1
|
Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism. Arch Biochem Biophys 2016; 608:52-73. [DOI: 10.1016/j.abb.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022]
|
2
|
Dimov S, Ivanova P, Harizanova N, Ivanova I. Bioactive Peptides used by Bacteria in the Concur-Rence for the Ecological Niche: General Classification and Mode of Action (Overview). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
3
|
Membrane topology of the colicin E1 channel using genetically encoded fluorescence. Biochemistry 2011; 50:4830-42. [PMID: 21528912 DOI: 10.1021/bi101934e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane topology of the colicin E1 channel domain was studied by fluorescence resonance energy transfer (FRET). The FRET involved a genetically encoded fluorescent amino acid (coumarin) as the donor and a selectively labeled cysteine residue tethered with DABMI (4-(dimethylamino)phenylazophenyl-4'-maleimide) as the FRET acceptor. The fluorescent coumarin residue was incorporated into the protein via an orthogonal tRNA/aminoacyl-tRNA synthetase pair that allowed selective incorporation into any site within the colicin channel domain. Each variant harbored a stop (TAG) mutation for coumarin incorporation and a cysteine (TGT) mutation for DABMI attachment. Six interhelical distances within helices 1-6 were determined using FRET analysis for both the soluble and membrane-bound states. The FRET data showed large changes in the interhelical distances among helices 3-6 upon membrane association providing new insight into the membrane-bound structure of the channel domain. In general, the coumarin-DABMI FRET interhelical efficiencies decreased upon membrane binding, building upon the umbrella model for the colicin channel. A tentative model for the closed state of the channel domain was developed based on current and previously published FRET data. The model suggests circular arrangement of helices 1-7 in a clockwise direction from the extracellular side and membrane interfacial association of helices 1, 6, 7, and 10 around the central transmembrane hairpin formed by helices 8 and 9.
Collapse
|
4
|
Zhang XYZ, Lloubès R, Duché D. Channel domain of colicin A modifies the dimeric organization of its immunity protein. J Biol Chem 2010; 285:38053-61. [PMID: 20923759 DOI: 10.1074/jbc.m110.144071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins conferring immunity against pore-forming colicins are localized in the Escherichia coli inner membrane. Their protective effects are mediated by direct interaction with the C-terminal domain of their cognate colicins. Cai, the immunity protein protecting E. coli against colicin A, contains four cysteine residues. We report cysteine cross-linking experiments showing that Cai forms homodimers. Cai contains four transmembrane segments (TMSs), and dimerization occurs via the third TMS. Furthermore, we observe the formation of intramolecular disulfide bonds that connect TMS2 with either TMS1 or TMS3. Co-expression of Cai with its target, the colicin A pore-forming domain (pfColA), in the inner membrane prevents the formation of intermolecular and intramolecular disulfide bonds, indicating that pfColA interacts with the dimer of Cai and modifies its conformation. Finally, we show that when Cai is locked by disulfide bonds, it is no longer able to protect cells against exogenous added colicin A.
Collapse
Affiliation(s)
- Xiang Y-Z Zhang
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS UPR-9027, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
5
|
Chikindas ML, Novák J, Caufield PW, Schilling K, Tagg JR. Microbially-produced peptides having potential application to the prevention of dental caries. Int J Antimicrob Agents 2010; 9:95-105. [PMID: 18611824 DOI: 10.1016/s0924-8579(97)00040-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/1997] [Indexed: 10/17/2022]
Abstract
Strategies advanced to decrease the occurrence of dental caries have in the past typically focussed upon attempting to reduce plaque accumulation by application of broad-spectrum antibacterial agents. In recent years however there has been growing interest in the application of a more targeted approach to the selective elimination from plaque of those bacterial species that are specifically implicated as the aetiological agents of this disease. This review focuses upon a number of the small bacterially-produced peptide antibiotics known as bacteriocins that are currently being explored for their potential role in the treatment and prevention of dental caries.
Collapse
|
6
|
Smajs D, Dolezalová M, Macek P, Zídek L. Inactivation of colicin Y by intramembrane helix-helix interaction with its immunity protein. FEBS J 2008; 275:5325-31. [PMID: 18803667 DOI: 10.1111/j.1742-4658.2008.06662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of hybrids between colicins U and Y and the mutagenesis of the colicin Y gene (cya) have revealed amino acid residues important for interactions between colicin Y and its cognate immunity protein (Cyi). Four such residues (I578, T582, Y586 and V590) were found in helices 8 and 9 of the colicin Y pore-forming domain. To verify the importance of these residues, the corresponding amino acids in the colicin B protein were mutated to the residues present in colicin Y. An Escherichia coli strain with cloned colicin Y immunity gene (cyi) inactivated this mutant, but not the wild-type colicin B. In addition, interacting amino acid pairs in Cya and Cyi were identified using a set of Cyi point mutant strains. These data are consistent with antiparallel helix-helix interactions between Cyi helix T3 and Cya helix 8 of the pore-forming domain as a molecular mechanism of colicin Y inactivation by its immunity protein.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 801] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
White D, Musse AA, Wang J, London E, Merrill AR. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. J Biol Chem 2006; 281:32375-84. [PMID: 16854987 DOI: 10.1074/jbc.m605880200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound closed state of the colicin E1 channel domain was investigated by site-directed fluorescence labeling using a bimane fluorophore attached to each single cysteine residue within helix 2 of each mutant protein. The fluorescence properties of the bimane fluorophore were measured for the membrane-associated form of the closed channel and included fluorescence emission maximum, fluorescence anisotropy, apparent polarity, surface accessibility, and membrane bilayer penetration depth. The fluorescence data show that helix 2 is an amphipathic alpha-helix that is situated parallel to the membrane surface, but it is less deeply embedded within the bilayer interfacial region than is helix 1 in the closed channel. A least squares fit of the various data sets to a harmonic wave function indicated that the periodicity and angular frequency for helix 2 in the membrane-bound state are typical for an amphipathic alpha-helix (3.8 +/- 0.1 residues per turn and 94 +/- 4 degrees, respectively) that is located at an interfacial region of a membrane bilayer. Dual quencher analysis also revealed that helix 2 is peripherally membrane associated, with one face of the helix dipping into the interfacial region of the lipid bilayer and the other face projecting outwardly into the aqueous solvent. Finally, our data show that helices 1 and 2 remain independent helices upon membrane association with a short connector link (Tyr(363)-Gly(364)) and that short amphipathic alpha-helices participate in the formation of a lipid-dependent, toroidal pore for this colicin.
Collapse
Affiliation(s)
- Dawn White
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
9
|
Chatterjee C, Paul M, Xie L, van der Donk WA. Biosynthesis and mode of action of lantibiotics. Chem Rev 2005; 105:633-84. [PMID: 15700960 DOI: 10.1021/cr030105v] [Citation(s) in RCA: 563] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
10
|
Hoffmann A, Schneider T, Pag U, Sahl HG. Localization and functional analysis of PepI, the immunity peptide of Pep5-producing Staphylococcus epidermidis strain 5. Appl Environ Microbiol 2004; 70:3263-71. [PMID: 15184120 PMCID: PMC427782 DOI: 10.1128/aem.70.6.3263-3271.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pep5 is a cationic pore-forming lantibiotic produced by Staphylococcus epidermidis strain 5. The producer strain protects itself from the lethal action of its own bacteriocin through the 69-amino-acid immunity peptide PepI. The N-terminal segment of PepI contains a 20-amino-acid stretch of apolar residues, whereas the C terminus is very hydrophilic, with a net positive charge. We used green fluorescent protein (GFP)-PepI fusions to obtain information on its localization in vivo. PepI was found to occur outside the cytoplasm and to accumulate at the membrane-cell wall interface. The extracellular localization appeared essential for conferring immunity. We analyzed the functional role of the specific segments by constructing various mutant peptides, which were also fused to GFP. When the hydrophobic N-terminal segment of PepI was disrupted by introducing charged amino acids, the export of PepI was blocked and clones expressing such mutant peptides were Pep5 sensitive. When PepI was successively shortened at the C terminus, in contrast, its export properties remained unchanged whereas its ability to confer immunity was gradually reduced. The results show that the N-terminal part is required for the transport of PepI and that the C-terminal part is important for conferring the immunity phenotype. A concept based on target shielding is proposed for the PepI immunity mechanism.
Collapse
Affiliation(s)
- Anja Hoffmann
- Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
11
|
Fridd SL, Gökçe I, Lakey JH. High level expression of His-tagged colicin pore-forming domains and reflections on the sites for pore formation in the inner membrane. Biochimie 2002; 84:477-83. [PMID: 12423791 DOI: 10.1016/s0300-9084(02)01418-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There exists ample evidence for the assumption that pore-forming colicins cannot exert their toxicity within the producing cell and that they must gain access to the outer face of the cytoplasmic membrane to achieve this. We wished to construct pET-vectors to produce pore-forming domains of colicin A and N with N-terminal hexa-histidine tags under the control of a T7 promoter. This was only possible when the correct immunity protein was also present. Hence it appears that this system exhibits the peculiarity that there is a toxicity associated with the over produced pore-forming domain. However, when the ratio of colicin to immunity protein is compared it is still clear that direct insertion into the cytoplasmic membrane does not occur and that membrane translocation of the colicin at limited sites may be occurring. This article reviews previous literature on the subject in terms of a model for limited sites of colicin action.
Collapse
Affiliation(s)
- Susan L Fridd
- School of Biochemistry and Genetics, University of upon Tyne NE2 4HH, Newcastle, UK
| | | | | |
Collapse
|
12
|
Duché D. The pore-forming domain of colicin A fused to a signal peptide: a tool for studying pore-formation and inhibition. Biochimie 2002; 84:455-64. [PMID: 12423789 DOI: 10.1016/s0300-9084(02)01424-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pore-forming colicins are plasmid-encoded bacteriocins that kill Escherichia coli and closely related bacteria. They bind to receptors in the outer membrane and are translocated across the cell envelope to the inner membrane where they form voltage-dependent ion-channels. Colicins are composed of three domains, with the C-terminal domain responsible for pore-formation. Isolated C-terminal pore-forming domains produced in the cytoplasm of E. coli are inactive due to the polarity of the transmembrane electrochemical potential, which is the opposite of that required. However, the pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of E. coli from the periplasmic side, forming a functional channel. Sp-pfColA is specifically inhibited by the colicin A immunity protein (Cai). This construct has been used to investigate colicin A channel formation in vivo and to characterise the interaction of pfColA with Cai within the inner membrane. These points will be developed further in this review.
Collapse
Affiliation(s)
- Denis Duché
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph-Aiguier, 13402 Marseille cedex 20, France.
| |
Collapse
|
13
|
Smarda J, Matĕjková P, Vavrícková A. Translocation of colicin from the receptor to the inner cell membrane: function of the peptidoglycan layer. Folia Microbiol (Praha) 2002; 47:213-7. [PMID: 12094727 DOI: 10.1007/bf02817640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitivity of spheroplasts (prepared in two ways) of a colicin-sensitive strain, of colicin-resistant and of colicin-tolerant mutants and of strains immune to colicins E1 and E2 was estimated and compared. Generally, the removal of the peptidoglycan layer brought about a slight nonspecific support for colicin translocation across the cell wall in sensitive, tolB tolerant and immune bacteria. tolB spheroplasts were colicin E1-sensitive, but E2-insensitive. Spheroplasts were always fragile and lysed spontaneously, especially those produced by lysozyme. Bacteria carrying tolA, tolQ and tolR mutations kept their colicin insensitivity as spheroplasts, just as the resistant ones. Bacteria rendered colicinogenic and hence colicin-immune turned to high colicin sensitivity in spheroplast form. The results indicate a change in plasma membrane associated with the spheroplast formation.
Collapse
Affiliation(s)
- J Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, 662 43 Brno, Czechia
| | | | | |
Collapse
|
14
|
Nardi A, Corda Y, Baty D, Duché D. Colicin A immunity protein interacts with the hydrophobic helical hairpin of the colicin A channel domain in the Escherichia coli inner membrane. J Bacteriol 2001; 183:6721-5. [PMID: 11673448 PMCID: PMC95509 DOI: 10.1128/jb.183.22.6721-6725.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The colicin A pore-forming domain (pfColA) was fused to a bacterial signal peptide (sp-pfColA). This was inserted into the Escherichia coli inner membrane in functional form and could be coimmunoprecipitated with epitope-tagged immunity protein (EpCai). We constructed a series of fusion proteins in which various numbers of sp-pfColA alpha-helices were fused to alkaline phosphatase (AP). We showed that a fusion protein made up of the hydrophobic alpha-helices 8 and 9 of sp-pfColA fused to AP was specifically coimmunoprecipitated with EpCai produced in the same cells. This is the first biochemical evidence that Cai recognizes and interacts with the colicin A hydrophobic helical hairpin.
Collapse
Affiliation(s)
- A Nardi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, Marseille, France
| | | | | | | |
Collapse
|
15
|
Smajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol 2001; 183:3949-57. [PMID: 11395458 PMCID: PMC95277 DOI: 10.1128/jb.183.13.3949-3957.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5.2-kb ColJs plasmid of a colicinogenic strain of Shigella sonnei (colicin type 7) was isolated and sequenced. pColJs was partly homologous to pColE1 and to pesticin-encoding plasmid pPCP1, mainly in the rep, mob, and cer regions. A 1.2-kb unique region of pColJs showed significantly different G+C content (34%) compared to the rest of pColJs (53%). Within the unique region, seven open reading frames (ORFs) were identified. ORF94 was shown to code for colicin Js activity (cja), a 94-amino-acid polypeptide (molecular mass, 10.4 kDa); ORF129 (cji) was shown to code for the 129-amino-acid colicin Js immunity protein (molecular mass, 14.3 kDa); and ORF65 was shown to be involved in colicin Js release by producer bacteria (cjl) coding for a 65-amino-acid polypeptide (molecular mass, 7.5 kDa). In contrast to the gene order in other colicin operons, the cjl gene was found upstream from cja. Moreover, the promoter upstream from cjl was similar to promoters described upstream from several colicin activity genes. The cji gene was found to be located downstream from cja with a transcription polarity opposite to that of the cjl and cja genes. The cja, cji, and cjl genes were not similar to other known colicin genes. Colicin Js was purified as an inactive fusion protein with an N-terminal histidine tag. Activity of the purified fusion form of colicin Js was restored after cleavage of the amino acids fused to the colicin Js N terminus.
Collapse
Affiliation(s)
- D Smajs
- Department of Microbiology and Molecular Genetics and Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
16
|
Lindeberg M, Cramer WA. Identification of specific residues in colicin E1 involved in immunity protein recognition. J Bacteriol 2001; 183:2132-6. [PMID: 11222616 PMCID: PMC95113 DOI: 10.1128/jb.183.6.2132-2136.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basis of specificity between pore-forming colicins and immunity proteins was explored by interchanging residues between colicins E1 (ColE1) and 10 (Col10) and testing for altered recognition by their respective immunity proteins, Imm and Cti. A total of 34 divergent residues in the pore-forming domain of ColE1 between residues 419 and 501, a region previously shown to contain the specificity determinants for Imm, were mutagenized to the corresponding Col10 sequences. The residue changes most effective in converting ColE1 to the Col10 phenotype are residue 448 at the N terminus of helix VI and residues 470, 472, and 474 at the C terminus of helix VII. Mutagenesis of helix VI residues 416 to 419 in Col10 to the corresponding ColE1 sequence resulted in increased recognition by Imm and loss of recognition by Cti.
Collapse
Affiliation(s)
- M Lindeberg
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906-1392, USA.
| | | |
Collapse
|
17
|
Sablon E, Contreras B, Vandamme E. Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 68:21-60. [PMID: 11036685 DOI: 10.1007/3-540-45564-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A survey is given of the main classes of bacteriocins, produced by lactic acid bacteria: I. lantibiotics II. small heat-stable non-lanthionine containing membrane-active peptides and III. large heat-labile proteins. First, their mode of action is detailed, with emphasis on pore formation in the cytoplasmatic membrane. Subsequently, the molecular genetics of several classes of bacteriocins are described in detail, with special attention to nisin as the most prominent example of the lantibiotic-class. Of the small non-lanthionine bacteriocin class, the Lactococcus lactococcins, and the Lactobacillus sakacin A and plantaricin A-bacteriocins are discussed. The principles and mechanisms of immunity and resistance towards bacteriocins are also briefly reported. The biosynthesis of bacteriocins is treated in depth with emphasis on response regulation, post-translational modification, secretion and proteolytic activation of bacteriocin precursors. To conclude, the role of the leader peptides is outlined and a conceptual model for bacteriocin maturation is proposed.
Collapse
Affiliation(s)
- E Sablon
- Innogenetics N.V., Ghent, Belgium
| | | | | |
Collapse
|
18
|
van Geest M, Lolkema JS. Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 2000; 64:13-33. [PMID: 10704472 PMCID: PMC98984 DOI: 10.1128/mmbr.64.1.13-33.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.
Collapse
Affiliation(s)
- M van Geest
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
19
|
Pag U, Heidrich C, Bierbaum G, Sahl HG. Molecular analysis of expression of the lantibiotic pep5 immunity phenotype. Appl Environ Microbiol 1999; 65:591-8. [PMID: 9925587 PMCID: PMC91066 DOI: 10.1128/aem.65.2.591-598.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lantibiotic Pep5 is produced by Staphylococcus epidermidis 5. Within its biosynthetic gene cluster, the immunity gene pepI, providing producer self-protection, is localized upstream of the structural gene pepA. Pep5 production and the immunity phenotype have been found to be tightly coupled (M. Reis, M. Eschbach-Bludau, M. I. Iglesias-Wind, T. Kupke, and H.-G. Sahl, Appl. Environ. Microbiol. 60:2876-2883, 1994). To study this phenomenon, we analyzed pepA and pepI transcription and translation and constructed a number of strains containing various fragments of the gene cluster and expressing different levels of immunity. Complementation of a pepA-expressing strain with pepI in trans did not result in phenotypic immunity or production of PepI. On the other hand, neither pepA nor its product was found to be involved in immunity, since suppression of the translation of the pepA mRNA by mutation of the ATG start codon did not reduce the level of immunity. Moreover, homologous and heterologous expression of pepI from a xylose-inducible promoter resulted in significant Pep5 insensitivity. Most important for expression of the immunity phenotype was the stability of pepI transcripts, which in the wild-type strain, is achieved by an inverted repeat with a free energy of -56.9 kJ/mol, localized downstream of pepA. We performed site-directed mutagenesis to study the functional role of PepI and constructed F13D PepI, I17R PepI, and PepI 1-65; all mutants showed reduced levels of immunity. Western blot analysis indicated that F13D PepI and PepI 1-65 were not produced correctly or were partially degraded, while I17R PepI apparently was less efficient in providing self-protection than the wild-type PepI.
Collapse
Affiliation(s)
- U Pag
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
20
|
Lagos R, Villanueva JE, Monasterio O. Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol 1999; 181:212-7. [PMID: 9864332 PMCID: PMC103551 DOI: 10.1128/jb.181.1.212-217.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene coding for the immunity protein (mceB) and the structural gene of microcin E492 (mceA), a low-molecular-weight channel-forming bacteriocin produced by a strain of Klebsiella pneumoniae, have been characterized. The microcin gene codes for a precursor protein of either 99 or 103 amino acids. Protein sequencing of the N-terminal region of microcin E492 unequivocally identified this gene as the microcin structural gene and indicated that this microcin is synthesized as a precursor protein that is cleaved at either amino acid 15 or 19, at a site resembling the double-glycine motif. The gene encoding the 95-amino-acid immunity protein (mceB) was identified by cloning the DNA segment that encodes only this polypeptide into an expression vector and demonstrating the acquisition of immunity to microcin E492. As expected, the immunity protein was found to be associated with the inner membrane. Analysis of the DNA sequence indicates that these genes belong to the same family as microcin 24, and they do not share structural motifs with any other known channel-forming bacteriocin. The organization of the microcin- and immunity protein-encoding genes suggests that they are coordinately expressed.
Collapse
Affiliation(s)
- R Lagos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago,
| | | | | |
Collapse
|
21
|
Pilsl H, Smajs D, Braun V. The tip of the hydrophobic hairpin of colicin U is dispensable for colicin U activity but is important for interaction with the immunity protein. J Bacteriol 1998; 180:4111-5. [PMID: 9696757 PMCID: PMC107405 DOI: 10.1128/jb.180.16.4111-4115.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrophobic C terminus of pore-forming colicins associates with and inserts into the cytoplasmic membrane and is the target of the respective immunity protein. The hydrophobic region of colicin U of Shigella boydii was mutated to identify determinants responsible for recognition of colicin U by the colicin U immunity protein. Deletion of the tip of the hydrophobic hairpin of colicin U resulted in a fully active colicin that was no longer inactivated by the colicin U immunity protein. Replacement of eight amino acids at the tip of the colicin U hairpin by the corresponding amino acids of the related colicin B resulted in colicin U(575-582ColB), which was inactivated by the colicin U immunity protein to 10% of the level of inactivation of the wild-type colicin U. The colicin B immunity protein inactivated colicin U(575-582ColB) to the same degree. These results indicate that the tip of the hydrophobic hairpin of colicin U and of colicin B mainly determines the interaction with the corresponding immunity proteins and is not required for colicin activity. Comparison of these results with published data suggests that interhelical loops and not membrane helices of pore-forming colicins mainly interact with the cognate immunity proteins and that the loops are located in different regions of the A-type and E1-type colicins. The colicin U immunity protein forms four transmembrane segments in the cytoplasmic membrane, and the N and C termini face the cytoplasm.
Collapse
Affiliation(s)
- H Pilsl
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
22
|
Abstract
Colicins are toxic exoproteins produced by bacteria of colicinogenic strains of Escherichia coli and some related species of Enterobacteriaceae, during the growth of their cultures. They inhibit sensitive bacteria of the same family. About 35% E. coli strains appearing in human intestinal tract are colicinogenic. Synthesis of colicins is coded by genes located on Col plasmids. Until now more than 34 types of colicins have been described, 21 of them in greater detail, viz. colicins A, B, D, E1-E9, Ia, Ib, JS, K, M, N, U, 5, 10. In general, their interaction with sensitive bacteria includes three steps: (1) binding of the colicin molecule to a specific receptor in the bacterial outer membrane; (2) its translocation through the cell envelope; and (3) its lethal interaction with the specific molecular target in the cell. The classification of colicins is based on differences in the molecular events of these three steps.
Collapse
Affiliation(s)
- J Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
23
|
Dayem MA, Fleury Y, Devilliers G, Chaboisseau E, Girard R, Nicolas P, Delfour A. The putative immunity protein of the gram-positive bacteria Leuconostoc mesenteroides is preferentially located in the cytoplasm compartment. FEMS Microbiol Lett 1996; 138:251-9. [PMID: 9026455 DOI: 10.1111/j.1574-6968.1996.tb08166.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Immunity proteins are though to protect bacteriocin-producing bacterial strains against the bactericidal effects of their own bacteriocin. The immunity protein which protects the lactic acid bacterium Leuconostoc mesenteroides against mesentericin Y105(37) bacteriocin was detected and localized by immunofluorescence and electron microscopy, using antibodies directed against the C-terminal end of the predicted immunity protein. The antibodies recognized the immunity proteins of various strains of Leuconostoc, including Leuconostoc mesenteroides and Leuconostoc gelidum. This study demonstrated that immunity proteins produced by Leuconostoc mesenteroides accumulated in the cytoplasmic compartment of the bacteria. This is in contrast with other known immunity proteins, such as the colicin immunity proteins, which are integral membrane proteins possessing three to four transmembrane domains.
Collapse
Affiliation(s)
- M A Dayem
- Laboratoire de Biochimie des Protéines, IBMIG, Université de Poitiers, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Le Calvez H, Green JM, Baty D. Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate PelB signal sequence. Gene 1996; 170:51-5. [PMID: 8621088 DOI: 10.1016/0378-1119(95)00850-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To obtain an expression vector that will optimize secretion of proteins with disulfide bridges in Escherichia coli, we fused the phoA gene, encoding the bacterial alkaline phosphatase (PhoA), to the sequence encoding the pectate lyase B signal sequence (PelBSS). We used an extensively degenerate pelBSS with silent mutations to study their effects on the production level and activity of PhoA. 11 representative clones differed by a factor of five between the lowest and the highest level of activity, and by a factor greater than seven for the production levels. The efficiency of translocation seems to be the result of an equilibrium between production and secretion levels that favours the secretion of active PhoA according to the competence of the fusion protein being translocated. Free energy calculations and the predicted mRNA secondary structures of the translation initiation regions showed that the high stability of the secondary structure decreased production and secretion levels of PhoA and vice versa. A stem-loop encompassing the degenerate positions downstream from the AUG start codon appears to be responsible for the differences in the production levels.
Collapse
Affiliation(s)
- H Le Calvez
- Laboratoire d'Ingénierie et Dynamique des Systèmes Membranaires du C.N.R.S., Institut de Biologie Structurale et de Microbiologie, Marseille, France
| | | | | |
Collapse
|
25
|
Entian KD, de Vos WM. Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics. Antonie Van Leeuwenhoek 1996; 69:109-17. [PMID: 8775971 DOI: 10.1007/bf00399416] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several peptide antibiotics have been described as potent inhibitors of bacterial growth. With respect to their biosynthesis, they can be divided into two classes: (i) those that are synthesized by a non-ribosomal mechanism, and (ii) those that are ribosomally synthesized. Subtilin and nisin belong to the ribosomally synthesized peptide antibiotics. They contain the rare amino acids dehydroalanine, dehydrobutyrine, meso-lanthionine, and 3-methyllanthionine. They are derived from prepeptides which are post-translationally modified and have been termed lantibiotics because of their characteristic lanthionine bridges (Schnell et al. 1988). Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain gram-positive bacteria (Mattick & Hirsch 1944, 1947; Rayman & Hurst 1984). It is produced by Lactococcus lactis strains belonging to serological group N. The potent bactericidal activities of nisin and other lantibiotics are based on depolarization of energized bacterial cytoplasmic membranes. Breakdown of the membrane potential is initiated by the formation of pores through which molecules of low molecular weight are released. A trans-negative membrane potential of 50 to 100 mV is necessary for pore formation by nisin (Ruhr & Sahl 1985; Sahl et al. 1987). Nisin occurs as a partially amphiphilic molecule (Van de Ven et al. 1991). Apart from the detergent-like effect of nisin on cytoplasmic membranes, an inhibition of murein synthesis has also been discussed as the primary effect (Reisinger et al. 1980). In several countries nisin is used to prevent the growth of clostridia in cheese and canned food. The nisin peptide structure was first described by Gross & Morall (1971), and its structural gene was isolated in 1988 (Buchman et al. 1988; Kaletta & Entian 1989). Nisin has two natural variants, nisin A, and nisin Z, which differ in a single amino acid residue at position 27 (histidin in nisin A is replaced by asparagin in nisin Z (Mulders et al. 1991; De Vos et al. 1993). Subtilin is produced by Bacillus subtilis ATCC 6633. Its chemical structure was first unravelled by Gross & Kiltz (1973) and its structural gene was isolated in 1988 (Banerjee & Hansen 1988). Subtilin shares strong similarities to nisin with an identical organization of the lanthionine ring structures (Fig. 1), and both lantibiotics possess similar antibiotic activities. Due to its easy genetic analysis B. subtilis became a very suitable model organism for the identification and characterization of genes and proteins involved in lantibiotic biosynthesis. The pathway by which nisin is produced is very similar to that of subtilin, and the proteins involved share significant homologies over the entire proteins (for review see also De Vos et al. 1995b). The respective genes have been identified adjacent to the structural genes, and are organized in operon-like structures (Fig. 2). These genes are responsible for post-translational modification, transport of the modified prepeptide, proteolytic cleavage, and immunity which prevents toxic effects on the producing bacterium. In addition to this, biosynthesis of subtilin and nisin is strongly regulated by a two-component regulatory system which consists of a histidin kinase and a response regulator protein.
Collapse
Affiliation(s)
- K D Entian
- Institute for Microbiology, University of Frankfurt, Germany
| | | |
Collapse
|
26
|
Abstract
Bacteria producing bacteriocins have to be protected from being killed by themselves. This mechanism of self-protection or immunity is especially important if the bacteriocin does not need a specific receptor for its action, as is the case for the type A lantibiotics forming pores in the cytoplasmic membrane. At least two different systems of immunity have evolved in this group of bacteriocins containing modified amino acids as a result of posttranslational modification. The immunity mechanism of Pep5 in Staphylococcus epidermidis is based on inhibition of pore formation by a small 69-amino acid protein weakly associated with the outer surface of the cytoplasmic membrane. In Lactococcus lactis and Bacillus subtilis the putative immunity lipoproteins NisI and SpaI, respectively, are also located at the outer surface of the cytoplasmic membrane, suggesting that a similar mechanism might be utilized by the producers of nisin and subtilin. In addition an ABC-transport system consisting of two membrane proteins, (NisEG, SpaG and the hydrophobic domain of SpaF, and EpiEG) and a cytoplasmic protein (NisF, the cytoplasmic domain of SpaF, and EpiF) play a role in immunity of nisin, subtilin and epidermin by import, export or inhibition of pore formation by the membrane components of the transport systems. Almost nothing is known of the immunity determinants of newly described and other type of lantibiotics.
Collapse
Affiliation(s)
- P E Saris
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
27
|
Abstract
A new method is described for prediction of protein membrane topology (intra- and extracellular sidedness) from multiply aligned amino acid sequences after determination of the membrane-spanning segments. The prediction technique relies on residue compositional differences in the protein segments exposed at each side of the membrane. Intra/extracellular ratios are calculated for the residue types Asn, Asp, Gly, Phe, Pro, Trp, Tyr, and Val, preferably found on the extracellular side, and for Ala, Arg, Cys, and Lys, mostly occurring on the intracellular side. The consensus over these 12 residue distributions is used for sidedness prediction. The method was developed with a test set of 42 protein families, for which all but one were correctly predicted with the new algorithm. This represents an improvement over predictions based on the widely used "positive-inside rule" and other techniques, where at least six mispredictions were observed for the same data set. Further, application of this and other methods to 12 protein families not in the test set still showed the better performance of the present technique, which was subsequently applied to another set of membrane protein families where the topology has yet to be determined.
Collapse
Affiliation(s)
- B Persson
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
28
|
Chapter 29 colicin transport, channel formation and inhibition. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
|
30
|
Pilsl H, Braun V. Evidence that the immunity protein inactivates colicin 5 immediately prior to the formation of the transmembrane channel. J Bacteriol 1995; 177:6966-72. [PMID: 7592492 PMCID: PMC177567 DOI: 10.1128/jb.177.23.6966-6972.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Determination and analysis of the nucleotide sequences of the activity, immunity, and lysis genes of colicin 5 assigned colicin 5 to the subclass of pore-forming colicins to which colicins 10, E1, Ia, Ib, and K belong. Mutational analysis of colicin 5 and exchange of DNA fragments between the most closely related colicins, colicins 5 and 10, and between their immunity proteins localized the regions that determine the reaction specificity between colicin 5 and its immunity protein to residues 405 to 424 of colicin 5, the region corresponding to the amphiphilic alpha-helix 6 of the similar colicins E1 and Ia. The specificity-conferring residues 55 to 58 and 68 to 75 of the immunity protein were localized in the cytoplasmic loop and the inner leaflet of the cytoplasmic membrane. The localization of the reactive regions of the immunity protein and the colicin close to the inner side of the cytoplasmic membrane suggests that the immunity protein inactivates colicin 5 shortly before the lethal colicin pores in the cytoplasmic membrane are opened.
Collapse
Affiliation(s)
- H Pilsl
- Universität Tübingen, Germany
| | | |
Collapse
|
31
|
Abstract
In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered.
Collapse
Affiliation(s)
- R W Jack
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
32
|
Pilsl H, Braun V. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Mol Microbiol 1995; 16:57-67. [PMID: 7651137 DOI: 10.1111/j.1365-2958.1995.tb02391.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uptake of a new colicin, colicin 10 (Col10), into cells of Escherichia coli required TonB, ExbBD (Ton system), but its cognate receptor, Tsx, functioned independently of Ton and TolQRAB (Tol system). Uptake of Col10 also required TolC which is unique for a Ton-coupled translocation through the outer membrane. A 2470 bp DNA fragment from the natural plasmid pCol10 encoding the Col10 activity (cta), immunity (cti) and lysis (ctl) genes was sequenced. The Cta, Cti and Ctl proteins, as deduced from the nucleotide sequences, consisted of 490 (M(r) 53,342), 96 (M(r) 11,586) and 43 (M(r) 4484) amino acid residues, respectively. Col10 (Cta) was highly homologous to colicin E1 in two regions which determined the common TolC requirement for uptake and the pore-forming activity. Col10 and E1 differed entirely in the regions which are predicted to determine the Ton dependence of Col10 and the Tol dependence of E1, and binding to the receptors Tsx and BtuB, respectively. The region responsible for the Ton-dependent uptake of Col10 was localized in the sequence ranging from residues 1 to 43 (Ton region), and the region responsible for the Tol-dependent uptake of colicin E1 extended from residues 1 to 34 (Tol region). Each Tol-dependent colicin contained a pentapeptide homologous to the sequence DGSGS in the Tol region of E1 which is proposed to be implicated in Tol-dependent uptake (TolA box). After the exchange of the Ton and the Tol regions between Col10 and E1, the Col10-E1 fusion protein was carried into cells via the Ton system and BtuB, whereas the E1-Col10 fusion protein was imported via the Tol system and Tsx. Although the immunity proteins of Col10 and E1 displayed a low homology, Cti conferred full immunity to E1, in contrast to the immunity protein of E1 which did not protect cells against Col10. It is proposed that Col10 belongs to the colicin E1, Ia, Ib group as opposed to the colicin A, B, N group of pore-forming colicins. Col10 consists of 4 domains of which two are very similar and two are very different to E1, supporting our previous proposal that colicins evolved by recombination of DNA fragments which encode uptake and activity domains.
Collapse
Affiliation(s)
- H Pilsl
- Universität Tübingen, Germany
| | | |
Collapse
|
33
|
Viejo MB, Enfedaque J, Guasch JF, Ferrer S, Regué M. Protection against bacteriocin 28b in Serratia marcescens is apparently not related to the expression of an immunity gene. Can J Microbiol 1995; 41:217-26. [PMID: 7736354 DOI: 10.1139/m95-030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene encoding bacteriocin 28b from Serratia marcescens N28b (bss gene) has been cloned in Escherichia coli and its nucleotide sequence has been determined. The genetic determinants coding for other well-characterized bacteriocins from enterobacteria (colicins) are located in plasmids and they have always been shown to contain a gene responsible for immunity located downstream from the bacteriocin structural gene. In some cases there is another gene located downstream from the immunity gene, which is responsible for bacteriocin release. Analysis of bacteriocin 28b release and the sensitivity to this bacteriocin of E. coli strains harbouring recombinant plasmids containing the bss gene showed that bacteriocin 28b is not released from the cell in these strains and that their phenotypic insensitivity is not associated with any region close to the structural gene. The nucleotide sequence of the region downstream from the bss gene contains two putative open reading frames transcribed in the opposite direction to the bss gene. These open reading frames apparently encode proteins that seem not to be involved in bacteriocin immunity or release. Moreover, a S. marcescens N28b genomic library was screened and no immunity gene was found. Therefore, bacteriocin 28b differs greatly from the bacteriocins from other enterobacteria, and in the following senses it is unique: firstly, the gene encoding bacteriocin 28b seems to be located on the chromosome, and secondly, insensitivity to this bacteriocin in S. marcescens N28b is not associated with the expression of an immunity gene.
Collapse
Affiliation(s)
- M B Viejo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
34
|
Siegers K, Entian KD. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 1995; 61:1082-9. [PMID: 7793910 PMCID: PMC167363 DOI: 10.1128/aem.61.3.1082-1089.1995] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lantibiotic nisin is produced by several strains of Lactococcus lactis. The complete gene cluster for nisin biosynthesis in L. lactis 6F3 comprises 15 kb of DNA. As described previously, the structural gene nisA is followed by the genes nisB, nisT, nisC, nisI, nisP, nisR, and nisK. Further analysis revealed three additional open reading frames, nisF, nisE, and nisG, adjacent to nisK. Approximately 1 kb downstream of the nisG gene, three open reading frames in the opposite orientation have been identified. One of the reading frames, sacR, belongs to the sucrose operon, indicating that all genes belonging to the nisin gene cluster of L. lactis 6F3 have now been identified. Proteins NisF and NisE show strong homology to members of the family of ATP-binding cassette (ABC) transporters, and nisG encodes a hydrophobic protein which might act similarly to the immunity proteins described for several colicins. Gene disruption mutants carrying mutations in the genes nisF, nisE, and nisG were still able to produce nisin. However, in comparison with the wild-type strain, these mutants were more sensitive to nisin. This indicates that besides nisI the newly identified genes are also involved in immunity to nisin. The NisF-NisE ABC transporter is homologous to an ABC transporter of Bacillus subtilis and the MbcF-MbcE transporter of Escherichia coli, which are involved in immunity to subtilin and microcin B17, respectively.
Collapse
Affiliation(s)
- K Siegers
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
35
|
Affiliation(s)
- M J Gasson
- AFRC Institute of Food Research, Norwich Laboratory, Colney, UK
| |
Collapse
|
36
|
Venema K, Haverkort RE, Abee T, Haandrikman AJ, Leenhouts KJ, de Leij L, Venema G, Kok J. Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 1994; 14:521-32. [PMID: 7533883 DOI: 10.1111/j.1365-2958.1994.tb02186.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Monoclonal antibodies were raised against a fusion between the Escherichia coli maltose-binding protein and LciA, the immunity protein that protects Lactococcus lactis against the effects of the bacteriocin lactococcin A. One of the antibodies directed against the LciA moiety of the fusion protein was used to locate the immunity protein in the L. lactis producer cell. LciA was present in the cytosolic, the membrane-associated, and the membrane fractions in roughly equal amounts, irrespective of the production by the cells of lactococcin A. The monoclonal antibody specifically reacted with right-side-out vesicles obtained from a strain producing the immunity protein. It did not react with inside-out vesicles of the same strain, or with right-side-out vesicles obtained from a strain producing both LciA and lactococcin A. Also, externally added lactococcin A blocked the interaction between the antibody and right-side-out vesicles obtained from a strain producing only LciA. The epitope in LciA was localized between amino acid residues 60 and 80. As the epitope could be removed from right-side-out vesicles by proteinase K, it is located at the outside of the cell. The immunity protein contains a putative alpha-amphiphilic helix from residue 29 to 47. A model is proposed in which this helix is thought to traverse the membrane in such a way that the C-terminal part of the protein, containing the epitope, is on the outside of the cell. Vesicle-fusion studies together with leucine-uptake experiments suggest that the immunity protein interacts with the putative receptor for lactococcin A, thus preventing pore formation by the bacteriocin.
Collapse
Affiliation(s)
- K Venema
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Centre, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Espesset D, Corda Y, Cunningham K, Bénedetti H, Lloubès R, Lazdunski C, Géli V. The colicin A pore-forming domain fused to mitochondrial intermembrane space sorting signals can be functionally inserted into the Escherichia coli plasma membrane by a mechanism that bypasses the Tol proteins. Mol Microbiol 1994; 13:1121-31. [PMID: 7854126 DOI: 10.1111/j.1365-2958.1994.tb00503.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colicin A is a pore-forming bacteriocin that depends upon the Tol proteins in order to be transported from its receptor at the outer membrane surface to its target, the inner membrane. The presequence of yeast mitochondria cytochrome c1 (pc1) as well as the first 167 amino acids of cytochrome b2 (pb2) were fused to the pore-forming domain of colicin A (pfColA). Both hybrid proteins (pc1-pfCoIA and pb2-pfColA) were cytotoxic for Escherichia coli strains devoid of colicin A immunity protein whereas the pore-forming domain without presequence had no lethal effect. The entire precursors and their processed forms were found entirely associated with the bacterial inner membrane and their cytotoxicities were related to their pore-forming activities. The proteins were also shown to kill the tol bacterial strains, which are unable to transport colicins. In addition, we showed that both the cytochrome c1 presequence fused to the dihydrofolate reductase (pc1-DHFR) and the cytochrome c1 presequence moiety of pc1-pfCoIA were translocated across inverted membrane vesicles. Our results indicated that: (i) pc1-pfCoIA produced in the cell cytoplasm was able to assemble in the inner membrane by a mechanism independent of the tol genes; (ii) the inserted pore-forming domain had a channel activity; and (iii) this channel activity was inhibited within the membrane by the immunity protein.
Collapse
Affiliation(s)
- D Espesset
- Laboratoire d'Ingéniérie et de Dynamique des Systèmes Membranaires, CNRS, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Espesset D, Piet P, Lazdunski C, Géli V. Immunity proteins to pore-forming colicins: structure-function relationships. Mol Microbiol 1994; 13:1111-20. [PMID: 7854125 DOI: 10.1111/j.1365-2958.1994.tb00502.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colicin A and B immunity proteins (Cai and Cbi, respectively) are homologous integral membrane proteins that interact within the core of the lipid bilayer with hydrophobic transmembrane helices of the corresponding colicin channel. By using various approaches (exchange of hydrophilic loops between Cai and Cbi, construction of Cbi/Cai hybrids, production of Cai as two fragments), we studied the structure-function relationships of Cai and Cbi. The results revealed unexpectedly high structural constraints for the function of these proteins. The periplasmic loops of Cai and Cbi did not carry the determinants for colicin recognition although most of these loops were required for Cai function; the cytoplasmic loop of Cai was found to be involved in topology and function of Cai. The immunity function did not seem to be confined to a particular region of the immunity proteins.
Collapse
Affiliation(s)
- D Espesset
- Laboratoire d'Ingéniérie et de Dynamique des Systèmes Membranaires, CNRS, Marseille, France
| | | | | | | |
Collapse
|
39
|
Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol 1994; 161:199-206. [PMID: 8161282 DOI: 10.1007/bf00248693] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This article intends to inform a broader audience on a fascinating class of protein toxins (bacteriocins) which usually kill only cells of the same species. Those who gained a deeper interest in bacteriocins can find a comprehensive description of the field in a recent book based on a conference (James et al. 1992), and in more specialized review articles dealing with certain aspects (Pugsley 1984a, b), or certain colicins (De Graaf and Oudega 1986; Harkness and Olschläger 1991; Lazdunski et al. 1988). The older literature has been reviewed by Brandis and Smarda (1971), Reeves (1972), Hardy (1975) and Konisky (1982).
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Germany
| | | | | |
Collapse
|
40
|
Abstract
Colicins are unusual bacterial toxins because they are directed against close relatives of the producing strain. They kill their targets in one of three distinct ways; via a ribonuclease or deoxyribonuclease activity or by forming pores in the target cell's membrane. This review deals with the steps involved in pore-forming colicin activity including, initial synthesis of the toxin, toxin release, receptor binding, translocation across the periplasm and pore formation in the cytoplasmic membrane. Special reference is made to the role of colicin in vivo, the structural changes occurring during pore formation and the role of the immunity protein.
Collapse
Affiliation(s)
- J H Lakey
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Affiliation(s)
- F Bowe
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201
| | | |
Collapse
|
42
|
Zhang YL, Cramer WA. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Protein Sci 1992; 1:1666-76. [PMID: 1284805 PMCID: PMC2142128 DOI: 10.1002/pro.5560011215] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The surface topography of a 190-residue COOH-terminal colicin E1 channel peptide (NH2-Met 333-Ile 522-COOH) bound to uniformly sized 0.2-micron liposomes was probed by accessibility of the peptide to proteases in order (1) to determine whether the channel structure contains trans-membrane segments in addition to the four alpha-helices previously identified and (2) to discriminate between different topographical possibilities for the surface-bound state. An unfolded surface-bound state is indicated by increased trypsin susceptibility of the bound peptide relative to that of the peptide in aqueous solution. The peptide is bound tightly to the membrane surface with Kd < 10(-7) M. The NH2-terminal 50 residues of the membrane-bound peptide are unbound or loosely bound as indicated by their accessibility to proteases, in contrast with the COOH-terminal 140 residues, which are almost protease inaccessible. The general protease accessibility of the NH2-terminal segment Ala 336-Lys 382 excludes any model for the closed channel state that would include trans-membrane helices on the NH2-terminal side of Lys 382. Lys 381-Lys 382 is a major site for protease cleavage of the surface-bound channel peptide. A site for proteinase K cleavage just upstream of the amphiphilic gating hairpin (K420-K461) implies the presence of a surface-exposed segment in this region. These protease accessibility data indicate that it is unlikely that there are any alpha-helices on the NH2-terminal side of the gating hairpin K420-K461 that are inserted into the membrane in the absence of a membrane potential. A model for the topography of an unfolded monomeric surface-bound intermediate of the colicin channel domain, including a trans-membrane hydrophobic helical hairpin and two or three long surface-bound helices, is proposed.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
43
|
Geli V, Lazdunski C. An alpha-helical hydrophobic hairpin as a specific determinant in protein-protein interaction occurring in Escherichia coli colicin A and B immunity systems. J Bacteriol 1992; 174:6432-7. [PMID: 1400195 PMCID: PMC207597 DOI: 10.1128/jb.174.20.6432-6437.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A collection of chimeric pore-forming domains between colicins A and B was constructed to investigate the specific determinants responsible for recognition by the corresponding immunity proteins. The fusion sites in the hybrid proteins were positioned according to the three-dimensional structure of the soluble form of the colicin A pore-forming domain. The hydrophobic hairpin of colicin pore-forming domains, buried in the core of the soluble structure, was the main determinant recognized by the integral immunity proteins. The immunity protein function may require helix-helix recognition within the lipid bilayer.
Collapse
Affiliation(s)
- V Geli
- Centre de Biochemie et Biologie Moléculaire, Centre National de la Recherche Scientifique, Marseille, France
| | | |
Collapse
|
44
|
Cramer WA, Zhang YL, Schendel S, Merrill AR, Song HY, Stauffacher CV, Cohen FS. Dynamic properties of the colicin E1 ion channel. FEMS MICROBIOLOGY IMMUNOLOGY 1992; 5:71-81. [PMID: 1384599 DOI: 10.1111/j.1574-6968.1992.tb05889.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of channel formation and action of channel-forming colicins is a paradigm for the study of dynamic aspects of membrane-protein interactions. The following experimental results concerning interaction of the colicin E1 channel domain with target membranes, in vitro and in vivo, are discussed: (1) the nature of the translocation-competent state of the channel-forming domain; (2) unfolding of the colicin channel peptide during in vitro binding and anchoring of the channel to liposome membranes at acidic pH; (3) reversal of channel peptide binding to liposomes by an alkaline-directed pH shift; (4) voltage-driven translocation and gating of the ion channel, discussed in the context of a four-helix model for a monomeric channel; (5) rescue of colicin-treated cells by high levels of external K+; (6) trypsin rescue of cells depolarized by the colicin ion channel; and (7) interaction of the channel domain with its immunity protein.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN
| | | | | | | | | | | | | |
Collapse
|
45
|
von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 1992; 225:487-94. [PMID: 1593632 DOI: 10.1016/0022-2836(92)90934-c] [Citation(s) in RCA: 1221] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new strategy for predicting the topology of bacterial inner membrane proteins is proposed on the basis of hydrophobicity analysis, automatic generation of a set of possible topologies and ranking of these according to the positive-inside rule. A straightforward implementation with no attempts at optimization predicts the correct topology for 23 out of 24 inner membrane proteins with experimentally determined topologies, and correctly identifies 135 transmembrane segments with only one overprediction.
Collapse
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institute Center for Structural Biochemistry, Huddinge, Sweden
| |
Collapse
|
46
|
Rodriguez Lemoine V. PacB, a plasmid-encoded property which confers to E. coli K12 resistance to channel-forming colicins. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1992; 276:374-9. [PMID: 1576406 DOI: 10.1016/s0934-8840(11)80544-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasmids belonging to incompatibility groups HI (subgroups HI2 and HI3 but not HI1) and HII but not from any other incompatibility group, confer to E. coli resistance against the bactericidal action of colicin B. Additionally it was demonstrated that this plasmid-encoded property, PacB, is not restricted to a specific colicin (colicin B) but also modifies bacterial susceptibility to the lethal activity determined by the channel-forming colicins A, B, E1, Ia, Ib, K, and N. PacB+ bacteria remain susceptible to colicins with other modes of action. This property appears to be highly conserved among the HI2 plasmids.
Collapse
Affiliation(s)
- V Rodriguez Lemoine
- Centro de Biología Celular, Facultad de Ciencias, Universidad Central de Venezuela, Caracas
| |
Collapse
|