fixed geometry that can only form and function effectively on circular molecules containing directly repeated sites.
Collapse
Affiliation(s)
- G Blakely
- Microbiology Unit, Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
25
|
Bannam TL, Crellin PK, Rood JI. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol 1995; 16:535-51. [PMID: 7565113 DOI: 10.1111/j.1365-2958.1995.tb02417.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chloramphenicol-resistance transposon Tn4451 undergoes precise conjugative deletion from its parent plasmid plP401 in Clostridium perfringens and precise spontaneous excision from multicopy plasmids in Escherichia coli. The complete nucleotide sequence of the 6338 bp transposon was determined and it was found to encode six genes. Genetic analysis demonstrated that the largest Tn4451-encoded gene, tnpX, was required for the spontaneous excision of the transposon in both E. coli and C. perfringens, since a Tn4451 derivative that lacked a functional tnpX gene was completely stable in both organisms. Because the ability of this derivative to excise was restored by providing the tnpX gene on a compatible plasmid, it was concluded that this gene encoded a trans-acting site-specific recombinase. Allelic exchange was used to introduce the tnpX delta 1 allele onto plP401 and it was shown that TnpX was also required for the conjugative excision of Tn4451 in C. perfringens. It was also shown by hybridization and polymerase chain reaction (PCR) studies that TnpX-mediated transposon excision resulted in the formation of a circular form of the transposon. The TnpX recombinase was unique because it potentially contained the motifs of two independent site-specific recombinase families, namely the resolvase/invertase and integrase families. Sequence analysis indicated that the resolvase/invertase domain of TnpX was likely to be involved in the excision process by catalysing the formation of a 2 bp staggered nick on either side of the GA dinucleotide located at the ends of the transposon and at the junction of the circular form. The other Tn4451-encoded genes include tnpZ, which appears to encode a second potential site-specific recombinase. This protein has similarity to plasmid-encoded Mob/Pre proteins, which are involved in plasmid mobilization and multimer formation. Located upstream of the tnpZ gene was a region with similarity to the site of interaction of these mobilization proteins.
Collapse
Affiliation(s)
- T L Bannam
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
26
|
Sandmeier H. Acquisition and rearrangement of sequence motifs in the evolution of bacteriophage tail fibres. Mol Microbiol 1994; 12:343-50. [PMID: 8065255 DOI: 10.1111/j.1365-2958.1994.tb01023.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular analysis reveals a surprising sharing of short gene segments among a variety of large double-stranded DNA bacteriophages of enteric bacteria. Ancestral genomes from otherwise unrelated phages, including lambda, Mu, P1, P2 and T4, must have exchanged parts of their tail-fibre genes. Individual genes appear as mosaics with parts derived from a common gene pool. Therefore, horizontal gene transfer emerges as a major factor in the evolution of a specific part of phage genomes. Current concepts of homologous recombination cannot account for the formation of such chimeric genes and the recombinational mechanisms responsible are not known. However, recombination sites for DNA invertases and recombination site-like sequences are present at the boundaries of gene segments conferring the specificity for the host receptor. This, together with the properties of the DNA inversion mechanism, suggests that these site-specific recombination enzymes could be responsible for the exchange of host-range determinants.
Collapse
Affiliation(s)
- H Sandmeier
- Department of Preventive Dentistry and Oral Microbiology, University of Basel, Switzerland
| |
Collapse
|
27
|
Lebrun M, Audurier A, Cossart P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917. J Bacteriol 1994; 176:3049-61. [PMID: 8188606 PMCID: PMC205463 DOI: 10.1128/jb.176.10.3049-3061.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The complete (6,449-bp) nucleotide sequence of the first-described natural transposon of Listeria monocytogenes, designated Tn5422, was determined. Tn5422 is a transposon of the Tn3 family delineated by imperfect inverted repeats (IRs) of 40 bp. It contains two genes which confer cadmium resistance (M. Lebrun, A. Audurier, and P. Cossart, J. Bacteriol. 176:3040-3048, 1994) and two open reading frames that encode a transposase (TnpA) and a resolvase (TnpR) of 971 and 184 amino acids, respectively. The cadmium resistance genes and the transposition genes are transcribed in opposite directions and are separated by a putative recombination site (res). The structural elements presumed to be involved in transposition of Tn5422 (IRs, transposase, resolvase, and res) are very similar to those of Tn917, suggesting a common origin. The transposition genes were not induced by cadmium. Analysis of sequences surrounding Tn5422 in nine different plasmids of L. monocytogenes indicated that Tn5422 is a functional transposon, capable of intramolecular replicative transposition, generating deletions. This transposition process is probably the reason for the size diversity of the L. monocytogenes plasmids. Restriction analysis and Southern hybridization revealed the presence of Tn5422 in all the plasmid-mediated cadmium-resistant L. monocytogenes strains tested but not in strains encoding cadmium resistance on the chromosome.
Collapse
Affiliation(s)
- M Lebrun
- Laboratoire de Génétique Moléculaire des Listeria, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
28
|
Bäumler AJ, Kusters JG, Stojiljkovic I, Heffron F. Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 1994; 62:1623-30. [PMID: 8168923 PMCID: PMC186369 DOI: 10.1128/iai.62.5.1623-1630.1994] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A set of Tn10 mutants of Salmonella typhimurium which have a diminished capacity to survive in murine macrophages and decreased virulence in mice has been described previously. In this study, we characterized 30 of these mutants and determined map locations of Tn10 insertions for 23 of these strains. In addition, short fragments of transposon-flanking DNA were cloned, and the nucleotide sequence was determined for 23 mutants. Seven mutants carried transposon insertions in known genes, representing six loci: htrA, prc, purD, fliD, nagA, and smpB. The possible roles of these genes in Salmonella virulence are discussed. One insertion was found to be in an unknown gene which shared homology with the open reading frames Bv' and Bv located in the pin inversion system of Shigella boydii. In one mutant, Tn10 was found to be inserted in a gene with significant homology to adhE of Escherichia coli and Clostridium acetobutylicum. The map location and degree of homology indicate that the Salmonella gene encodes a related, but different, dehydrogenase. In 14 of the mutants analyzed, Tn10 was inserted into genes which had no significant homologies to entries in the DNA and protein data bases. In conclusion, 16 insertions define loci, termed ims for impaired macrophage survival, which have not yet been described in S. typhimurium but have been shown previously to be necessary for full virulence in mice. Although most ims loci are distributed randomly throughout the genome, a cluster was found between 75 and 78 min on the Salmonella chromosome.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098
| | | | | | | |
Collapse
|
29
|
Tominaga A, Mahmoud MA, Mukaihara T, Enomoto M. Molecular characterization of intact, but cryptic, flagellin genes in the genus Shigella. Mol Microbiol 1994; 12:277-85. [PMID: 8057852 DOI: 10.1111/j.1365-2958.1994.tb01016.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Flagellin genes (fliC) were detected in two species of the genus Shigella. The fliCSF gene cloned from Shigella flexneri produced normal-type flagella in an Escherichia coli delta fliC strain while the fliCSS genes from two Shigella sonnei strains produced curly-type flagella and their expression is repressible by Salmonella FljA repressor. The fliCSF gene (1650 bp) shared high similarity with the E. coli fliCE gene not only in the 5' and 3' constant sequences but also in the upstream and downstream sequences. The fliCSS genes (1572 bp) shared high similarity with the Salmonella typhimurium fliCS gene in the operator and 3' constant sequences and also shared high similarity with the fliCE gene in the downstream sequence, suggesting that the fliCSS gene has undergone horizontal transfer and recombination. Differences in nucleotide sequences of the central variable regions among the four fliC genes, including fliCE and fliCS, suggest that they started differentiation in each lineage approximately 80 million years ago. Loss of motility in Shigella seems to be evolutionarily a recent event.
Collapse
Affiliation(s)
- A Tominaga
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | |
Collapse
|
30
|
Chiou CS, Jones AL. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 1993; 175:732-40. [PMID: 8380801 PMCID: PMC196212 DOI: 10.1128/jb.175.3.732-740.1993] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.
Collapse
Affiliation(s)
- C S Chiou
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824-1312
| | | |
Collapse
|
31
|
Okazaki N, Matsuo S, Saito K, Tominaga A, Enomoto M. Conversion of the Salmonella phase 1 flagellin gene fliC to the phase 2 gene fljB on the Escherichia coli K-12 chromosome. J Bacteriol 1993; 175:758-66. [PMID: 8423149 PMCID: PMC196215 DOI: 10.1128/jb.175.3.758-766.1993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Escherichia coli-Salmonella typhimurium-Salmonella abortus-equi hybrid strain EJ1420 has the two Salmonella flagellin genes fliC (antigenic determinant i) and fljB (determinant e,n,x) at the same loci as in the Salmonella strains and constitutively expresses the fliC gene because of mutations in the genes mediating phase variation. Selection for motility in semisolid medium containing anti-i flagellum serum yielded 11 motile mutants, which had the active fliC(e,n,x) and silent fljB(e,n,x) genes. Genetic analysis and Southern hybridization indicated that they had mutations only in the fliC gene, not in the fljB gene or the control elements for phase variation. Nucleotide sequence analysis of the fliC(e,n,x) genes from four representative mutants showed that the minimum 38% (565 bp) and maximum 68% (1,013 bp) sequences of the fliC(i) gene are replaced with the corresponding sequences of the fljB(e,n,x) gene. One of the conversion endpoints between the two genes lies somewhere in the 204-bp homologous sequence in the 5' constant region, and the other lies in the short homologous sequence of 6, 8, or 38 bp in the 3' constant region. The conversions include the whole central variable region of the fljB gene, resulting in fliC(e,n,x) genes with the same number of nucleotides (1,503 bp) as the fljB gene. We discuss the mechanisms for gene conversion between the two genes and also some intriguing aspects of flagellar antigenic specificities in various Salmonella serovars from the viewpoint of gene conversion.
Collapse
Affiliation(s)
- N Okazaki
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | | | |
Collapse
|
32
|
Hanafusa T, Saito K, Tominaga A, Enomoto M. Nucleotide sequence and regulated expression of the Salmonella fljA gene encoding a repressor of the phase 1 flagellin gene. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:260-6. [PMID: 8437573 DOI: 10.1007/bf00277121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide sequence of Salmonella abortus-equi fljA, which together with the phase 2 flagellin gene constitutes the fljBA operon and encodes the repressor for the phase 1 flagellin gene fliC, was determined. The repressor was predicted to be a basic protein consisting of 179 amino acid residues (M(r) = 20419 Da) encoded by ORFII. This was confirmed by the fact that host fliC is repressed by plasmid-encoded ORFII, which indeed expresses a 20 kDa product as determined by urea SDS-polyacrylamide gel electrophoresis. An amino acid sequence capable of forming a helix-turn-helix type of structure was predicted in the C-terminal region of FljA. A rho-independent intercistronic terminator was detected between fljB and fljA. Chloramphenicol acetyltransferase (CAT) assays of fusions indicated that the terminator is capable of reducing expression of fljA to the level of a few percent, relative to fljB in broth cultures and to 1% in M9 glycerol cultures.
Collapse
Affiliation(s)
- T Hanafusa
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- E C Conley
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|
34
|
Abstract
In certain phages and bacteria, there is a recombination system that specifically promotes the inversion of a DNA fragment. These inversion events appear to act as genetic switches allowing the alternate expression of different sets of genes which in general code for surface proteins. The mechanism of inversion in one class of inversion systems (Gin/Hin) has been studied in detail. It involves the formation of a highly specific nucleoprotein complex in which not only the two recombination sites and the DNA invertase participate but also a recombinational enhancer to which the DNA-bending protein Fis is bound.
Collapse
Affiliation(s)
- P van de Putte
- Department of Molecular Genetics, Gorlaus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|
35
|
Sandmeier H, Iida S, Arber W. DNA inversion regions Min of plasmid p15B and Cin of bacteriophage P1: evolution of bacteriophage tail fiber genes. J Bacteriol 1992; 174:3936-44. [PMID: 1534556 PMCID: PMC206102 DOI: 10.1128/jb.174.12.3936-3944.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plasmid p15B and the genome of bacteriophage P1 are closely related, but their site-specific DNA inversion systems, Min and Cin, respectively, do not have strict structural homology. Rather, the complex Min system represents a substitution of a Cin-like system into an ancestral p15B genome. The substituting sequences of both the min recombinase gene and the multiple invertible DNA segments of p15B are, respectively, homologous to the pin recombinase gene and to part of the invertible DNA of the Pin system on the defective viral element e14 of Escherichia coli K-12. To map the sites of this substitution, the DNA sequence of a segment adjacent to the invertible segment in the P1 genome was determined. This, together with already available sequence data, indicated that both P1 and p15B had suffered various sequence acquisitions or deletions and sequence amplifications giving rise to mosaics of partially related repeated elements. Data base searches revealed segments of homology in the DNA inversion regions of p15B, e14, and P1 and in tail fiber genes of phages Mu, T4, P2, and lambda. This result suggest that the evolution of phage tail fiber genes involves horizontal gene transfer and that the Min and Pin regions encode tail fiber genes. A functional test proved that the p15B Min region carries a tail fiber operon and suggests that the alternative expression of six different gene variants by Min inversion offers extensive host range variation.
Collapse
Affiliation(s)
- H Sandmeier
- Abteilung Mikrobiologie, Universität Basel, Switzerland
| | | | | |
Collapse
|
36
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:935-58. [PMID: 1542609 PMCID: PMC312073 DOI: 10.1093/nar/20.4.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|