1
|
Çöl B, Kürkçü MS, Di Bek E. Genome-Wide Screens Identify Genes Responsible for Intrinsic Boric Acid Resistance in Escherichia coli. Biol Trace Elem Res 2024; 202:5771-5793. [PMID: 38466471 PMCID: PMC11502571 DOI: 10.1007/s12011-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/24/2024] [Indexed: 03/13/2024]
Abstract
Boric acid (BA) has antimicrobial properties and is used to combat bacterial infections, including Enterobacteria. However, the molecular mechanisms and cellular responses to BA are still unknown. This genomics study aims to provide new information on the genes and molecular mechanisms related to the antimicrobial effect of BA in Escherichia coli. The Keio collection of E. coli was used to screen 3985 single-gene knockout strains in order to identify mutant strains that were sensitive or hypersensitive to BA at certain concentrations. The mutant strains were exposed to different concentrations of BA ranging from 0 to 120 mM in LB media. Through genome-wide screens, 92 mutants were identified that were relatively sensitive to BA at least at one concentration tested. The related biological processes in the particular cellular system were listed. This study demonstrates that intrinsic BA resistance is the result of various mechanisms acting together. Additionally, we identified eighteen out of ninety-two mutant strains (Delta_aceF, aroK, cheZ, dinJ, galS, garP, glxK, nohA, talB, torR, trmU, trpR, yddE, yfeS, ygaV, ylaC, yoaC, yohN) that exhibited sensitivity using other methods. To increase sensitivity to BA, we constructed double and triple knockout mutants of the selected sensitive mutants. In certain instances, engineered double and triple mutants exhibited significantly amplified effects. Overall, our analysis of these findings offers further understanding of the mechanisms behind BA toxicity and intrinsic resistance in E. coli.
Collapse
Affiliation(s)
- Bekir Çöl
- Faculty of Science, Department of Biology, Mugla Sitki Kocman University, Mugla, Turkey.
- Research Laboratories Center, Biotechnology Research Center, Mugla Sitki Kocman University, Mugla, Turkey.
| | - Merve Sezer Kürkçü
- Research Laboratories Center, Biotechnology Research Center, Mugla Sitki Kocman University, Mugla, Turkey
- Research and Application Center For Research Laboratories, Mugla Sitki Kocman University, Mugla, Turkey
| | - Esra Di Bek
- Research Laboratories Center, Biotechnology Research Center, Mugla Sitki Kocman University, Mugla, Turkey
- Köyceğiz Vocational School of Health Services, Department of Pharmacy Services, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
2
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Camakaris H, Yang J, Fujii T, Pittard J. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. J Bacteriol 2021; 203:e0025221. [PMID: 34309399 PMCID: PMC8425403 DOI: 10.1128/jb.00252-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
A novel selection was developed for mutants of the C-terminal domain of RpoA (α-CTD) altered in activation by the TyrR regulatory protein of Escherichia coli K-12. This allowed the identification of an aspartate to asparagine substitution at residue 250 (DN250) as an activation-defective (Act-) mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and the substitutions DR250, RE310, and RD310 were all shown to be defective in activation. None of these mutations caused defects in regulation of the upstream promoter (UP) element. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. The TyrR mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77, and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, and EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act-tyrR mutants were isolated in an rpoA+ strain, adding positions R77, D97, K101, D118, R119, R121, and E141 to known residues S95 and D103 and defining the activation patch on the amino-terminal domain (NTD) of TyrR. These results support a model for activation of TyrR-regulated genes where the activation patch on the TyrR NTD interacts with the TyrR-specific patch on the α-CTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants as activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene tyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore, TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence and important plant interactions.
Collapse
Affiliation(s)
- Helen Camakaris
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ji Yang
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James Pittard
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
|
5
|
Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. ACTA ACUST UNITED AC 2018; 45:357-367. [DOI: 10.1007/s10295-018-2020-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
l-tryptophan (l-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient l-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the l-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroGfbr). To further improve the production of l-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of l-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.
Collapse
|
6
|
Coulson TJD, Patten CL. The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. PLoS One 2015; 10:e0121241. [PMID: 25811953 PMCID: PMC4374768 DOI: 10.1371/journal.pone.0121241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The TyrR transcription factor regulates genes involved in the uptake and biosynthesis of aromatic amino acids in Enterobacteriaceae. Genes may be positively or negatively regulated depending on the presence or absence of each aromatic amino acid, all three of which function as cofactors for TyrR. In this report we detail the transcriptional control of two divergently transcribed genes, akr and ipdC, by TyrR, elucidated by promoter fusion expression assays and electrophoretic mobility shift assays to assess protein-DNA interactions. Expression of both genes was shown to be controlled by TyrR via interactions with two TyrR boxes located within the akr-ipdC intergenic region. Expression of ipdC required TyrR bound to the proximal strong box, and is strongly induced by phenylalanine, and to a lesser extent by tryptophan and tyrosine. Down-regulation of akr was reliant on interactions with the weak box, and may also require a second, as yet unidentified protein for further repression. Tyrosine enhanced repression of akr. Electrophoretic mobility shift assays demonstrated that TyrR interacts with both the strong and weak boxes, and that binding of the weak box in vitro requires an intact adjacent strong box. While the strong box shows a high degree of conservation with the TyrR binding site consensus sequence, the weak box has atypical spacing of the two half sites comprising the palindromic arms. Site-directed mutagenesis demonstrated sequence-specific interaction between TyrR and the weak box. This is the first report of TyrR-controlled expression of two divergent protein-coding genes, transcribed from independent promoters. Moreover, the identification of a predicted aldo-keto reductase as a member of the TyrR regulon further extends the function of the TyrR regulon.
Collapse
Affiliation(s)
| | - Cheryl L. Patten
- Department of Biology, University of New Brunswick, Fredericton, Canada
- * E-mail:
| |
Collapse
|
7
|
Siedler S, Bringer S, Polen T, Bott M. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply. Biotechnol Bioeng 2014; 111:2067-75. [PMID: 24771245 DOI: 10.1002/bit.25271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/25/2014] [Accepted: 04/14/2014] [Indexed: 11/11/2022]
Abstract
An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB h(-1) gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1) gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1) gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol dehydrogenase. The differences in respiration rates can explain the suggested higher ArcAB activity in the reference strain.
Collapse
Affiliation(s)
- Solvej Siedler
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | |
Collapse
|
8
|
Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 2013; 97:6677-83. [PMID: 23695779 DOI: 10.1007/s00253-013-4988-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Three permeases, Mtr, TnaB, and AroP, are involved in the uptake of L-tryptophan in Escherichia coli. These permeases possess individual function for cell transportation and metabolism, and affect extracellular L-tryptophan accumulation. In this study, by knocking out three tryptophan permeases separately and simultaneously in L-tryptophan-producing strain E. coli GPT1002, we analyzed the effect of permease knock out on L-tryptophan uptake, cell growth, and L-tryptophan production. We found that TnaB is the main transporter that is responsible for the uptake of L-tryptophan. Inactivation of tnaB improved the L-tryptophan production significantly, and inactivation of aroP has an additive effect on tnaB mutant. Quantitative real-time PCR analysis confirmed that knocking out permeases affects gene transcription and cell metabolism in many metabolic pathways. The tryptophan permease-deficient GPT1017 mutant exhibited the highest L-tryptophan production at 2.79 g l(-1), which is 51.6 % higher than that produced by the control strain. In 5-l bioreactor fermentation, the L-tryptophan production in GPT1017 reached 16.3 g l(-1).
Collapse
|
9
|
Effect of gene knockouts of l-tryptophan uptake system on the production of l-tryptophan in Escherichia coli. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet 2011; 7:e1002377. [PMID: 22125496 PMCID: PMC3219608 DOI: 10.1371/journal.pgen.1002377] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/24/2011] [Indexed: 12/28/2022] Open
Abstract
As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. Proper assembly of the cell envelope is essential for bacterial growth, environmental adaptation, and drug resistance. Yet, while the biological roles of the many genes and pathways involved in biosynthesis of the cell envelope have been studied extensively in isolation, how the myriad components intersect functionally to maintain envelope integrity under different growth conditions has not been explored systematically. Genome-scale genetic interaction screens have increasingly been performed to great impact in yeast; no analogous comprehensive studies have yet been reported for bacteria despite their prominence in human health and disease. We addressed this by using a synthetic genetic array technology to generate quantitative maps of genetic interactions encompassing virtually all the components of the cell envelope biosynthetic machinery of the classic model bacterium E. coli in two common laboratory growth conditions (rich and minimal medium). From the resulting networks of high-confidence genetic interactions, we identify condition-specific functional dependencies underlying envelope assembly and global remodeling of genetic backup mechanisms that ensure envelope integrity under environmental challenge.
Collapse
|
11
|
Tripet BP, Goel A, Copie V. Internal dynamics of the tryptophan repressor (TrpR) and two functionally distinct TrpR variants, L75F-TrpR and A77V-TrpR, in their l-Trp-bound forms. Biochemistry 2011; 50:5140-53. [PMID: 21553830 DOI: 10.1021/bi200389k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Backbone amide dynamics of the Escherichia coli tryptophan repressor protein (WT-TrpR) and two functionally distinct variants, L75F-TrpR and A77V-TrpR, in their holo (l-tryptophan corepressor-bound) form have been characterized using (15)N nuclear magnetic resonance (NMR) relaxation. The three proteins possess very similar structures, ruling out major conformational differences as the source of their functional differences, and suggest that changes in protein flexibility are at the origin of their distinct functional properties. Comparison of site specific (15)N-T(1), (15)N-T(2), (15)N-{(1)H} nuclear Overhauser effect, reduced spectral density, and generalized order (S(2)) parameters indicates that backbone dynamics in the three holo-repressors are overall very similar with a few notable and significant exceptions for backbone atoms residing within the proteins' DNA-binding domain. We find that flexibility is highly restricted for amides in core α-helices (i.e., helices A-C and F), and a comparable "stiffening" is observed for residues in the DNA recognition helix (helix E) of the helix D-turn-helix E (HTH) DNA-binding domain of the three holo-repressors. Unexpectedly, amides located in helix D and in adjacent turn regions remain flexible. These data support the concept that residual flexibility in TrpR is essential for repressor function, DNA binding, and molecular recognition of target operators. Comparison of the (15)N NMR relaxation parameters of the holo-TrpRs with those of the apo-TrpRs indicates that the single-point amino acid substitutions, L75F and A77V, perturb the flexibility of backbone amides of TrpR in very different ways and are most pronounced in the apo forms of the three repressors. Finally, we present these findings in the context of other DNA-binding proteins and the role of protein flexibility in molecular recognition.
Collapse
Affiliation(s)
- Brian P Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
12
|
Goel A, Tripet BP, Tyler RC, Nebert LD, Copié V. Backbone amide dynamics studies of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the (15)N NMR relaxation profiles of wild-type and A77V mutant Apo-TrpR repressors. Biochemistry 2010; 49:8006-19. [PMID: 20718459 DOI: 10.1021/bi100508u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Backbone amide dynamics studies were conducted on a temperature-sensitive mutant (L75F-TrpR) of the tryptophan repressor protein (TrpR) of Escherichia coli in its apo (i.e., no l-tryptophan corepressor-bound) form. The (15)N NMR relaxation profiles of apo-L75F-TrpR were analyzed and compared to those of wild-type (WT) and super-repressor mutant (A77V) TrpR proteins, also in their apo forms. The (15)N NMR relaxation data ((15)N-T(1), (15)N-T(2), and heteronuclear (15)N-{(1)H}-nOe) recorded on all three aporepressors at a magnetic field strength of 600 MHz ((1)H Larmor frequency) were analyzed to extract dynamics parameters, including diffusion tensor ratios (D(∥)/D(⊥)), correlation times (τ(m)) for overall reorientations of the proteins in solution, reduced spectral density terms [J(eff)(0), J(0.87ω(H)), J(ω(N))], and generalized order parameters (S(2)), which report on protein internal motions on the picosecond to nanosecond and slower microsecond to millisecond chemical exchange time scales. Our results indicate that all three aporepressors exhibit comparable D(∥)/D(⊥) ratios and characteristic time constants, τ(m), for overall global reorientation, indicating that in solution, all three apoproteins display very similar overall shape, structure, and rotational diffusion properties. Comparison of (15)N NMR relaxation data, reduced spectral density profiles, and generalized S(2) order parameters indicated that these parameters are quite uniform for backbone amides positioned within the four (A-C and F) core α-helices of all three aporepressors. In contrast, small but noticeable differences in internal dynamics were observed for backbone amides located within the helix D-turn-helix E DNA-binding domain of the apo-TrpR proteins. The significance of these dynamics differences in terms of the biophysical characteristics and ligand binding properties of the three apo-TrpR proteins is discussed.
Collapse
Affiliation(s)
- Anupam Goel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
14
|
Cheng CY, Huang CY, Sun CT. Mining bridge and brick motifs from complex biological networks for functionally and statistically significant discovery. ACTA ACUST UNITED AC 2008; 38:17-24. [PMID: 18270079 DOI: 10.1109/tsmcb.2007.908842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A major task for postgenomic systems biology researchers is to systematically catalogue molecules and their interactions within living cells. Advancements in complex-network theory are being made toward uncovering organizing principles that govern cell formation and evolution, but we lack understanding of how molecules and their interactions determine how complex systems function. Molecular bridge motifs include isolated motifs that neither interact nor overlap with others, whereas brick motifs act as network foundations that play a central role in defining global topological organization. To emphasize their structural organizing and evolutionary characteristics, we define bridge motifs as consisting of weak links only and brick motifs as consisting of strong links only, then propose a method for performing two tasks simultaneously, which are as follows: 1) detecting global statistical features and local connection structures in biological networks and 2) locating functionally and statistically significant network motifs. To further understand the role of biological networks in system contexts, we examine functional and topological differences between bridge and brick motifs for predicting biological network behaviors and functions. After observing brick motif similarities between E. coli and S. cerevisiae, we note that bridge motifs differentiate C. elegans from Drosophila and sea urchin in three types of networks. Similarities (differences) in bridge and brick motifs imply similar (different) key circuit elements in the three organisms. We suggest that motif-content analyses can provide researchers with global and local data for real biological networks and assist in the search for either isolated or functionally and topologically overlapping motifs when investigating and comparing biological system functions and behaviors.
Collapse
Affiliation(s)
- Chia-Ying Cheng
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | | | | |
Collapse
|
15
|
Herrera MC, Ramos JL. Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with sigma70. J Mol Biol 2006; 366:1374-86. [PMID: 17217960 DOI: 10.1016/j.jmb.2006.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/22/2006] [Accepted: 12/01/2006] [Indexed: 11/24/2022]
Abstract
Pseudomonas putida uses L-phenylalanine as the sole nitrogen source for growth by converting L-phenylalanine to L-tyrosine, which acts as a donor of the amino group. This metabolic step requires the products of the phhA and phhB genes, which form an operon. Expression of the phhA promoter is mediated by the phhR gene product in the presence of L-phenylalanine or L-tyrosine. The PhhR protein belongs to the NtrC family of enhancers. In contrast with most members of this family of regulators, transcription from the promoter of the phhAB operon (P(phhA)) is mediated by RNA polymerase with sigma(70) rather than with sigma(54). The PhhR regulator binds two similar but non-identical upstream PhhR motifs (5'-TGTAAAATTATCGTTACG-3' and 5'-ACAAAAACTGTGTTTCCG-3') that are located 39 and 97 nucleotides upstream of the proposed -35 hexamer for RNA polymerase, respectively. These motifs are called PhhR proximal and PhhR distal binding motifs because of their position with respect to the RNA polymerase binding site. Affinity of PhhR for its target sequences was determined by isothermal titration calorimetry and was found to be around 30 nM for the proximal site and 2 microM for the distal site, and the binding stoichiometry is of a dimer per binding site. Both target sequences are sine qua non requirements for transcription, since inactivation of either of them resulted in no transcription from the phhA promoter. An IHF binding site overlaps the proximal PhhR proximal motif, which is recognized by IHF with a K(D) of around 1.2 microM. IHF may consequently compete with PhhR for binding and indeed inhibits PhhR-dependent phhAB operon expression.
Collapse
Affiliation(s)
- M Carmen Herrera
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008-Granada, Spain
| | | |
Collapse
|
16
|
Abstract
The TyrR protein of Escherichia coli can act both as a repressor and as an activator of transcription. It can interact with each of the three aromatic amino acids, with ATP and, under certain circumstances, with the C-terminal region of the alpha-subunit of RNA polymerase. TyrR protein is a dimer in solution but in the presence of tyrosine and ATP it self-associates to form a hexamer. Whereas TyrR dimers can, in the absence of any aromatic amino acids, bind to certain recognition sequences referred to as 'strong TyrR boxes', hexamers can bind to extended sequences including lower-affinity sites called 'weak TyrR boxes', some of which overlap the promoter. There is no single mechanism for repression, which in some cases involves exclusion of RNA polymerase from the promoter and in others, interference with the ability of bound RNA polymerase to form open complexes or to exit the promoter. When bound to a site upstream of certain promoters, TyrR protein in the presence of phenylalanine, tyrosine or tryptophan can interact with the alpha-subunit of RNA polymerase to activate transcription. In one unusual case, activation of a non-productive promoter is used to repress transcription from a promoter on the opposite strand. Regulation of individual transcription units within the regulon reflects their physiological function and is determined by the position and nature of the recognition sites (TyrR boxes) associated with each of the promoters. The intracellular levels of the various forms of the TyrR protein are also postulated to be of critical importance in determining regulatory outcomes. TyrR protein remains a paradigm for a regulator that is able to interact with multiple cofactors and exert a range of regulatory effects by forming different oligomers on DNA and making contact with other proteins. A recent analysis identifying putative TyrR boxes in the E. coli genome raises the possibility that the TyrR regulon may extend beyond the well-characterized transcription units described in this review.
Collapse
Affiliation(s)
- James Pittard
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
17
|
Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 2001; 3:289-300. [PMID: 11676565 DOI: 10.1006/mben.2001.0196] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic engineering to design and construct microorganisms suitable for the production of aromatic amino acids and derivatives thereof requires control of a complicated network of metabolic reactions that partly act in parallel and frequently are in rapid equilibrium. Engineering the regulatory circuits, the uptake of carbon, the glycolytic pathway, the pentose phosphate pathway, and the common aromatic amino acid pathway as well as amino acid importers and exporters that have all been targeted to effect higher productivities of these compounds are discussed.
Collapse
Affiliation(s)
- J Bongaerts
- DSM Biotech GmbH, Karl-Heinz-Beckurts-Strasse 13, D-52428 Jülich, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Escherichia coli contains two major systems for transporting inorganic phosphate (P(i)). The low-affinity P(i) transporter (pitA) is expressed constitutively and is dependent on the proton motive force, while the high-affinity Pst system (pstSCAB) is induced at low external P(i) concentrations by the pho regulon and is an ABC transporter. We isolated a third putative P(i) transport gene, pitB, from E. coli K-12 and present evidence that pitB encodes a functional P(i) transporter that may be repressed at low P(i) levels by the pho regulon. While a pitB(+) cosmid clone allowed growth on medium containing 500 microM P(i), E. coli with wild-type genomic pitB (pitA Delta pstC345 double mutant) was unable to grow under these conditions, making it indistinguishable from a pitA pitB Delta pstC345 triple mutant. The mutation Delta pstC345 constitutively activates the pho regulon, which is normally induced by phosphate starvation. Removal of pho regulation by deleting the phoB-phoR operon allowed the pitB(+) pitA Delta pstC345 strain to utilize P(i), with P(i) uptake rates significantly higher than background levels. In addition, the apparent K(m) of PitB decreased with increased levels of protein expression, suggesting that there is also regulation of the PitB protein. Strain K-10 contains a nonfunctional pitA gene and lacks Pit activity when the Pst system is mutated. The pitA mutation was identified as a single base change, causing an aspartic acid to replace glycine 220. This mutation greatly decreased the amount of PitA protein present in cell membranes, indicating that the aspartic acid substitution disrupts protein structure.
Collapse
Affiliation(s)
- R M Harris
- School of Biochemistry and Molecular Biology, The Faculties, The Australian National University, ACT, 0200, Australia.
| | | | | | | |
Collapse
|
19
|
Bacher JM, Ellington AD. Selection and characterization of Escherichia coli variants capable of growth on an otherwise toxic tryptophan analogue. J Bacteriol 2001; 183:5414-25. [PMID: 11514527 PMCID: PMC95426 DOI: 10.1128/jb.183.18.5414-5425.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 06/06/2001] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli isolates that were tolerant of incorporation of high proportions of 4-fluorotryptophan were evolved by serial growth. The resultant strain still preferred tryptophan for growth but showed improved growth relative to the parental strain on other tryptophan analogues. Evolved clones fully substituted fluorotryptophan for tryptophan in their proteomes within the limits of mass spectral and amino acid analyses. Of the genes sequenced, many genes were found to be unaltered in the evolved strain; however, three genes encoding enzymes involved in tryptophan uptake and utilization were altered: the aromatic amino acid permease (aroP) and tryptophanyl-tRNA synthetase (trpS) contained several amino acid substitutions, and the tyrosine repressor (tyrR) had a nonsense mutation. While kinetic analysis of the tryptophanyl-tRNA synthetase suggests discrimination against 4-fluorotryptophan, an analysis of the incorporation and growth patterns of the evolved bacteria suggest that other mutations also aid in the adaptation to the tryptophan analogue. These results suggest that the incorporation of unnatural amino acids into organismal proteomes may be possible but that extensive evolution may be required to reoptimize proteins and metabolism to accommodate such analogues.
Collapse
Affiliation(s)
- J M Bacher
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
20
|
Grillo AO, Royer CA. The basis for the super-repressor phenotypes of the AV77 and EK18 mutants of trp repressor. J Mol Biol 2000; 295:17-28. [PMID: 10623505 DOI: 10.1006/jmbi.1999.3317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA-binding properties of two super-repressor mutants of the Escherichia coli trp repressor, EK18 and AV77, have been investigated using steady-state fluorescence anisotropy measurements, in order to further elucidate the basis for their super-repressor phenotypes. Several suggestions have been previously proposed as the basis for the super-repressor phenotype of EK18 and AV77. For the negative to positive charge change EK18 mutant, increased electrostatic interactions between the EK18 mutant and the operator and increased protein-protein interactions between EK18 dimers have been suggested as contributing to the super-repressor phenotype of this mutant. We show that EK18 dimers actually bind to wild-type and variant operator sequences with a decrease in apparent cooperativity and an increase in affinity, compared to WTTR dimers. Thus, the EK18 super-repressor phenotype is not due to increased cooperative binding between EK18 dimers. These results support the hypothesis that the super-repressor phenotype of EK18 arises from increased electrostatic interactions between the mutant and DNA. In the case of the AV77 mutant, weaker binding affinity of apo-AV77 to non-specific DNA, increased selectivity of binding of AV77 for the operator, and a higher population of folded functional AV77 dimers available to bind the operator under limiting L-Trp conditions in vivo, have been proposed for the super-repressor phenotype of this mutant. We show that like the EK18 mutant, apoAV77 binds with higher affinity to non-specific DNA compared to apo-WTTR and that the holo-AV77 mutant does not bind with higher selectivity to the operator, has had been previously proposed. We therefore conclude that the super-repressor phenotype of the AV77 mutant is due to an increase in the population of folded, functional AV77 dimers, under limiting L-Trp conditions in vivo.
Collapse
Affiliation(s)
- A O Grillo
- School of Pharmacy, University of Wisconsin-Madison, 425 N. Charter St, Madison, WI 53706, USA
| | | |
Collapse
|
21
|
Jeeves M, Evans PD, Parslow RA, Jaseja M, Hyde EI. Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:919-28. [PMID: 10518785 DOI: 10.1046/j.1432-1327.1999.00792.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules.
Collapse
Affiliation(s)
- M Jeeves
- School of Biochemistry, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
The bacterial repressor protein, trp repressor, is one of the best studied transcriptional regulatory proteins in terms of function, structure, dynamics and stability. Despite these significant advances, the structural and energetic basis for the specific recognition of its operator sites by trp repressor remains poorly understood. In fact, recognition in this system is controled by the binding of the co-repressor ligand, l-tryptophan, as well as by conformational and dynamic properties of the operator targets, DNA sequence-dependent control of the oligomerization properties of the repressor, water-mediated interactions, and specific interactions involving the peptide backbone and phosphate moieties. Moreover, only one direct contact between the protein and the DNA is evident from the crystallographically determined structure of the complex. In an attempt to better define how the various sequence elements in the operator target contribute to this complex control of affinity and cooperativity of trp repressor binding, we have studied the binding of trp repressor to a series of mutated operator targets using fluorescence anisotropy, which provides very high quality data allowing fairly precise estimations of the affinities involved. We conclude from these studies that even on very small (25 bp) targets, the repressor binds slightly cooperatively, populating a 2:1 dimer/DNA complex, and then at higher concentrations a third dimer is bound with significantly lower affinity, revealing an inherent asymmetry in the trpEDCBA-derived target. Investigation of the basis for the asymmetry implicates the identity of the second base in the so-called structural half-site GNACT, which apparently influences the switch between tandem and simple binding. Mutation of the C or the T bases in the structural half-site abolishes all specificity in binding, and alteration of the single direct contact, the G of the structural half-site, or the central TTAA significantly lowers the affinity of the dimer for its site, without modifying the apparent cooperativity. Finally, we note that the order of affinity is conserved in the absence of the co-repressor, and moreover, it is in all cases significantly higher than that observed for holo-repressor binding to non-specific DNA, indicating that one cannot simply equate apo-repressor and non-specific binding.
Collapse
Affiliation(s)
- A O Grillo
- School of Pharmacy, University of Wisconsin-Madison, 425 N. Charter, Madison, WI, 53706, USA
| | | | | |
Collapse
|
23
|
Bai Q, Somerville RL. Integration host factor and cyclic AMP receptor protein are required for TyrR-mediated activation of tpl in Citrobacter freundii. J Bacteriol 1998; 180:6173-86. [PMID: 9829925 PMCID: PMC107701 DOI: 10.1128/jb.180.23.6173-6186.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 09/24/1998] [Indexed: 11/20/2022] Open
Abstract
The tpl gene of Citrobacter freundii encodes an enzyme that catalyzes the conversion of L-tyrosine to phenol, pyruvate, and ammonia. This gene is known to be positively regulated by TyrR. The amplitude of regulation attributable to this transcription factor is at least 20-fold. Three TyrR binding sites, designated boxes A, B, and C, centered at coordinates -272.5, -158.5, and -49.5, respectively, were identified in the upstream region of the tpl promoter. The results of mutational experiments suggest that TyrR binds in cooperative fashion to these sites. The nonavailability of any TyrR site impairs transcription. Full TyrR-mediated activation of tpl required integration host factor (IHF) and the cAMP receptor protein (CRP). By DNase I footprinting, it was shown that the IHF binding site is centered at coordinate -85 and that there are CRP binding sites centered at coordinates -220 and -250. Mutational alteration of the IHF binding site reduced the efficiency of the tpl promoter by at least eightfold. The proposed roles of CRP and IHF are to introduce bends into tpl promoter DNA between boxes A and B or B and C. Multimeric TyrR dimers were demonstrated by a chemical cross-linking method. The formation of hexameric TyrR increased when tpl DNA was present. The participation of both IHF and CRP in the activation of the tpl promoter suggests that molecular mechanisms quite different from those that affect other TyrR-activated promoters apply to this system. A model wherein TyrR, IHF, and CRP collaborate to regulate the expression of the tpl promoter is presented.
Collapse
Affiliation(s)
- Q Bai
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
24
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
25
|
Whipp MJ, Camakaris H, Pittard AJ. Cloning and analysis of the shiA gene, which encodes the shikimate transport system of escherichia coli K-12. Gene X 1998; 209:185-92. [PMID: 9524262 DOI: 10.1016/s0378-1119(98)00043-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli K-12, the shiA gene is involved in the uptake of shikimate. This gene has been cloned and its nucleotide sequence determined. The gene is predicted to encode a protein of 438 amino acids and lies adjacent to the amn gene. The hydropathy profile and the amino acid sequence indicate that the ShiA protein is a polytopic membrane protein that shows a homology with members of the major facilitator superfamily of transport proteins. Recombining an inactive form of the cloned gene into the chromosome creates mutants unable to transport shikimate. Introducing a wild-type gene on a multicopy plasmid into a shiA mutant restores the ability to transport shikimate. When this multicopy shiA plasmid is introduced into an aroE strain, this strain is now able to grow with shikimate as the aromatic supplement, consistent with the notion that dehydroshikimate (DHS) accumulated in an aroE strain prevents uptake of shikimate by competition. Expression of the shiA gene does not appear to be regulated by the TyrR protein, a repressor/activator that controls the expression of other genes involved with the biosynthesis or transport of the aromatic amino acids.
Collapse
Affiliation(s)
- M J Whipp
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | | | | |
Collapse
|
26
|
Fenton C, Hansen A, el-Gewely MR. Modulation of the Escherichia coli tryptophan repressor protein by engineered peptides. Biochem Biophys Res Commun 1998; 242:71-8. [PMID: 9439612 DOI: 10.1006/bbrc.1997.7905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have used the E. coli tryptophan repressor (TrpR) as a model protein for modulation by engineered peptides both in vivo and in vitro. The tryptophan operator promoter-lacZ reporter system was used to investigate the in vivo ability of several synthetic peptides to modulate TrpR function. GMSA (gel mobility shift analysis) was used to study the in vitro ability of the peptides to modulate binding of the TrpR protein to the operator DNA. Peptides WRW, DRW, DW, RW enhanced TrpR binding to the operator in vivo at 100 microM concentrations. The same peptides enhanced TrpR binding to the operator in vitro at 1 mM concentrations. The peptide RRW reduced TrpR binding to the tryptophan operator both in vivo and in vitro. Thus the peptide RRW acted more as an inducer than corepressor. The peptide WR could neither enhance nor impede binding between TrpR and the operator in vivo or in vitro, suggesting that the presence of a carboxyl tryptophan residue may be necessary for binding to the TrpR protein. Thin layer chromatography was used to ensure that the peptides had not been subject to proteolysis during the in vitro gel mobility shift assays.
Collapse
Affiliation(s)
- C Fenton
- Department of Biotechnology, University of Tromsø, Norway
| | | | | |
Collapse
|
27
|
Yang J, Murakami K, Camakaris H, Fujita N, Ishihama A, Pittard AJ. Amino acid residues in the alpha-subunit C-terminal domain of Escherichia coli RNA polymerase involved in activation of transcription from the mtr promoter. J Bacteriol 1997; 179:6187-91. [PMID: 9324270 PMCID: PMC179526 DOI: 10.1128/jb.179.19.6187-6191.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine the role of the amino acid residues (between positions 258 and 275 and positions 297 and 298) of the alpha-subunit of RNA polymerase in TyrR-mediated activation of the mtr promoter, we have carried out in vitro transcription experiments using a set of mutant RNA polymerases with a supercoiled mtr template. Decreases in factor-independent transcription in vitro by mutant RNA polymerases L262A, R265A, and K297A suggested the presence of a possible UP element associated with the mtr promoter. Mutational studies have revealed that an AT-rich sequence centered at -41 of the mtr promoter (SeqA) functions like an UP element. In vivo and in vitro analyses using a mutant mtr promoter carrying a disrupted putative UP element showed that this AT-rich sequence is responsible for interactions with the alpha-subunit which influence transcription in the absence of TyrR protein. However, the putative UP element is not needed for activator-dependent activation of the mtr promoter by TyrR and phenylalanine. The results from in vitro studies indicated that the alpha-subunit residues leucine-262, arginine-265, and lysine-297 are critical for interaction with the putative UP element of the mtr promoter and play major roles in TyrR-dependent transcription activation. The residues at positions 258, 260, 261, 268, and 270 also play important roles in TyrR-dependent activation. Other residues, at positions 259, 263, 264, 266, 269, 271, 273, 275, and 298, appear to play less significant roles or no role in activation of mtr transcription.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Wang P, Yang J, Lawley B, Pittard AJ. Repression of the aroP gene of Escherichia coli involves activation of a divergent promoter. J Bacteriol 1997; 179:4213-8. [PMID: 9209035 PMCID: PMC179241 DOI: 10.1128/jb.179.13.4213-4218.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The repression of aroP expression which is mediated by the TyrR protein with phenylalanine, tyrosine, or tryptophan has been shown to be primarily a direct result of TyrR-mediated activation of a divergent promoter, P3, which directs the RNA polymerase away from promoter P1. Evidence which has been presented to support this conclusion is as follows. Repression of P1 does not occur either in vitro or in vivo if wild-type TyrR protein is substituted by the activation-negative mutant RQ10 (with an R-to-Q change at position 10). Repression of P1 is greatly diminished if the P3 promoter is inactivated or if a 5-bp insertion is made between the P3 promoter and the binding sites for TyrR. Repression is also abolished if the promoter strength of P1 is increased or a putative UP element associated with P3 is altered. Repression of the second promoter, P2, still occurs if the wild-type TyrR protein is substituted with RQ10 or EQ274. The tryptophan-mediated repression of aroP does not involve the TrpR protein.
Collapse
Affiliation(s)
- P Wang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
29
|
Hwang JS, Yang J, Pittard AJ. Critical base pairs and amino acid residues for protein-DNA interaction between the TyrR protein and tyrP operator of Escherichia coli. J Bacteriol 1997; 179:1051-8. [PMID: 9023183 PMCID: PMC178797 DOI: 10.1128/jb.179.4.1051-1058.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Escherichia coli K-12, the repression of tyrP requires the binding of the TyrR protein to the operator in the presence of coeffectors, tyrosine and ATP. This operator contains two 22-bp palindromic sequences which are termed TyrR boxes. Methylation, uracil, and ethylation interference experiments were used to identify the important sites in the TyrR boxes that make contacts with the TyrR protein. Methylation interference studies demonstrated that guanines at positions +8, -5, and -8 of the strong TyrR box and positions +8, -4, and -8 of the weak box are close to the TyrR protein. Uracil interference revealed that strong van der Waals contacts are made by the thymines at position -7 and +5 of the top strands of both strong and weak boxes and that weaker contacts are made by the thymines at positions +7 (strong box) and -5 and +7 (weak box) of the bottom strand. In addition, ethylation interference suggested that the phosphate backbone contacts are located at the end and central regions of the palindrome. These findings are supported by our results derived from studies of symmetrical mutations of the tyrP strong box. Overall, the results confirm the critical importance of the invariant (G x C)(C x G)8 base pairs for TyrR recognition and also indicate that interactions with (T x A)(A x T)7 are of major importance. In contrast, mutations in other positions result in weaker effects on the binding affinity of TyrR protein, indicating that these positions play a lesser role in TyrR protein recognition. Alanine scanning of both helices of the putative helix-turn-helix DNA-binding motif of TyrR protein has identified those amino acids whose side chains play an essential role in protein structure and DNA binding.
Collapse
Affiliation(s)
- J S Hwang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
30
|
Yang J, Camakaris H, Pittard AJ. In vitro transcriptional analysis of TyrR-mediated activation of the mtr and tyrP+3 promoters of Escherichia coli. J Bacteriol 1996; 178:6389-93. [PMID: 8892849 PMCID: PMC178520 DOI: 10.1128/jb.178.21.6389-6393.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In order to understand the mechanism by which the TyrR protein activates transcription from the mtr and tyrP+3 promoters, we have carried out in vitro transcription experiments with supercoiled DNA templates. We have shown that addition of the histone-like protein HU or integration host factor (IHF) greatly inhibited the transcription from the mtr and tyrP+3 promoters. In the presence of phenylalanine, the wild-type TyrR protein, but not a mutant TyrR protein (activation negative), was able to relieve the HU- or IHF-mediated inhibition of transcription. In contrast, the alleviation of the HU- or IHF-mediated transcription inhibition by the wild-type TyrR protein did not occur when a mutant RNA polymerase with a C-terminally truncated alpha subunit was used to carry out the transcription reaction.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
31
|
Pittard J. The various strategies within the TyrR regulation of Escherichia coli to modulate gene expression. Genes Cells 1996; 1:717-25. [PMID: 9077441 DOI: 10.1111/j.1365-2443.1996.tb00012.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The TyrR Regulon of Escherichia coli comprises eight transcription units whose expression is modulated by the TyrR protein. This protein, which is normally a homodimer in solution, can self-associate to form a hexamer, bind with high affinity to specific DNA sequences (TyrR boxes) and interact with the alpha subunit of the RNA polymerase. These various reactions are influenced by the abundance of one or more of the aromatic amino acids, tyrosine, phenylalanine or tryptophan and by the specific location and sequence of the TyrR boxes associated with each transcription unit. This review describes how these activities can be combined in different ways to produce a variety of responses to varying levels of the three aromatic amino acids.
Collapse
Affiliation(s)
- J Pittard
- Department of Microbiology, University of Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Yang J, Camakaris H, Pittard AJ. Further genetic analysis of the activation function of the TyrR regulatory protein of Escherichia coli. J Bacteriol 1996; 178:1120-5. [PMID: 8576047 PMCID: PMC177774 DOI: 10.1128/jb.178.4.1120-1125.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous reports (J. Cui and R. L. Somerville, J. Bacteriol. 175:1777-1784, 1993; J. Yang, H. Camakaris, and A. J. Pittard, J. Bacteriol. 175:6372-6375, 1993) have identified a number of amino acids in the N-terminal domain of the TyrR protein which are critical for activation of gene expression but which play no role in TyrR-mediated repression. These amino acids were clustered in a single region involving positions 2, 3, 5, 7, 9, 10, and 16. Using random and site-directed mutagenesis, we have identified an additional eight key amino acids whose substitution results in significant or total loss of activator function. All of these are located in the N-terminal domain of TyrR. Alanine scanning at these eight new positions and at five of the previously identified positions for which alanine substitutions had not been obtained has identified three amino acids whose side chains are critical for activation, namely, D-9, R-10, and D-103. Glycine at position 37 is also of critical importance. Alanine substitutions at four other positions (C-7, E-16, D-19, and V-93) caused partial but significant loss of activation, indicating that the side chains of these amino acids also play a contributing role in the activation process.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
33
|
Chapman D, Hochstrasser R, Millar D, Youderian P. Engineering proteins without primary sequence tryptophan residues: mutant trp repressors with aliphatic substitutions for tryptophan side chains. Gene X 1995; 163:1-11. [PMID: 7557456 DOI: 10.1016/0378-1119(95)00433-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Combinatorial mismatch-primer mutagenesis was used to make simultaneous changes of codons for residues Trp19 and Trp99 of the Escherichia coli trp aporepressor (TrpR protein) to codons for other residues. Among 21 different single- and double-mutant repressors obtained from this round of mutagenesis, proteins with Trp-->Leu and Trp-->Met changes at one or both positions were found to be nearly as active as the wild type (wt). Genes encoding repressors with each of the eight possible combinations of single- and double-mutant changes of Trp19 and Trp99 to Leu and Met were constructed by recombination in vitro. Whereas three of these eight mutant repressors are unstable in E. coli, all are made at similar steady-state levels in Salmonella typhimurium. Three of the eight mutant holorepressors are lethal when overproduced in S. typhimurium, because they confer an induced auxotrophy. Two different activity assays in vivo show that one of the four double-mutant repressors (Trp19-->Leu; Trp99-->Met) is similar to wt TrpR in its interactions with both Trp and DNA. These results show that more general approaches to engineering active proteins with fewer Trp residues may give rise to functional mutants without aromatic substitutions, and that aliphatic changes should be considered in cases where engineered changes of Trp to Phe or Tyr do not work.
Collapse
Affiliation(s)
- D Chapman
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow 83844, USA
| | | | | | | |
Collapse
|
34
|
Lee W, Revington M, Farrow NA, Nakamura A, Utsunomiya-Tate N, Miyake Y, Kainosho M, Arrowsmith CH. Rapid corepressor exchange from the trp-repressor/operator complex: an NMR study of [ul-13C/15N]-L-tryptophan. JOURNAL OF BIOMOLECULAR NMR 1995; 5:367-375. [PMID: 7647556 DOI: 10.1007/bf00182280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
[ul-13C/15N]-L-tryptophan was prepared biosynthetically and its dynamic properties and intermolecular interaction with a complex of Escherichia coli trp-repressor and a 20 base-pair operator DNA were studied by heteronuclear isotope-edited NMR experiments. The resonances of the free and bound corepressor (L-Trp) were unambiguously identified from gradient-enhanced 15N-1H HSQC, 13C-1H HSQC, 13C- and 15N-edited 2D NOESY spectra. The exchange off-rate of the corepressor between the bound and free states was determined to be 3.4 +/- 0.52 s-1 at 45 degrees C, almost three orders of magnitude faster than the dissociation of the protein-DNA complex. Examination of the experimental NOE buildup curves indicates that it may be desirable to use longer mixing times than would normally be used for a large molecule, in order to detect weak intermolecular NOEs in the presence of exchange. Intermolecular NOEs from bound corepressor to trp-repressor and DNA were analyzed with respect to the mechanism of ligand exchange. This analysis suggests that, in order for the ligand to diffuse out of the complex, there must be significant movement or 'breathing' of the protein and/or DNA.
Collapse
Affiliation(s)
- W Lee
- Division of Molecular and Structural Biology, Ontario Cancer Institute, University of Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sarsero JP, Pittard AJ. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions. J Bacteriol 1995; 177:297-306. [PMID: 7814318 PMCID: PMC176591 DOI: 10.1128/jb.177.2.297-306.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.
Collapse
Affiliation(s)
- J P Sarsero
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
36
|
Abstract
Two different X-ray co-crystal structures of the Escherichia coli trp holorepressor complexed with DNA suggest that the TrpR protein recognizes specific DNA sequences primarily with a network of water-mediated H-bonds. However, the more recent nuclear magnetic resonance (NMR) solution structures of the holorepressor-operator complex show no long-lived, ordered water molecules at the protein-DNA interface and place amino acids in intimate contact with nucleotide bases. Both genetic and biochemical studies support a model in which the trp repressor recognizes specific DNA sequences by a direct mechanism, as seen in the NMR solution structures, not by the 'indirect readout' mechanism initially proposed on the basis of X-ray studies.
Collapse
Affiliation(s)
- P Youderian
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow 83844
| | | |
Collapse
|
37
|
Lawley B, Pittard AJ. Regulation of aroL expression by TyrR protein and Trp repressor in Escherichia coli K-12. J Bacteriol 1994; 176:6921-30. [PMID: 7961453 PMCID: PMC197062 DOI: 10.1128/jb.176.22.6921-6930.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The promoter-operator region of the aroL gene of Escherichia coli K-12 contains three TYR R boxes and one TrpR binding site. Mutational analysis showed that TYR R boxes 1 and 3 are essential for TyrR-mediated regulation of aroL expression, while a fully functional TYR R box 2 does not appear to be essential for regulation. Regulation mediated by the TrpR protein required the TYR R boxes and TrpR site to be functional and was observed in vivo only with a tyrR+ strain. Under conditions favoring the formation of TyrR hexamers, DNase I protection experiments revealed the presence of phased hypersensitive sites, indicative of DNA backbone strain. This suggests that TyrR-mediated repression involves DNA looping. Purified TrpR protein protected the putative TrpR binding site in the presence of tryptophan, and this protection was slightly enhanced in the presence of TyrR protein. This result along with the in vivo findings implies that TyrR and TrpR are able to interact in some way. Inserting 4 bp between TYR R box 1 and the TrpR binding site results in increased tyrosine repression and the abolition of the tryptophan effect. Identification of a potential integration host factor binding site and repression studies of a himA mutant support the notion that integration host factor binding normally exerts a negative effect on tyrosine-mediated repression.
Collapse
Affiliation(s)
- B Lawley
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
38
|
Czernik PJ, Shin DS, Hurlburt BK. Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46867-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Yanofsky C, Horn V. Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift. J Bacteriol 1994; 176:6245-54. [PMID: 7928995 PMCID: PMC196965 DOI: 10.1128/jb.176.20.6245-6254.1994] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Physiological studies were performed under nutritional stress and nonstress conditions to assess the relative importance of the various regulatory mechanisms that Escherichia coli can use to alter its rate of tryptophan synthesis. Mutants were examined in which the trp repressor was inactive, transcription termination at the trp attenuator was altered, transcription initiation at the trp promoter was reduced, or feedback inhibition of anthranilate synthase was abolished. Strains were examined in media with and without tryptophan, phenylalanine and tyrosine, or acid-hydrolyzed casein and following shifts from one medium to another. Growth rates and anthranilate synthase levels were measured. In media lacking tryptophan, each of the mutants showed relief of repression and/or attenuation and maintained a near-normal growth rate. Following a shift from a medium containing tryptophan to a tryptophan-free medium containing phenylalanine and tyrosine or acid-hydrolyzed casein, mutants with abnormally low trp enzyme levels exhibited an appreciable growth lag before resuming growth. The wild-type strain displayed termination relief only under one extreme shift condition, upon transfer from a minimal medium containing tryptophan to minimal medium with only phenylalanine and tyrosine. A promoter down-mutant had difficulty adjusting to a shift from high tryptophan to low tryptophan levels in a medium containing acid-hydrolyzed casein. In all media tested, anthranilate synthase levels were lower in a feedback-resistant mutant than in the wild type. These studies demonstrate the capacity of E. coli to adjust its rate of tryptophan synthesis to maintain rapid growth following a shift to stressful nutritional conditions.
Collapse
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
40
|
Pfau J, Arvidson DN, Youderian P. Mutants of Escherichia coli Trp repressor with changes of conserved, helix-turn-helix residue threonine 81 have altered DNA-binding specificities. Mol Microbiol 1994; 13:1001-12. [PMID: 7854115 DOI: 10.1111/j.1365-2958.1994.tb00491.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Threonine is found at the third position of the second alpha-helix in the helix-turn-helix motifs of most bacterial DNA-binding proteins. To investigate the role of this conserved residue in Escherichia coli Trp repressor function, plasmids encoding mutant Trp repressors with each of the 19 amino acid changes of Thr-81 were made by site-directed mutagenesis. All 19 changes decrease the activity of Trp holorepressor, indicating that the Thr-81 side-chain is critical for TrpR function. Three mutant repressors, Ser-81, Lys-81 and Arg-81, retain partial DNA-binding activity and inhibit transcription from the wild-type trp promoter/operator complex; challenge-phage assays show that Ser-81 and Lys-81 holorepressors have altered DNA-binding specificities. The side-chain of Thr-81 may make direct contacts with base pairs 4 and 3 of the trp operator, consistent with the nuclear magnetic resonance solution structures of the holorepressor-operator complex.
Collapse
Affiliation(s)
- J Pfau
- Department of Biological Sciences, University of Southern California, Los Angeles 90089
| | | | | |
Collapse
|
41
|
Arvidson DN, Arvidson CG, Lawson CL, Miner J, Adams C, Youderian P. The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae. Nucleic Acids Res 1994; 22:1821-9. [PMID: 8208606 PMCID: PMC308080 DOI: 10.1093/nar/22.10.1821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tryptophan biosynthesis in Escherichia coli is regulated by the product of the trpR gene, the tryptophan (Trp) repressor. Trp aporepressor binds the corepressor, L-tryptophan, to form a holorepressor complex, which binds trp operator DNA tightly, and inhibits transcription of the tryptophan biosynthetic operon. The conservation of trp operator sequences among enteric Gram-negative bacteria suggests that trpR genes from other bacterial species can be cloned by complementation in E. coli. To clone trpR homologues, a deletion of the E. coli trpR gene, delta trpR504, was made on a plasmid by site-directed mutagenesis, then crossed onto the E. coli genome. Plasmid clones of the trpR genes of Enterobacter aerogenes and Enterobacter cloacae were isolated by complementation of the delta trpR504 allele, scored as the ability to repress beta-galactosidase synthesis from a prophage-borne trpE-lacZ gene fusion. The predicted amino acid sequences of four enteric TrpR proteins show differences, clustered on the backside of the folded repressor, opposite the DNA-binding helix-turn-helix substructures. These differences are predicted to have little effect on the interactions of the aporepressor with tryptophan, holorepressor with operator DNA, or tandemly bound holorepressor dimers with one another. Although there is some variation observed at the dimer interface, interactions predicted to stabilize the interface are conserved. The phylogenetic relationships revealed by the TrpR amino acid sequence alignment agree with the results of others.
Collapse
Affiliation(s)
- D N Arvidson
- California Institute of Biological Research, La Jolla 92037
| | | | | | | | | | | |
Collapse
|
42
|
Martin KS, Royer CA, Howard KP, Carey J, Liu YC, Matthews K, Heyduk E, Lee JC. Electrostatic forces contribute to interactions between trp repressor dimers. Biophys J 1994; 66:1167-73. [PMID: 8038388 PMCID: PMC1275823 DOI: 10.1016/s0006-3495(94)80898-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The trp repressor of Escherichia coli (TR), although generally considered to be dimeric, has been shown by fluorescence anisotropy of extrinsically labeled protein to undergo oligomerization in solution at protein concentrations in the micromolar range (Fernando, T., and C. A. Royer 1992. Biochemistry. 31:3429-3441). Providing evidence that oligomerization is an intrinsic property of TR, the present studies using chemical cross-linking, analytical ultracentrifugation, and molecular sieve chromatography demonstrate that unmodified TR dimers form higher order aggregates. Tetramers and higher order species were observed in chemical cross-linking experiments at concentrations between 1 and 40 microM. Results from analytical ultracentrifugation and gel filtration chromatography were consistent with average molecular weight values between tetramer and dimer, although no plateaus in the association were evident over the concentration ranges studied, indicating that higher order species are populated. Analytical ultracentrifugation data in presence of corepressor imply that corepressor binding destabilizes the higher order aggregates, an observation that is consistent with the earlier fluorescence work. Through the investigation of the salt and pH dependence of oligomerization, the present studies have revealed an electrostatic component to the interactions between TR dimers.
Collapse
Affiliation(s)
- K S Martin
- School of Pharmacy, University of Wisconsin-Madison 53706
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Argaet V, Wilson T, Davidson B. Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine, and tryptophan. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37671-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
|
45
|
Shapiro M, Arvidson DN, Pfau J, Youderian P. The challenge-phage assay reveals differences in the binding equilibria of mutant Escherichia coli Trp super-repressors in vivo. Nucleic Acids Res 1993; 21:5661-6. [PMID: 8284212 PMCID: PMC310532 DOI: 10.1093/nar/21.24.5661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phenotypes of four mutant Escherichia coli Trp repressor proteins with increased activities have been examined in vivo using the challenge-phage assay, an assay based on a positive genetic selection for DNA binding. These proteins, which differ by single amino acid changes from the wild type (Glu13-->Lys, Glu18-->Lys, Glu49-->Lys and Ala77-->Val), require less L-tryptophan than wild-type repressor for activation in vivo, and are super-aporepressors. However, none of the four mutant repressors binds DNA in a corepressor-independent manner. Three of the four mutant repressors (with Glu-->Lys changes) are more active when complexed with tryptophan, and are superholorepressors. Challenge-phage assays with excess tryptophan rank the mutant holorepressors in the same order as determined by binding studies in vitro. Challenge-phage assays with limiting tryptophan reveal additional phenotypic differences among the mutant proteins. These results show that the challenge-phage assay is a robust assay for measuring the relative affinities of specific protein-DNA interactions in vivo.
Collapse
Affiliation(s)
- M Shapiro
- Department of Biological Sciences, University of Southern California, Los Angeles 90089
| | | | | | | |
Collapse
|
46
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
47
|
Liu Y, Matthews K. Dependence of trp repressor-operator affinity, stoichiometry, and apparent cooperativity on DNA sequence and size. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49455-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Yang J, Camakaris H, Pittard AJ. Mutations in the tyrR gene of Escherichia coli which affect TyrR-mediated activation but not TyrR-mediated repression. J Bacteriol 1993; 175:6372-5. [PMID: 8407813 PMCID: PMC206739 DOI: 10.1128/jb.175.19.6372-6375.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Site-directed mutagenesis has been used to further characterize amino acid residues necessary for the activation of gene expression by the TyrR protein. Amino acid substitutions have been made at positions 2, 4, 5, 6, 7, 8, 9, 10, and 16. TyrR mutants with amino acid substitutions V-5-->P (VP5), VF5, CS7, CR7, DR9, RI10, RS10, and ER16 show no or very little activation of expression of either mtr or tyrP. In each case, however, the ability to repress aroF is unaltered. Amino acid substitutions at positions 4, 6, and 8 have no effect on activation. Small internal deletions of residues 10 to 19, 20 to 29, or 30 to 39 also destroy phenylalanine- or tyrosine-mediated activation of mtr and tyrP. In these mutants repression of aroF is also unaltered. In activation-defective tyrR mutants, expression of mtr is repressed in the presence of tyrosine. This tyrosine-mediated repression is trpR dependent and implies an interaction between TrpR and TyrR proteins in the presence of tyrosine.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, University of Melbourne, Parkville Victoria, Australia
| | | | | |
Collapse
|
49
|
Hurlburt B, Yanofsky C. Analysis of heterodimer formation by the Escherichia coli trp repressor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82403-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Cui J, Ni L, Somerville R. ATPase activity of TyrR, a transcriptional regulatory protein for sigma 70 RNA polymerase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38612-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|