1
|
Niu Y, Wang Z, Xiong Y, Wang Y, Chai L, Guo C. Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development. Molecules 2024; 29:3494. [PMID: 39124898 PMCID: PMC11313768 DOI: 10.3390/molecules29153494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
By allowing coal to be converted by microorganisms into products like methane, hydrogen, methanol, ethanol, and other products, current coal deposits can be used effectively, cleanly, and sustainably. The intricacies of in situ microbial coal degradation must be understood in order to develop innovative energy production strategies and economically viable industrial microbial mining. This review covers various forms of conversion (such as the use of MECoM, which converts coal into hydrogen), stresses, and in situ use. There is ongoing discussion regarding the effectiveness of field-scale pilot testing when translated to commercial production. Assessing the applicability and long-term viability of MECoM technology will require addressing these knowledge gaps. Developing suitable nutrition plans and utilizing lab-generated data in the field are examples of this. Also, we recommend directions for future study to maximize methane production from coal. Microbial coal conversion technology needs to be successful in order to be resolved and to be a viable, sustainable energy source.
Collapse
Affiliation(s)
- Yu Niu
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Zhiqian Wang
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Yingying Xiong
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Yuqi Wang
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Lin Chai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
| | - Congxiu Guo
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| |
Collapse
|
2
|
Raffalli MC, Bojórquez-Sánchez AM, Lignot JH, Martínez-Alarcón D. Population-specific responses to pollution exposure suggest local adaptation of invasive red swamp crayfish Procambarus clarkii along the Mediterranean French coastline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42314-42329. [PMID: 38872038 PMCID: PMC11219431 DOI: 10.1007/s11356-024-33775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
Anthropogenic stressors can have an impact in a broad range of physiological processes and can be a major selective force leading to rapid evolution and local population adaptation. In this study, three populations of the invasive crayfish Procambarus clarkii were investigated. They are geographically separated for at least 20 years, and live in different abiotic environments: a freshwater inland lake (Salagou lake) with no major anthropogenic influence and two other coastal wetlands regularly polluted by pesticides along the Mediterranean coast (Camargue region and Bages-Sigean lagoon). Collected adults were genetically characterized using the mitochondrial COI gene and haplotype frequencies were analyzed for genetic variability within and between populations. Results revealed a higher genetic diversity for these invasive populations than any previous report in France, with more than seven different haplotypes in a single population. The contrasting genetic diversity between the Camargue and the other two populations suggest different times and sources of introduction. To identify differences in key physiological responses between these populations, individuals from each population were maintained in controlled conditions. Data on oxygen consumption rates indicate that the Salagou and Bages-Sigean populations possess a high inter-individual variability compared to the Camargue population. The low individual variability of oxygen consumption and low genetic diversity suggest a specific local adaptation for the Camargue population. Population-specific responses were identified when individuals were exposed to a pesticide cocktail containing azoxystrobin and oxadiazon at sublethal concentrations. The Salagou population was the only one with altered hydro-osmotic balance due to pollutant exposure and a change in protease activity in the hepatopancreas. These results revealed different phenotypic responses suggesting local adaptations at the population level.
Collapse
Affiliation(s)
- Marie-Catherine Raffalli
- UMR-MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, Montpellier, 34095, France
| | - Ana María Bojórquez-Sánchez
- UMR-MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, Montpellier, 34095, France
| | - Jehan-Hervé Lignot
- UMR-MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, Montpellier, 34095, France
| | - Diana Martínez-Alarcón
- UMR-MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, Montpellier, 34095, France.
| |
Collapse
|
3
|
Pliego-Sandoval JE, Díaz-Barbosa A, Reyes-Nava LA, Angeles Camacho-Ruiz M, Iñiguez-Muñoz LE, Pinto-Pérez O. Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. BIOSENSORS 2023; 13:826. [PMID: 37622912 PMCID: PMC10452911 DOI: 10.3390/bios13080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was developed using an Arduino-based microfluidic platform, wherein a lipolytic enzyme was immobilized on an ethylene-vinyl acetate polymer through physical adsorption. This low-cost optical biosensor employed a spectrophotometric transducer and was assessed in liquid samples to indirectly detect triglycerides and fatty acids using p-nitrophenol as an indicator. The average triglyceride level detected in the conducted experiments was 47.727 mg/dL. The biosensor exhibited a percentage of recovery of 81.12% and a variation coefficient of 0.791%. Furthermore, the biosensor demonstrated the ability to detect triglyceride levels without the need for sample dilution, ranging from 7.6741 mg/dL to 58.835 mg/dL. This study successfully developed an efficient and affordable enzymatic biosensor prototype for triglyceride and fatty acid detection. The lipolytic enzyme immobilization on the polymer substrate provided a stable and reproducible detection system, rendering this biosensor an exciting option for the detection of these molecules.
Collapse
Affiliation(s)
- Jorge E. Pliego-Sandoval
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Arturo Díaz-Barbosa
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Luis A. Reyes-Nava
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - María Angeles Camacho-Ruiz
- Centro Universitario del Norte, Laboratorio de Investigación en Biotecnología, Universidad de Guadalajara, Colotlán 46200, Jalisco, Mexico;
| | - Laura Elena Iñiguez-Muñoz
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Osmar Pinto-Pérez
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| |
Collapse
|
4
|
Liang K, Dong W, Gao J, Liu Z, Zhou R, Shu Z, Duan M. The Conformational Transitions and Dynamics of Burkholderia cepacia Lipase Regulated by Water-Oil Interfaces. J Chem Inf Model 2023. [PMID: 37307245 DOI: 10.1021/acs.jcim.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structural dynamics and conformational transitions are crucial for the activities of enzymes. As one of the most widely used industrial biocatalysts, lipase could be activated by the water-oil interfaces. The interface activations were believed to be dominated by the close-to-open transitions of the lid subdomains. However, the detailed mechanism and the roles of structure transitions are still under debate. In this study, the dynamic structures and conformational transitions of Burkholderia cepacia lipase (LipA) were investigated by combining all-atom molecular dynamics simulations, enhanced sampling simulation, and spectrophotometric assay experiments. The conformational transitions between the lid-open and lid-closed states of LipA in aqueous solution are directly observed by the computational simulation methods. The interactions between the hydrophobic residues on the two lid-subdomains are the driven forces for the LipA closing. Meanwhile, the hydrophobic environment provided by the oil interfaces would separate the interactions between the lid-subdomains and promote the structure opening of LipA. Moreover, our studies demonstrate the opening of the lids structure is insufficient to initiate the interfacial activation, providing explanations for the inability of interfacial activation of many lipases with lid structures.
Collapse
Affiliation(s)
- Kuan Liang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Jiamin Gao
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
| | - Zhenhao Liu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| |
Collapse
|
5
|
Khan S, Ali SA, Ali AS. Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ' Penicillium citrinum' isolated from soils of plastic waste dump yard, Bhopal, India. ENVIRONMENTAL TECHNOLOGY 2023; 44:2300-2314. [PMID: 34994296 DOI: 10.1080/09593330.2022.2027025] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/22/2021] [Indexed: 06/04/2023]
Abstract
Low density Polyethylene (LDPE) in various forms has become a part of life. Its accretion due to non degradable nature is concern, endangering life on earth. Amongst various methods of LDPE disposal bioremediation is regarded as ecofriendly & widely accepted. Current investigation was an attempt to isolate potent PE degrading fungus from municipal landfill soils of Bhopal, India loaded with plastic waste.16 fungal isolates were recorded from the site; PE deteriorating fungus was screened using mineral salt agar medium amended with 3% LDPE powder as sole carbon source. The isolate Penicillium citrinum showed fast fungal colony growth in screening medium was selected for biodegradation study. P.citrinum showed 38.82 ± 1.08% weight loss of untreated LDPE pieces; to improve the degradation capacity nitric acid pretreatment was performed; biodegradation was significantly stimulated by 47.22 ± 2.04% after it's pretreatment. Laccase, lipase, esterase & manganese peroxidase activities were assayed by spectrophotometer. LDPE biodegradation was analyzed by weight loss %, change in pH during fungal growth, field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR) & thermogravimetric analysis (TGA). FTIR spectra showed appearance of new functional groups assigned to hydrocarbon biodegradation, confirming enzymatic role in process. Changes in FTIR spectra of LDPE samples (untreated & pretreated) before & after biodegradation & surface changes in the biodegraded LDPE (indicated from FE-SEM) confirmed depolymerization of LDPE. Further changes in thermal decomposition rates of biodegraded samples in comparison to control, validate biodegradation. This is the first report signifying high competence of P.citrinum in LDPE degradation without prior pretreatment.
Collapse
Affiliation(s)
- Shazia Khan
- Department of Biotechnology and Bioscience, Saifia College of Science, Barkatullah University, Bhopal, India
| | - Sharique A Ali
- Department of Biotechnology and Bioscience, Saifia College of Science, Barkatullah University, Bhopal, India
| | - Ayesha S Ali
- Department of Biotechnology and Bioscience, Saifia College of Science, Barkatullah University, Bhopal, India
| |
Collapse
|
6
|
Singh J, Mehta A. The main Aflatoxin B1 degrading enzyme in Pseudomonas putida is thermostable lipase. Heliyon 2022; 8:e10809. [PMID: 36217476 PMCID: PMC9547207 DOI: 10.1016/j.heliyon.2022.e10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
Aflatoxin B1 is a carcinogenic and mutagenic mycotoxin mainly produced by Aspergillus flavus and A. parasiticus, and prevalent in food and feed. Microbial degradation is a promising strategy which can be performed in mild and environmental friendly condition. This work is a step towards identifying the enzyme responsible for biodegradation of AFB1 by P. putida. Experiments were performed with P. putida lysate and compared with commercial lipase to see the degradation efficiency and the temperature stability. The cell free lysate of P. putida efficiently degraded AFB1 in a range of temperature from 20 to 90 °C. The lysate is thermostable and could retain its activity on pre-incubation up to 90 °C. Highest rate of degradation was observed at 70 °C. These observations show that the P. putida lysate is not only stable at higher temperatures but its enzymatic activity increases after incubation. Similarly, the commercial lipase degraded AFB1 efficiently. However, both, the P. putida lysate and lipase ceased degradation in presence of a lipase inhibitor, HgCl2. The Hill function accurately predicted enzyme activity at various times and temperatures. Like lipase, the lysate also hydrolyses the p-nitrophenyl palmitate to p-nitrophenol. Kinetic parameters such as Vmax, Km and n values are good measures to characterize the lysate response with respect to changing paranitro phenyl palmitate levels. The substrate specificity test of lipase showed linear correlation between the absorbance at 410 nm vs amount of product paranitro phenol. The value of Km, Vmax and n are 0.62 mM, 355.7 μmol min−1 and 1.29, respectively. The lipase gene presence in P. putida was confirmed using PCR technique. These observations indicate that the main enzyme responsible for AFB1 degradation by P. putida is lipase. Thus, lipase as a multifunctional biocatalyst provides a promising future for a variety of industries and may also help to ensure the food safety by degrading the mycotoxins.
Collapse
|
7
|
Lata P, Kumari R, Sharma KB, Rangra S, Savitri. In vitro evaluation of probiotic potential and enzymatic profiling of Pichia kudriavzevii Y33 isolated from traditional home-made mango pickle. J Genet Eng Biotechnol 2022; 20:132. [PMID: 36083419 PMCID: PMC9463414 DOI: 10.1186/s43141-022-00416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022]
Abstract
Background Fermented foods are the results of metabolic activities of various microorganisms. People have traditionally known how to culture desirable microorganisms, primarily lactic acid bacteria, yeasts, and filamentous molds, for the manufacture of edible foods. Yeast isolated from home-made mango pickle from Hamirpur, Himachal Pradesh, was assessed for probiotic properties and their enzymatic profiling. Results Four yeast isolates were isolated out of which P. kudriavzevii Y33 was selected on the basis of high acid tolerance as well as broadest antimicrobial activity. The selected isolate was observed to have high acid tolerance at pH 2 and show strong antimicrobial activity against all the pathogens examined. P. kudriavzevii Y33 can also withstand high bile concentration and showed high viability index, i.e., 95% at concentration of 2% of bile. The isolate was able to demonstrate high cholesterol assimilation in medium containing ox bile and taurocholate, at 88.58 and 86.83%, respectively. The autoaggregation ability of isolate increases with increasing the time of incubation and showed 87% of autoaggregation after 24 h of incubation. P. kudriavzevii Y33 exhibited resistance towards different antibiotics, found to be positive for exopolysaccharide production and showed no hemolytic activity. The isolate was observed to produce several enzymes such as β-galactosidase, protease, amylase, phytase, and lipase. Conclusions The results of the current study revealed that P. kudriavzevii Y33 has various beneficial qualities that suggest it could be used as probiotics. Enzymes produced by yeast isolate help in improving flavor and mineral availability in the fermented products.
Collapse
Affiliation(s)
- Prem Lata
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Reena Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Kiran Bala Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Shailja Rangra
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India.
| |
Collapse
|
8
|
Extracellular degradation of a polyurethane oligomer involving outer membrane vesicles and further insights on the degradation of 2,4-diaminotoluene in Pseudomonas capeferrum TDA1. Sci Rep 2022; 12:2666. [PMID: 35177693 PMCID: PMC8854710 DOI: 10.1038/s41598-022-06558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
The continuing reports of plastic pollution in various ecosystems highlight the threat posed by the ever-increasing consumption of synthetic polymers. Therefore, Pseudomonas capeferrum TDA1, a strain recently isolated from a plastic dump site, was examined further regarding its ability to degrade polyurethane (PU) compounds. The previously reported degradation pathway for 2,4-toluene diamine, a precursor and degradation intermediate of PU, could be confirmed by RNA-seq in this organism. In addition, different cell fractions of cells grown on a PU oligomer were tested for extracellular hydrolytic activity using a standard assay. Strikingly, purified outer membrane vesicles (OMV) of P. capeferrum TDA1 grown on a PU oligomer showed higher esterase activity than cell pellets. Hydrolases in the OMV fraction possibly involved in extracellular PU degradation were identified by mass spectrometry. On this basis, we propose a model for extracellular degradation of polyester-based PUs by P. capeferrum TDA1 involving the role of OMVs in synthetic polymer degradation.
Collapse
|
9
|
Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid. Bioprocess Biosyst Eng 2022; 45:749-759. [PMID: 35113231 DOI: 10.1007/s00449-022-02696-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
In this study, a series of proline ionic liquids with different lengths of hydrophobic alkyl on the side chain were used to modify the Candida Antarctic lipase B (CALB). The catalytic activity, thermal stability and tolerance to methanol and DMSO of the modified enzyme were all improved simultaneously. The optimum temperature changed from 55 to 60 ℃. The hydrophobicity and anion type of the modifier have important influence on the catalytic performance of CALB. CALB modified by [ProC12][H2PO4] has a better effect. Under the optimal conditions, its hydrolysis activity was 3.0 times than that of the native enzyme, the catalytic efficiency Kcat/Km improved 2.8 times in aqueous phase, and the tolerance to organic solvent with strong polarity (50% methanol 2 h) was increased by 6.8 times. Fluorescence spectra and circular dichroism (CD) spectroscopy showed that the introduction of ionic liquids changed the microenvironment near the fluorophores of the enzyme protein, the α-helix decreased and β-sheet increased in the secondary structure of the modified enzymes. The root mean square deviation (RMSD), residue root mean square fluctuation (RMSF), radius of gyration (Rg), and solution accessible surface area (SASA) of [ProC2][Br]-CALB, [ProC12][Br]-CALB and native CALB were obtained for comparison by molecular dynamics simulation. The results of dynamics simulation were in good agreement with enzymology experiment. The introduction of ionic liquids can keep CALB in a better active conformation, and proline ionic liquids with long hydrophobic chains can significantly improve the surface hydrophobicity and overall rigidity of CALB. This research offers a new idea for rapid screening of efficient modifiers and provision of enzymes with high stability and activity for industrial application.
Collapse
|
10
|
Li H, Qin F, Huang L, Jia W, Zhang M, Li X, Shu Z. Enzymatic synthesis of 2-phenethyl acetate in water catalyzed by an immobilized acyltransferase from Mycobacterium smegmatis. RSC Adv 2022; 12:2310-2318. [PMID: 35425272 PMCID: PMC8979223 DOI: 10.1039/d1ra07946h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Although water is an ideal green solvent for organic synthesis, it is difficult for most biocatalysts to carry out transesterification reactions in water because of the reversible hydrolysis reaction. 3D structural characteristics and the microenvironment of an enzyme has an important effect on its selectivity for the transesterification reaction over the hydrolysis reaction. A novel 2-phenethyl acetate synthesis technology was developed using acyltransferase (EC 3.1.1.2) from Mycobacterium smegmatis (MsAcT) in water. Firstly, MsAcT was entrapped in a tetramethoxysilane gel network and the immobilization process of MsAcT increased its selectivity for the transesterification reaction over the hydrolysis reaction by 6.33-fold. Then, the synthesis technology of 2-phenethyl acetate using the immobilized MsAcT in water was optimized as follows: vinyl acetate was used as acyl donor, the molar ratio of vinyl acetate to 2-phenylethyl alcohol was 2 : 1, and the water content was 80% (w/w). The reaction was carried out at 40 °C for 30 min and conversion rate reached 99.17%. The immobilized MsAcT could be recycled for 10 batches. The synthesis method of 2-phenethyl acetate using MsAcT as a biocatalyst in water is a prospective green process technology.
Collapse
Affiliation(s)
- Huan Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Feng Qin
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Lijuan Huang
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Wenjing Jia
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Mingliang Zhang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Xin Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| |
Collapse
|
11
|
Vo CVT, Luu NVH, Nguyen TTH, Nguyen TT, Ho BQ, Nguyen TH, Tran TD, Nguyen QT. Screening for pancreatic lipase inhibitors: evaluating assay conditions using p-nitrophenyl palmitate as substrate. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2019131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Cam-Van T. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Nhan V. H. Luu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Thoai T. H. Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Truc T. Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Bach Q. Ho
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Thuong H. Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Quoc-Thai Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| |
Collapse
|
12
|
Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies. Pharmaceutics 2021; 13:pharmaceutics13070972. [PMID: 34199011 PMCID: PMC8308945 DOI: 10.3390/pharmaceutics13070972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
Enzyme replacement therapies (ERT) have been of great help over the past 30 years in the treatment of various lysosomal storage disorders, including chronic pancreatitis and its common complication, exocrine pancreatic insufficiency. Research shows that difficulties in designing such drugs can be overcome by using appropriate additives and various enzyme immobilization techniques. Cyclodextrins (CDs) can be considered as a promising additive for enzyme replacement therapies, as they are known to enhance the activity of enzymes in a complex process due to their specific binding. In this study, we investigated the formulation of lipases (from Aspergillus oryzae and Burkholderia cepacia) paired with different cyclodextrins in poly(vinyl alcohol) (PVA) nanofibers by electrospinning technique. We examined the effect of the presence of cyclodextrins and nanoformulation on the lipase activity. The rheological and morphological characterizations of precursors and nanofibers were also performed using a viscometer as well as electron and Raman microscope. We found that by selecting the appropriate CD:lipase ratio, the activity of the investigated enzyme could be multiplied, and cyclodextrins can support the homogeneous dispersion of lipases inside the solid formula. In addition, the entrapment of lipases in PVA nanofibers led to a significant increase in activity compared to the preformulated precursor. In this way, the nanofibrous formulation of lipases combining CDs as additives can provide an efficient and sustainable possibility for designing novel solid medicines in ERT.
Collapse
|
13
|
Xu C, Suo H, Xue Y, Qin J, Chen H, Hu Y. Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Binhayeeding N, Yunu T, Pichid N, Klomklao S, Sangkharak K. Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Enhancement of hydrogen peroxide tolerance of lipase LipA from Bacillus subtilis using semi-rational design. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Grajales-Hernández DA, Velasco-Lozano S, Armendáriz-Ruiz MA, Rodríguez-González JA, Camacho-Ruíz RM, Asaff-Torres A, López-Gallego F, Mateos-Díaz JC. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J Biotechnol 2020; 316:6-16. [PMID: 32305629 DOI: 10.1016/j.jbiotec.2020.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6 mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5 mg of BSA and 15 mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60 °C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30 °C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50 mM, reached 95 % conversion after 24 h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, Zaragoza, Spain
| | - Mariana A Armendáriz-Ruiz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Jorge A Rodríguez-González
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Rosa María Camacho-Ruíz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Ali Asaff-Torres
- Industrial biotechnology, Centro de Investigación en Alimentación y Desarrollo, Carretera a La Victoria km 0.6, Hermosillo, Sonora, Mexico
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, Zaragoza, Spain; ARAID, Aragon I+D Foundation, Zaragoza, Spain
| | - Juan Carlos Mateos-Díaz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| |
Collapse
|
17
|
Yin F, Wang X, Hu Y, Xie H, Liu X, Qin L, Zhang J, Zhou D, Shahidi F. Evaluation of Absorption and Plasma Pharmacokinetics of Tyrosol Acyl Esters in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1248-1256. [PMID: 31927921 DOI: 10.1021/acs.jafc.9b05112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipophenols are regarded as an emerging source of functional food ingredients. However, little is known about their in vivo digestion, absorption, and metabolism. Thus, the pharmacokinetic characteristics in rat and the gut microbial degradation of tyrosol acyl esters (TYr-Es) with fatty acids of C12:0, C18:0, and C18:2 were investigated for the first time. Major metabolites including tyrosol sulfate and tyrosol glucuronide, rather than the parent compounds, were detected in rat plasma after oral administration of TYr-Es. The increased plasma half-life (T1/2) and mean residence time demonstrated that TYr-Es display a longer duration of action in vivo than TYr, potentially leading to higher oral bioavailability. TYr-Es could be hydrolyzed by the gut microbiota to free TYr, which may result in the appearance of the second absorption peak in pharmacokinetic profiles. Therefore, TYr-Es exhibit improved bioavailability compared to that of TYr because of their prolonged duration of action.
Collapse
Affiliation(s)
- Fawen Yin
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Xinmiao Wang
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Yuanyuan Hu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Hongkai Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing 100083 , People's Republic of China
| | - Xiaoyang Liu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Lei Qin
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Jianghua Zhang
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Dayong Zhou
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Fereidoon Shahidi
- Department of Biochemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X9 , Canada
| |
Collapse
|
18
|
Zhang M, Yu XW, Xu Y, Guo RT, Swapna GVT, Szyperski T, Hunt JF, Montelione GT. Structural Basis by Which the N-Terminal Polypeptide Segment of Rhizopus chinensis Lipase Regulates Its Substrate Binding Affinity. Biochemistry 2019; 58:3943-3954. [PMID: 31436959 PMCID: PMC7195698 DOI: 10.1021/acs.biochem.9b00462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of an important group of industrial enzymes, Rhizopus lipases, exhibit valuable hydrolytic features that underlie their biological functions. Particularly important is their N-terminal polypeptide segment (NTPS), which is required for secretion and proper folding but is removed in the process of enzyme maturation. A second common feature of this class of lipases is the α-helical "lid", which regulates the accessibility of the substrate to the enzyme active site. Some Rhizopus lipases also exhibit "interfacial activation" by micelle and/or aggregate surfaces. While it has long been recognized that the NTPS is critical for function, its dynamic features have frustrated efforts to characterize its structure by X-ray crystallography. Here, we combine nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the structure and dynamics of Rhizopus chinensis lipase (RCL) with its 27-residue NTPS prosequence (r27RCL). Both r27RCL and the truncated mature form of RCL (mRCL) exhibit biphasic interfacial activation kinetics with p-nitrophenyl butyrate (pNPB). r27RCL exhibits a substrate binding affinity significantly lower than that of mRCL due to stabilization of the closed lid conformation by the NTPS. In contrast to previous predictions, the NTPS does not enhance lipase activity by increasing surface hydrophobicity but rather inhibits activity by forming conserved interactions with both the closed lid and the core protein structure. Single-site mutations and kinetic studies were used to confirm that the NTPS serves as internal competitive inhibitor and to develop a model of the associated process of interfacial activation. These structure-function studies provide the basis for engineering RCL lipases with enhanced catalytic activities.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Rey-Ting Guo
- Industrial Enzyme National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - G. V. T. Swapna
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260. USA
| | - John F. Hunt
- Department of Biological Science, Columbia University, New York, New York 10027, USA
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
19
|
Zhang Z, Wang D, Xu Y. Soluble expression of mature Rhizopus chinensis lipase in Escherichia coli and enhancement of its ester synthesis activity. Protein Expr Purif 2019; 163:105443. [PMID: 31185288 DOI: 10.1016/j.pep.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 06/07/2019] [Indexed: 11/25/2022]
Abstract
The production of membrane-associated lipase from Rhizopus chinensis (RCL), which has a high ester synthesis activity and important potential applications, is difficult in heterologous expression system such as Escherichia coli and often leads to the formation of inclusion bodies. Here, we describe the soluble expression of mature RCL (mRCL) using maltose-binding protein (MBP) as a solubility-enhancing tag in the E. coli system. Although the MBP-mRCL fusion protein was soluble, mRCL was insoluble after removal of the MBP tag in E. coli BL21 (DE3). Using E. coli BL21 trxB (DE3) as an expression host, soluble mRCL was obtained and expression conditions were optimized. Furthermore, the ester synthesis activity of soluble mRCL was increased by detergent treatment and was found to be 3.5 and 1.5 times higher than those of the untreated enzyme and naturally occurring enzyme, respectively. Overall, this study provides a potential approach for producing active and soluble forms of eukaryotic lipases in a heterologous E. coli expression system.
Collapse
Affiliation(s)
- Zhang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Dong Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
20
|
Economic Method for Extraction/Purification of a Burkholderia cepacia Lipase with Potential Biotechnology Application. Appl Biochem Biotechnol 2019; 189:1108-1126. [DOI: 10.1007/s12010-019-03041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
|
21
|
|
22
|
Ghahremanifard P, Rezaeinezhad N, Rigi G, Ramezani F, Ahmadian G. Designing a novel signal sequence for efficient secretion of Candida antarctica lipase B in E. coli: The molecular dynamic simulation, codon optimization and statistical analysis approach. Int J Biol Macromol 2018; 119:291-305. [DOI: 10.1016/j.ijbiomac.2018.07.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
|
23
|
Perna RF, Tiosso PC, Sgobi LM, Vieira AMS, Vieira MF, Tardioli PW, Soares CMF, Zanin GM. Effects of Triton X-100 and PEG on the Catalytic Properties and Thermal Stability of Lipase from Candida Rugosa Free and Immobilized on Glyoxyl-Agarose. Open Biochem J 2017; 11:66-76. [PMID: 29290831 PMCID: PMC5721316 DOI: 10.2174/1874091x01711010066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 11/22/2022] Open
Abstract
Background Candida rugosa Lipase (CRL) shows a very low alkaline stability that comprises its immobilization on glyoxyl-agarose, which requires pH above 10. In this way, an adaptation from the original method was used; an enzyme solution at pH 7 was slowly added at a suspension of glyoxyl-agarose prepared in bicarbonate buffer, pH 10. This change of protocol was enough for allowing the preparation of derivatives actives of CRL on glyoxyl-agarose and verifying the effect of this modified procedure on the properties of the immobilized enzyme. The effect of the additives Triton-X-100 and polyethylene glycol (PEG) on the enzymatic activity recovery and immobilized enzyme stability was evaluated. Methods The glyoxyl-agarose support was prepared by etherification of 6% agarose beads with glycidol and further oxidation with sodium periodate. CRL was immobilized covalently on glyoxyl-agarose support in the absence and presence of 1% (w/v) Triton-X-100 or 5 g L-1 polyethylene glycol (PEG). The lipolysis activity of the free and immobilized enzyme was determined at 37ºC and pH 7.0, using p-nitrophenyl palmitate (p-NPP) as substrate. Profiles of temperature-activity (37-65ºC, pH 7.0) and pH-activity (6.0-9.5, 37ºC) were evaluated as well as thermal (45ºC and pH 8.0) and operational (15 min batches of p-NPP hydrolysis at 50ºC and pH 8.0) stabilities of free and immobilized CRL. Results Using a single modification of the original protocol, the CRL poorly stable under alkaline conditions could be immobilized on glyoxyl-agarose in its active conformation (recovered activity varying from 10.3 to 30.4%). Besides, the presence of a detergent (Triton-X-100) and an enzyme stabilizer (PEG) contributed to the preparation of more active and more stable biocatalysts, respectively. CRL immobilized on glyoxyl-agarose in the presence of PEG was around 5 times more stable than the free CRL and around 3 times more stable than the CRL immobilized on glyoxyl-agarose in absence of PEG. The higher stability of the CRL-glyoxyl derivative prepared in the presence of PEG allowed its reuse in four successive 15 min-batches of p-nitrophenyl palmitate hydrolysis at 50ºC and pH 8.0. Conclusion The technique of immobilizing enzymes covalently on glyoxyl-agarose showed promising results for Candida rugosa lipase (CRL). The derivatives prepared in the presence of the additives retained two to three times more activity than those prepared in the absence of additives. The enzyme immobilized in presence of PEG was about three times more stable than the enzyme immobilized in absence of this additive. Maximum catalytic activity of the immobilized CRL (in absence of additives) was observed in a temperature 10ºC above that for the free enzyme and the pH of the maximum activity was maintained in the range 6.5-7.5 for free and immobilized CRL.
Collapse
Affiliation(s)
- Rafael F Perna
- Science and Technology Institute, Federal University of Alfenas, Rod. José Aurélio Vilela, Km 533, 11999, 37715-400 Poços de Caldas, MG, Brazil
| | - Poliana C Tiosso
- Department of Chemical Engineering, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR.W, Brazil
| | - Letícia M Sgobi
- Department of Food Engineering, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR.W, Brazil
| | - Angélica M S Vieira
- Department of Food Engineering, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR.W, Brazil
| | - Marcelo F Vieira
- Department of Chemical Engineering, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR.W, Brazil
| | - Paulo W Tardioli
- Departmet of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Cleide M F Soares
- Institute of Technology and Research, Tiradentes University, Av. Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Gisella M Zanin
- Department of Chemical Engineering, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR.W, Brazil
| |
Collapse
|
24
|
Yu XW, Yang M, Jiang C, Zhang X, Xu Y. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6009-6015. [PMID: 28681607 DOI: 10.1021/acs.jafc.7b01884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our previous studies demonstrated that the N-glycans in Rhizopus chinensis lipase (RCL) was important for its secretion. In order to improve the secretion of Rhizopus oryzae lipase (ROL) under the control of the GAP promoter in Komagataella phaffii, two extra N-glycosylation sites were introduced in ROL according to the position of the N-glycosylation sites of RCL by sequence alignment. The results indicated that the secretion level of ROL was strongly improved by N-glycosylation engineering, and the highest value of extracellular enzyme activity was increased from 0.4 ± 0.2 U/mL to 207 ± 6 U/mL in a shake flask. In the 7-L fermenter, the extracellular enzyme activity of the mutant (2600 ± 43 U/mL) and the total protein concentration (2.5 ± 0.2 g/L) were 218- and 6.25-fold higher than these of the parent, respectively. This study presents a strategy for constitutive recombinant expression of ROL using the GAP promoter combined with N-glycosylation engineering, providing a potential enzyme for application in the food industry.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi 214122, P. R. China
| | - Min Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Chuanhuan Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Xiaofeng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi 214122, P. R. China
| |
Collapse
|
25
|
He D, Luo W, Wang Z, Lv P, Yuan Z, Huang S, Xv J. Establishment and application of a modified membrane-blot assay for Rhizomucor miehei lipases aimed at improving their methanol tolerance and thermostability. Enzyme Microb Technol 2017; 102:35-40. [DOI: 10.1016/j.enzmictec.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
26
|
Wang P, Zhang L, Fisher R, Chen M, Liang S, Han S, Zheng S, Sui H, Lin Y. Accurate analysis of fusion expression of Pichia pastoris glycosylphosphatidylinositol-modified cell wall proteins. J Ind Microbiol Biotechnol 2017; 44:1355-1365. [PMID: 28660369 DOI: 10.1007/s10295-017-1962-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/15/2017] [Indexed: 11/24/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. The GPI-modified cell wall proteins GCW21, GCW51, and GCW61 of Pichia pastoris were chosen as anchoring proteins to construct co-expression strains in P. pastoris GS115. The hydrolytic activity and the amount of Candida antarctica lipase B (CALB) displayed on cell surface increased significantly following optimization of the fusion gene dosage and combination of the homogeneous or heterogeneous cell wall proteins. Maximum CALB hydrolytic activity was achieved at 4920 U/g dry cell weight in strain GS115/CALB-GCW (51 + 51 + 61 + 61) after 120 h of methanol induction. Changes in structural morphology and the properties of the cell surfaces caused by co-expression of fusion proteins were observed by transmission electron microscopy (TEM) and on plates containing cell-wall-destabilizing reagent. Our results suggested that both the outer and inner cell layers were significantly altered by overexpression of GPI-modified cell wall proteins. Interestingly, quantitative analysis of the inner layer components showed an increase in β-1,3-glucan, but no obvious changes in chitin in the strains overexpressing GPI-modified cell wall proteins.
Collapse
Affiliation(s)
- Pan Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Rebecca Fisher
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Meiqi Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Xin L, Zhang L, Meng Z, Di W, Han X, Yi H, Cui Y. Lipolytic psychrotrophic bacteria and lipase heat-resistant property in bovine raw milk of North China. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Liang Xin
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Lanwei Zhang
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150090 China
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 China
| | - Zhaoxu Meng
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Wei Di
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Xue Han
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Huaxi Yi
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 China
| | - Yanhua Cui
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150090 China
| |
Collapse
|
28
|
Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expr Purif 2017; 129:143-149. [DOI: 10.1016/j.pep.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
|
29
|
Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng 2016; 122:539-544. [DOI: 10.1016/j.jbiosc.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/22/2022]
|
30
|
Sams L, Paume J, Giallo J, Carrière F. Relevant pH and lipase for in vitro models of gastric digestion. Food Funct 2016; 7:30-45. [PMID: 26527368 DOI: 10.1039/c5fo00930h] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.
Collapse
Affiliation(s)
- Laura Sams
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. and GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Julie Paume
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Jacqueline Giallo
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
31
|
|
32
|
Costa VM, Souza MCMD, Fechine PBA, Macedo AC, Gonçalves LRB. NANOBIOCATALYTIC SYSTEMS BASED ON LIPASE-Fe3O4 AND CONVENTIONAL SYSTEMS FOR ISONIAZID SYNTHESIS: A COMPARATIVE STUDY. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160333s20150137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Zhang M, Yu XW, Swapna GVT, Xiao R, Zheng H, Sha C, Xu Y, Montelione GT. Efficient production of (2)H, (13)C, (15)N-enriched industrial enzyme Rhizopus chinensis lipase with native disulfide bonds. Microb Cell Fact 2016; 15:123. [PMID: 27411547 PMCID: PMC4944435 DOI: 10.1186/s12934-016-0522-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/03/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In order to use most modern methods of NMR spectroscopy to study protein structure and dynamics, isotope-enriched protein samples are essential. Especially for larger proteins (>20 kDa), perdeuterated and Ile (δ1), Leu, and Val methyl-protonated protein samples are required for suppressing nuclear relaxation to provide improved spectral quality, allowing key backbone and side chain resonance assignments needed for protein structure and dynamics studies. Escherichia coli and Pichia pastoris are two of the most popular expression systems for producing isotope-enriched, recombinant protein samples for NMR investigations. The P. pastoris system can be used to produce (13)C, (15)N-enriched and even (2)H,(13)C, (15)N-enriched protein samples, but efficient methods for producing perdeuterated proteins with Ile (δ1), Leu and Val methyl-protonated groups in P. pastoris are still unavailable. Glycosylation heterogeneity also provides challenges to NMR studies. E. coli expression systems are efficient for overexpressing perdeuterated and Ile (δ1), Leu, Val methyl-protonated protein samples, but are generally not successful for producing secreted eukaryotic proteins with native disulfide bonds. RESULTS The 33 kDa protein-Rhizopus chinensis lipase (RCL), an important industrial enzyme, was produced using both P. pastoris and E. coli BL21 trxB (DE3) systems. Samples produced from both systems exhibit identical native disulfide bond formation and similar 2D NMR spectra, indicating similar native protein folding. The yield of (13)C, (15)N-enriched r27RCL produced using P. pastoris was 1.7 times higher that obtained using E. coli, while the isotope-labeling efficiency was ~15 % lower. Protein samples produced in P. pastoris exhibit O-glycosylation, while the protein samples produced in E. coli were not glycosylated. The specific activity of r27RCL from P. pastoris was ~1.4 times higher than that produced in E. coli. CONCLUSIONS These data demonstrate efficient production of (2)H, (13)C, (15)N-enriched, Ile (δ1), Leu, Val methyl-protonated eukaryotic protein r27RCL with native disulfides using the E. coli BL21 trxB (DE3) system. For certain NMR studies, particularly efforts for resonance assignments, structural studies, and dynamic studies, E. coli provides a cost-effective system for producing isotope-enriched RCL. It should also be potential for producing other (2)H, (13)C, (15)N-enriched, Ile (δ1), Leu, Val methyl-protonated eukaryotic proteins with native disulfide bonds.
Collapse
Affiliation(s)
- Meng Zhang
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Xiao-Wei Yu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- />State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - G. V. T. Swapna
- />Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rong Xiao
- />Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Haiyan Zheng
- />Biological Mass Spectrometry Facility, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Chong Sha
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Yan Xu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- />State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Gaetano T. Montelione
- />Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
34
|
Shu Z, Lin H, Shi S, Mu X, Liu Y, Huang J. Cell-bound lipases from Burkholderia sp. ZYB002: gene sequence analysis, expression, enzymatic characterization, and 3D structural model. BMC Biotechnol 2016; 16:38. [PMID: 27142276 PMCID: PMC4855798 DOI: 10.1186/s12896-016-0269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Results Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. Conclusions The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0269-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China. .,Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China. .,College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117, China.
| | - Hong Lin
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117, China
| | - Shaolei Shi
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117, China
| | - Xiangduo Mu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117, China
| | - Yanru Liu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.,College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117, China
| | - Jianzhong Huang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China. .,Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China. .,College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117, China.
| |
Collapse
|
35
|
Probing role of key residues in the divergent evolution of Yarrowia lipolytica lipase 2 and Aspergillus niger eruloyl esterase A. Microbiol Res 2015; 178:27-34. [DOI: 10.1016/j.micres.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/09/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
|
36
|
Yang M, Yu XW, Zheng H, Sha C, Zhao C, Qian M, Xu Y. Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb Cell Fact 2015; 14:40. [PMID: 25880561 PMCID: PMC4417512 DOI: 10.1186/s12934-015-0225-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
Background The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lipases, and it has four potential N-linked glycosylation sites. The aim of the present study was to determine whether RCL undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in RCL expression and function. Results In this study, we demonstrated that RCL expressed in Pichia pastoris was N-glycosylated at the sites N-14, N-48 and N-60. The majority of the sites N-14 and N-60 were glycosylated, but the glycosylation degree of the site N-48 was only a very small portion. The glycan on N-60 played a key role in the expression and secretion of RCL. RT-PCR results showed that the mRNA level of proRCLCN60Q remained unchanged even though the protein secretion was hampered. Although the N-glycan on N-14 had no effect on the secretion of RCL, this glycan was beneficial for the lipase catalytic activity. On the other hand, the little amount of N-glycan on N-48 had no effect both on the secretion and activity of RCL in P. pastoris. Moreover, the thermostability analysis of RCL revealed that the lipase with more N-glycan was more thermostable. Conclusions RCL was N-glycosylated when expressed in P. pastoris. The N-glycans of RCL on the different sites had different functions for the secretion and enzymatic properties of the lipase. Our report may also provide theoretical support for the improvement of enzyme expression and stability based on the N-linked glycosylation modification to meet the future needs of the biotechnological industry.
Collapse
Affiliation(s)
- Min Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility at Robert wood Johnson medical school and Rutgers, the state university of new jersey, Piscataway, NJ 08854, USA.
| | - Chong Sha
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility at Robert wood Johnson medical school and Rutgers, the state university of new jersey, Piscataway, NJ 08854, USA.
| | - Meiqian Qian
- Biological Mass Spectrometry Facility at Robert wood Johnson medical school and Rutgers, the state university of new jersey, Piscataway, NJ 08854, USA.
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
37
|
Ghadi A, Tabandeh F, Mahjoub S, Mohsenifar A, Roshan FT, Alavije RS. Fabrication and Characterization of Core-Shell Magnetic Chitosan Nanoparticles as a Novel carrier for Immobilization of Burkholderia cepacia Lipase. J Oleo Sci 2015; 64:423-30. [DOI: 10.5650/jos.ess14236] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arezoo Ghadi
- Faculty of Chemical Engineering, Noshirvani University of Technology
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)
| | - Fatemeh Tabandeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)
| | - Soleiman Mahjoub
- Department of Biochemistry & Biophysics, Faculty of Medicine, Babol University of Medical Sciences
| | - Afshin Mohsenifar
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University
| | | | - Razieh Shafiee Alavije
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)
| |
Collapse
|
38
|
Patel V, Nambiar S, Madamwar D. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Biochemical properties of the alkaline lipase of Bacillus flexus XJU-1 and its detergent compatibility. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0429-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Bhanja Dey T, Kuhad RC. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Lett Appl Microbiol 2014; 59:493-9. [PMID: 24964826 DOI: 10.1111/lam.12300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Solid-state fermentation (SSF) at 30°C for 72 h with four generally recognized as safe (GRAS) filamentous fungi (Aspergillus oryzae NCIM 1212, Aspergillus awamori MTCC No. 548, Rhizopus oligosporus NCIM 1215 and Rhizopus oryzae RCK2012) showed high efficiency for the improvement of water-soluble total phenolic content (TPC) and antioxidant properties including ABTS(●+) [2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] and DPPH(●) (2,2'-diphenyl-1-picrylhydrazyl) scavenging capacities of four whole grain cereals, namely wheat, brown rice, maize and oat. A maximum 14-fold improvement in TPC (11·61 mg gallic acid equivalent g(-1) grain) was observed in A. oryzae fermented wheat, while extract of R. oryzae fermented wheat (ROFW) showed maximum of 6·6-fold and fivefold enhancement of DPPH(●) scavenging property (8·54 μmol Trolox equivalent g(-1) grain) and ABTS(●+) scavenging activity (19·5 μmol Trolox equivalent g(-1) grain), respectively. The study demonstrates that SSF is an efficient method for the improvement of antioxidant potentials of cereals and R. oryzae RCK2012 fermented wheat can be a powerful source of natural antioxidants. SIGNIFICANCE AND IMPACT OF THE STUDY Antioxidant-rich food products are getting popularity day by day. In this study, potential of solid-state fermentation (SSF) has been studied for the improvement of antioxidant potential of different cereals by GRAS micro-organisms. The comparative evaluation of the antioxidant potential of various fungal fermented products derived from whole grain cereals, such as wheat, brown rice, oat and maize, has been carried out. Among these, Rhizopus oryzae RCK2012-fermented wheat was observed as a potent source of natural antioxidants. A diet containing fermented cereals would be useful for the prevention of free radical-mediated diseases.
Collapse
Affiliation(s)
- T Bhanja Dey
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
41
|
Kinetics of adsorption of lipase onto different mesoporous materials: Evaluation of Avrami model and leaching studies. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Effect of visible light on catalytic hydrolysis of p-nitrophenyl palmitate by the Pseudomonas cepacia lipase immobilized on sol-gel support. Bioprocess Biosyst Eng 2014; 37:2353-9. [PMID: 24879090 DOI: 10.1007/s00449-014-1213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
This paper demonstrates Pseudomonas cepacia lipase catalyzed hydrolysis of p-nitrophenyl palmitate under irradiation of light with wavelengths of 250-750 nm. The reaction follows Michaelis-Menten Kinetics and the light irradiation increases the overall rate of hydrolysis. Using Lineweaver-Burk plot K M and V max values for the reaction in presence of light are found to be 39.07 and 66.67 mM/min/g, respectively; while for the same reaction under dark condition, the values are 7.08 and 10.21 mM/min/g. The linear form of enzyme dependent rate of reaction confirms that no mass-transfer limitations are present and the reaction is a kinetically controlled enzymatic reaction.
Collapse
|
43
|
Immobilization of (S)-mandelate dehydrogenase and its catalytic performance on stereoselective transformation of mandelic acid. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Pliego-Sandoval J, Amaya-Delgado L, Mateos-Díaz JC, Rodríguez J, Córdova J, Alba A, Jaubert S, Herrera-López EJ. Multiplex Gas Sampler for Monitoring Respirometry in Column-Type Bioreactors used in Solid-State Fermentation. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Improving the catalytic performance of porcine pancreatic lipase in the presence of [MMIm][MeSO4] with the modification of functional ionic liquids. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Yu XW, Zhu SS, Xiao R, Xu Y. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping. J Lipid Res 2014; 55:1044-51. [PMID: 24670990 DOI: 10.1194/jlr.m043950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shan-Shan Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
47
|
Nalder TD, Marshall S, Pfeffer FM, Barrow CJ. Characterisation of lipase fatty acid selectivity using novel omega-3 pNP-acyl esters. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Reshmi R, Sugunan S. Superior activities of lipase immobilized on pure and hydrophobic clay supports: Characterization and catalytic activity studies. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Efficient secretion of lipase r27RCL in Pichia pastoris by enhancing the disulfide bond formation pathway in the endoplasmic reticulum. ACTA ACUST UNITED AC 2013; 40:1241-9. [DOI: 10.1007/s10295-013-1328-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/06/2013] [Indexed: 12/14/2022]
Abstract
Abstract
The lipase r27RCL from Rhizopus chinensis CCTCC M201021 was heterologously expressed in Pichia pastoris GS115 by simultaneous co-expression with two secretion factors ERO1p and PDI involved in the endoplasmic reticulum (ER). Compared to the expression of the lipase alone (12,500 U/ml), co-expression with these two proteins resulted in the production of larger total quantities of enzymes. The largest increase was seen when the combined ERO1p/PDI system was co-expressed, resulting in approximately 30 % higher enzyme yields (16,200 U/ml) than in the absence of co-expressed secretion factors. The extracellular protein concentration of the recombinant strain Co XY RCL-5 reached 9.39 g/l in the 7-l fermentor. Simultaneously, the fermentation time was also shortened by about 8 h compared to that of the control. The substrate-specific consumption rate (Qs) and the product-specific production rate (Qp) were both investigated in this research. In conclusion, the space–time yield was improved by co-expression with ERO1p and PDI. This is a potential strategy for high level expression of other heterologous proteins in P. pastoris.
Collapse
|
50
|
Sha C, Yu XW, Lin NX, Zhang M, Xu Y. Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase. Enzyme Microb Technol 2013; 53:438-43. [PMID: 24315648 DOI: 10.1016/j.enzmictec.2013.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 02/01/2023]
Abstract
Pichia pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, but there is still a large room of improvement for this expression system. Two factors drastically influence the lipase r27RCL production from Rhizopus chinensis CCTCC M201021, which are gene dosage and protein folding in the endoplasmic reticulum (ER). Regarding the effect of gene dosage, the enzyme activity for recombinant strain with three copies lipase gene was 1.95-fold higher than that for recombinant strain with only one copy lipase gene. In addition, the lipase production was further improved by co-expression with chaperone PDI involved in the disulfide bond formation in the ER. Overall, the maximum enzyme activity reached 355U/mL by the recombinant strain with one copy chaperone gene PDI plus five copies lipase gene proRCL in shaking flasks, which was 2.74-fold higher than that for the control strain with only one copy lipase gene. Overall, co-expression with PDI vastly increased the capacity for processing proteins of ER in P. pastoris.
Collapse
Affiliation(s)
- Chong Sha
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | | | | | | | | |
Collapse
|