1
|
Gene Networks and Pathways Involved in Escherichia coli Response to Multiple Stressors. Microorganisms 2022; 10:microorganisms10091793. [PMID: 36144394 PMCID: PMC9501238 DOI: 10.3390/microorganisms10091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Stress response helps microorganisms survive extreme environmental conditions and host immunity, making them more virulent or drug resistant. Although both reductionist approaches investigating specific genes and systems approaches analyzing individual stress conditions are being used, less is known about gene networks involved in multiple stress responses. Here, using a systems biology approach, we mined hundreds of transcriptomic data sets for key genes and pathways involved in the tolerance of the model microorganism Escherichia coli to multiple stressors. Specifically, we investigated the E. coli K-12 MG1655 transcriptome under five stresses: heat, cold, oxidative stress, nitrosative stress, and antibiotic treatment. Overlaps of transcriptional changes between studies of each stress factor and between different stressors were determined: energy-requiring metabolic pathways, transport, and motility are typically downregulated to conserve energy, while genes related to survival, bona fide stress response, biofilm formation, and DNA repair are mainly upregulated. The transcription of 15 genes with uncharacterized functions is higher in response to multiple stressors, which suggests they may play pivotal roles in stress response. In conclusion, using rank normalization of transcriptomic data, we identified a set of E. coli stress response genes and pathways, which could be potential targets to overcome antibiotic tolerance or multidrug resistance.
Collapse
|
2
|
Costa Brandão Cruz D, Lima Santana L, Siqueira Guedes A, Teodoro de Souza J, Arthur Santos Marbach P. Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes. Genome Biol Evol 2019; 11:1235-1249. [PMID: 30785193 PMCID: PMC6486802 DOI: 10.1093/gbe/evz035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs. Based on the results, we propose that the gene purO was present in the common ancestor of all living beings, whereas the gene encoding PurP emerged after the divergence of Archaea and Bacteria and their isoforms originated in duplication events in the common ancestor of phyla Crenarchaeota and Euryarchaeota. The results reported here expand our understanding of the diversity and evolution of the last two steps of the purine biosynthetic pathway in prokaryotes.
Collapse
Affiliation(s)
| | - Lenon Lima Santana
- CCAAB, Biological Sciences, Recôncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil
| | | | | | | |
Collapse
|
3
|
Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence. Nat Commun 2019; 10:775. [PMID: 30770821 PMCID: PMC6377658 DOI: 10.1038/s41467-019-08724-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus is a significant cause of human infection. Here, we demonstrate that mutations in the transcriptional repressor of purine biosynthesis, purR, enhance the pathogenic potential of S. aureus. Indeed, systemic infection with purR mutants causes accelerated mortality in mice, which is due to aberrant up-regulation of fibronectin binding proteins (FnBPs). Remarkably, purR mutations can arise upon exposure of S. aureus to stress, such as an intact immune system. In humans, naturally occurring anti-FnBP antibodies exist that, while not protective against recurrent S. aureus infection, ostensibly protect against hypervirulent S. aureus infections. Vaccination studies support this notion, where anti-Fnb antibodies in mice protect against purR hypervirulence. These findings provide a novel link between purine metabolism and virulence in S. aureus.
Collapse
|
4
|
Mohamed ET, Wang S, Lennen RM, Herrgård MJ, Simmons BA, Singer SW, Feist AM. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microb Cell Fact 2017; 16:204. [PMID: 29145855 PMCID: PMC5691611 DOI: 10.1186/s12934-017-0819-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Background There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. Methods To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptive laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium chloride ([C4C1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. Results The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C2C1Im][OAc]. Conclusion The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering. Electronic supplementary material The online version of this article (10.1186/s12934-017-0819-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elsayed T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Shizeng Wang
- Joint Bioenergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Rebecca M Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Blake A Simmons
- Joint Bioenergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint Bioenergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark. .,Department of Bioengineering, University of California, 9500 Gilman Drive La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
5
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
6
|
Ravcheev DA, Khoroshkin MS, Laikova ON, Tsoy OV, Sernova NV, Petrova SA, Rakhmaninova AB, Novichkov PS, Gelfand MS, Rodionov DA. Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol 2014; 5:294. [PMID: 24966856 PMCID: PMC4052901 DOI: 10.3389/fmicb.2014.00294] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022] Open
Abstract
DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulators—GluR, GapR, and PckR—that are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic networks in diverse bacterial lineages.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Matvei S Khoroshkin
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Olga N Laikova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Olga V Tsoy
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia
| | - Natalia V Sernova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Svetlana A Petrova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia
| | | | - Pavel S Novichkov
- Lawrence Berkeley National Laboratory, Genomics Division Berkeley, CA, USA
| | - Mikhail S Gelfand
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Dmitry A Rodionov
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Department of Bioinformatics, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| |
Collapse
|
7
|
Weiss V, Medina-Rivera A, Huerta AM, Santos-Zavaleta A, Salgado H, Morett E, Collado-Vides J. Evidence classification of high-throughput protocols and confidence integration in RegulonDB. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bas059. [PMID: 23327937 PMCID: PMC3548332 DOI: 10.1093/database/bas059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RegulonDB provides curated information on the transcriptional regulatory network of Escherichia coli and contains both experimental data and computationally predicted objects. To account for the heterogeneity of these data, we introduced in version 6.0, a two-tier rating system for the strength of evidence, classifying evidence as either ‘weak’ or ‘strong’ (Gama-Castro,S., Jimenez-Jacinto,V., Peralta-Gil,M. et al. RegulonDB (Version 6.0): gene regulation model of Escherichia Coli K-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res., 2008;36:D120–D124.). We now add to our classification scheme the classification of high-throughput evidence, including chromatin immunoprecipitation (ChIP) and RNA-seq technologies. To integrate these data into RegulonDB, we present two strategies for the evaluation of confidence, statistical validation and independent cross-validation. Statistical validation involves verification of ChIP data for transcription factor-binding sites, using tools for motif discovery and quality assessment of the discovered matrices. Independent cross-validation combines independent evidence with the intention to mutually exclude false positives. Both statistical validation and cross-validation allow to upgrade subsets of data that are supported by weak evidence to a higher confidence level. Likewise, cross-validation of strong confidence data extends our two-tier rating system to a three-tier system by introducing a third confidence score ‘confirmed’. Database URL:http://regulondb.ccg.unam.mx/
Collapse
Affiliation(s)
- Verena Weiss
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP 565-A, Cuernavaca, Morelos 62100, Mexico.
| | | | | | | | | | | | | |
Collapse
|
8
|
Cho BK, Federowicz SA, Embree M, Park YS, Kim D, Palsson BØ. The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Res 2011; 39:6456-64. [PMID: 21572102 PMCID: PMC3159470 DOI: 10.1093/nar/gkr307] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The PurR transcription factor plays a critical role in transcriptional regulation of purine metabolism in enterobacteria. Here, we elucidate the role of PurR under exogenous adenine stimulation at the genome-scale using high-resolution chromatin immunoprecipitation (ChIP)–chip and gene expression data obtained under in vivo conditions. Analysis of microarray data revealed that adenine stimulation led to changes in transcript level of about 10% of Escherichia coli genes, including the purine biosynthesis pathway. The E. coli strain lacking the purR gene showed that a total of 56 genes are affected by the deletion. From the ChIP–chip analysis, we determined that over 73% of genes directly regulated by PurR were enriched in the biosynthesis, utilization and transport of purine and pyrimidine nucleotides, and 20% of them were functionally unknown. Compared to the functional diversity of the regulon of the other general transcription factors in E. coli, the functions and size of the PurR regulon are limited.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
9
|
Molecular cloning, characterization and expression analysis of adenylosuccinate lyase gene in grass carp (Ctenopharyngodon idella). Mol Biol Rep 2010; 38:2059-65. [DOI: 10.1007/s11033-010-0331-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
|
10
|
Reactogenicity and immunogenicity of live attenuated Salmonella enterica serovar Paratyphi A enteric fever vaccine candidates. Vaccine 2010; 28:3679-87. [PMID: 20338215 DOI: 10.1016/j.vaccine.2010.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/01/2010] [Accepted: 03/10/2010] [Indexed: 11/23/2022]
Abstract
Eight Salmonella enterica serovar Paratyphi A strains were screened as candidates to create a live attenuated paratyphoid vaccine. Based on biochemical and phenotypic criteria, four strains, RKS2900, MGN9772, MGN9773 and MGN9779, were selected as progenitors for the construction of DeltaphoPQ mutant derivatives. All strains were evaluated in vitro for auxotrophic phenotypes and sensitivity to deoxycholate and polymyxin B. All DeltaphoPQ mutants were more sensitive to deoxycholate and polymyxin B than their wild-type progenitors, however MGN10028, MGN10044 and MGN10048, required exogenous purine for optimal growth. Purine requiring strains had acquired point mutations in purB during strain construction. All four mutants were evaluated for reactogenicity and immunogenicity in an oral rabbit model. Three strains were reactogenic in a dose-dependent manner, while one strain, MGN10028, was well-tolerated at all doses administered. All DeltaphoPQ strains were immunogenic following a single oral dose. The in vitro profile coupled with the favorable reactogenicity and immunogenicity profiles render MGN10028 a suitable live attenuated Paratyphi A vaccine candidate.
Collapse
|
11
|
|
12
|
Tsai M, Koo J, Yip P, Colman RF, Segall ML, Howell PL. Substrate and product complexes of Escherichia coli adenylosuccinate lyase provide new insights into the enzymatic mechanism. J Mol Biol 2007; 370:541-54. [PMID: 17531264 PMCID: PMC4113493 DOI: 10.1016/j.jmb.2007.04.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 01/07/2023]
Abstract
Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.
Collapse
Affiliation(s)
- May Tsai
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jason Koo
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Patrick Yip
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | - Roberta F. Colman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mark L. Segall
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - P. Lynne Howell
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Corresponding author:
| |
Collapse
|
13
|
Iizumi T, Nakamura K. Regulatory analysis of the Nitrosomonas europaea grpE-dnaK-dnaJ operon. J Biosci Bioeng 2005; 87:234-7. [PMID: 16232457 DOI: 10.1016/s1389-1723(99)89019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1998] [Accepted: 10/26/1998] [Indexed: 10/18/2022]
Abstract
The complete nucleotide sequences of the Nitrosomonas europaea grpE and dnaJ genes were determined. Transcriptional analysis showed that grpE was transcribed as polycistronic transcripts with the dnaK and dnaJ from a sigma(32)-dependent heat-inducible promoter located upstream of grpE. This promoter had significantly less activity than one located upstream of dnaK.
Collapse
Affiliation(s)
- T Iizumi
- Corporate Research & Development Center, Kurita Water Industries Ltd., 7-1 Wakamiya, Morinosato, Atsugi 243-0124, Japan
| | | |
Collapse
|
14
|
Paik S, Senty L, Das S, Noe JC, Munro CL, Kitten T. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect Immun 2005; 73:6064-74. [PMID: 16113327 PMCID: PMC1231064 DOI: 10.1128/iai.73.9.6064-6074.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus sanguinis is a gram-positive, facultative anaerobe and a normal inhabitant of the human oral cavity. It is also one of the most common agents of infective endocarditis, a serious endovascular infection. To identify virulence factors for infective endocarditis, signature-tagged mutagenesis (STM) was applied to the SK36 strain of S. sanguinis, whose genome is being sequenced. STM allows the large-scale creation, in vivo screening, and recovery of a series of mutants with altered virulence. Screening of 800 mutants by STM identified 38 putative avirulent and 5 putative hypervirulent mutants. Subsequent molecular analysis of a subset of these mutants identified genes encoding undecaprenol kinase, homoserine kinase, anaerobic ribonucleotide reductase, adenylosuccinate lyase, and a hypothetical protein. Virulence reductions ranging from 2-to 150-fold were confirmed by competitive index assays. One putatively hypervirulent strain with a transposon insertion in an intergenic region was identified, though increased virulence was not confirmed in competitive index assays. All mutants grew comparably to SK36 in aerobic broth culture except for the homoserine kinase mutant. Growth of this mutant was restored by the addition of threonine to the medium. Mutants containing an insertion or in-frame deletion in the anaerobic ribonucleotide reductase gene failed to grow under strictly anaerobic conditions. The results suggest that housekeeping functions such as cell wall synthesis, amino acid and nucleic acid synthesis, and the ability to survive under anaerobic conditions are important virulence factors in S. sanguinis endocarditis.
Collapse
Affiliation(s)
- Sehmi Paik
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, 521 North 11th Street, Richmond, VA 23298-0566, USA
| | | | | | | | | | | |
Collapse
|
15
|
Schaaper RM, Dunn RL. The antimutator phenotype of E. coli mud is only apparent and results from delayed appearance of mutants. Mutat Res 2001; 480-481:71-5. [PMID: 11506800 DOI: 10.1016/s0027-5107(01)00170-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimutator strains are strains that have a lower mutation rate than the wild-type strain. We have reexamined the properties of one reported antimutator strain of Escherichia coli, termed mud [Mol. Gen. Genet. 153 (1977) 87]. This strain contains a temperature-sensitive mutation in the purB gene, leading to adenine-dependent growth at higher temperature. When grown at permissive or semi-permissive temperature in the absence of adenine it displays large reductions in the number of both spontaneous and mutagen-induced mutants (e.g. several hundred-fold for valine-resistant mutants). However, our studies show that strains containing the purB allele generate mutations at the same level as the wild-type strain, and that the apparent antimutator effect is the consequence of the delayed appearance of mutants on the selective plates. This delay likely results from the combined stress exerted by the adenine deficiency and the presence of the selective agent (i.e. valine).
Collapse
Affiliation(s)
- R M Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
16
|
Experimental proof for the regulation ofSalmonella typhimurium purB bypurR. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf02900600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
18
|
Xu H, Moraitis M, Reedstrom RJ, Matthews KS. Kinetic and thermodynamic studies of purine repressor binding to corepressor and operator DNA. J Biol Chem 1998; 273:8958-64. [PMID: 9535880 DOI: 10.1074/jbc.273.15.8958] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetic and thermodynamic parameters for purine repressor (PurR)-operator and PurR-guanine binding were determined using fluorescence spectroscopy and nitrocellulose filter binding. Operator binding affinity was increased by the presence of guanine as demonstrated previously (Choi, K. Y., Lu, F., and Zalkin, H. (1994) J. Biol. Chem. 269, 24066-24072; Rolfes, R. J., and Zalkin, H. (1990) J. Bacteriol. 172, 5637-5642), and conversely guanine binding affinity was increased by the presence of operator. Guanine enhanced operator affinity by increasing the association rate constant and decreasing the dissociation rate constant for binding. Operator had minimal effect on the association rate constant for guanine binding; however, this DNA decreased the dissociation rate constant for corepressor by approximately 10-fold. Despite significant sequence and structural similarity between PurR and LacI proteins, PurR binds to its corepressor ligand with a lower association rate constant than LacI binds to its inducer ligand. However, the rate constant for PurR-guanine binding to operator is approximately 3-fold higher than for LacI binding to its cognate operator under the same solution conditions. The distinct metabolic roles of the enzymes under regulation by these two repressor proteins provide a rationale for the observed functional differences.
Collapse
Affiliation(s)
- H Xu
- Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
19
|
Nguyen J, Francou F, Virolle MJ, Guérineau M. Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol 1997; 179:6383-90. [PMID: 9335287 PMCID: PMC179554 DOI: 10.1128/jb.179.20.6383-6390.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A regulatory gene, reg1, was identified in Streptomyces lividans. It encodes a 345-amino-acid protein (Reg1) which contains a helix-turn-helix DNA-binding motif in the N-terminal region. Reg1 exhibits similarity with the LacI/GalR family members over the entire sequence. It displays 95% identity with MalR (the repressor of malE in S. coelicolor), 65% identity with ORF-Sl (a putative regulatory gene of alpha-amylase of S. limosus), and 31% identity with CcpA (the carbon catabolite repressor in Bacillus subtilis). In S. lividans, the chromosomal disruption of reg1 affected the expression of several genes. The production of alpha-amylases of S. lividans and that of the alpha-amylase of S. limosus in S. lividans were enhanced in the reg1 mutant strains and relieved of carbon catabolite repression. As a result, the transcription level of the alpha-amylase of S. limosus was noticeably increased in the reg1 mutant strain. Moreover, the induction of chitinase production in S. lividans was relieved of carbon catabolite repression by glucose in the reg1 mutant strain, while the induction by chitin was lost. Therefore, reg1 can be regarded as a pleiotropic regulatory gene in S. lividans.
Collapse
Affiliation(s)
- J Nguyen
- Institut de Génétique et Microbiologie, URA 2225, Université Paris XI, Orsay, France.
| | | | | | | |
Collapse
|
20
|
Marshall VM, Coppel RL. Characterisation of the gene encoding adenylosuccinate lyase of Plasmodium falciparum. Mol Biochem Parasitol 1997; 88:237-41. [PMID: 9274883 DOI: 10.1016/s0166-6851(97)00054-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- V M Marshall
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
21
|
Wang P, Yang J, Pittard AJ. Promoters and transcripts associated with the aroP gene of Escherichia coli. J Bacteriol 1997; 179:4206-12. [PMID: 9209034 PMCID: PMC179240 DOI: 10.1128/jb.179.13.4206-4212.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Analysis of in vitro transcriptional events initiating within the region immediately upstream of the aroP coding region has revealed the presence of three promoters, P1, P2, and P3. Both P1 and P2 give rise to mRNA encoding the AroP protein, whereas P3 initiates transcription in the opposite direction. Both P1 and P3 contain UP elements which contribute to promoter strength. Regulation of expression from these three promoters has been examined in vitro by using supercoiled DNA templates and in vivo by using lacZ transcriptional fusions and specific promoter mutants. Expression from P2 is partially repressed by TyrR alone both in vitro and in vivo. Addition of the aromatic amino acid tyrosine, phenylalanine, or tryptophan further increases this repression. P1 is not repressed by TyrR alone but is repressed in vivo in the presence of phenylalanine, tyrosine, or tryptophan. This also occurs in vitro but requires Ca2+ ions in the reaction mixture for its demonstration. Under these conditions, transcription from P3 is enhanced by TyrR protein with phenylalanine, tyrosine, or tryptophan. However, we were unable to demonstrate P3 expression in vivo. Under repressing conditions, there is no production of truncated RNA molecules (from P1), which would be expected if repression involved a roadblock mechanism.
Collapse
Affiliation(s)
- P Wang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
22
|
Lee TT, Worby C, Dixon JE, Colman RF. Identification of His141 in the Active Site of Bacillus subtilis Adenylosuccinate Lyase by Affinity Labeling with 6-(4-Bromo2,3-dioxobutyl)thioadenosine 5′-Monophosphate. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.458] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Schumacher MA, Choi KY, Zalkin H, Brennan RG. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science 1994; 266:763-70. [PMID: 7973627 DOI: 10.1126/science.7973627] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.
Collapse
Affiliation(s)
- M A Schumacher
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098
| | | | | | | |
Collapse
|
24
|
He B, Zalkin H. Regulation of Escherichia coli purA by purine repressor, one component of a dual control mechanism. J Bacteriol 1994; 176:1009-13. [PMID: 8106311 PMCID: PMC205151 DOI: 10.1128/jb.176.4.1009-1013.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Escherichia coli purA encodes adenylosuccinate synthetase, one of two enzymes required for synthesis of AMP from IMP. purA is subject to two- to threefold regulation by purR and about twofold regulation by a purR-independent mechanism. The 5'-flanking region of purA confers purR-dependent transcriptional regulation of purA but not the purR-independent regulation. Two operator sites in the 5'-flanking region which bind purine repressor in vitro and are required for in vivo regulation were identified. The purR-independent regulation may be posttranscriptional. It is now established that all transcription units involved in de novo synthesis of purine nucleotides, nine pur operons, as well as purR itself and guaBA, are subject to purR control.
Collapse
Affiliation(s)
- B He
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
25
|
Saxild HH, Jensen CL, Hubrechts P, Hammer K. Isolation and characterization of Bacillus subtilis genomic lacZ fusions induced during partial purine starvation. J Bacteriol 1994; 176:276-83. [PMID: 8288519 PMCID: PMC205047 DOI: 10.1128/jb.176.2.276-283.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Random genomic Bacillus subtilis lacZ fusions were screened in order to identify the possible existence of regulons responding to the stimuli generated by partial purine starvation. A leaky pur mutation (purL8) was isolated and used to generate the partial purine starvation conditions in the host strain used for screening. On the basis of their induction during partial purine starvation, seven genomic lacZ fusions were isolated. None of the fusions map in loci previously reported to contain purine-regulated genes. One fusion maps very close to the citB locus and may very well be a citB fusion. The fusions were divided into two types on the basis of their response to complete starvation for either ATP or GTP or both components at the same time. Except for one, type 2 fusions were induced by specific starvation for ATP and by simultaneous starvation for ATP and GTP, but not by specific GTP starvation in a gua strain or by GTP starvation induced by the addition of decoyinine. Type 1 fusions were equally well induced by all three kinds of purine starvation including GTP starvation induced by decoyinine. Further subdivisions of the fusions were obtained on the basis of their responses to the spo0A gene product. A total of five fusions showed that spo0A affected expression. One class was unable to induce lacZ expression in the absence of the spo0A gene product, whereas the other class had increased lacZ expression during partial purine starvation in a spo0A background.
Collapse
Affiliation(s)
- H H Saxild
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|
26
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
27
|
He B, Choi KY, Zalkin H. Regulation of Escherichia coli glnB, prsA, and speA by the purine repressor. J Bacteriol 1993; 175:3598-606. [PMID: 8388874 PMCID: PMC204761 DOI: 10.1128/jb.175.11.3598-3606.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A strategy was devised to identify Escherichia coli genes subject to coregulation by purR. From a data base search, similarities to the pur regulon cis-acting control site were found in 26 E. coli genes. Of five genes examined in which the putative pur operator is upstream of the coding sequence, glnB, prsA, and speA bound purified purine repressor in vitro. Binding of the repressor to a pur operator in these genes was dependent upon a corepressor. The pur operator in glnB is located between two major transcription start sites that were located by primer extension mapping. The effect of purR on expression of glnB, prsA, and speA was examined by using a lacZ reporter. The results indicated two- to threefold repression of these genes by purR. Coregulation by purR provides evidence that expands the pur regulon to include glnB, prsA, and speA. These genes have functions related to nucleotide metabolism.
Collapse
Affiliation(s)
- B He
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | | | |
Collapse
|
28
|
Abstract
Escherichia coli purB is regulated by a repressor-operator interaction. The purB operator is 242 bp downstream from the transcription start site and overlaps condons 62 to 67 in the protein-coding sequence (B. He, J. M. Smith, and H. Zalkin, J. Bacteriol. 174:130-136, 1992). The mechanism by which the repressor-operator interaction functions to repress transcription was investigated by a combination of promoter replacement experiments and RNA analyses. By using a trp promoter replacement that deleted 5' flanking DNA to position -986, purB expression was increased sevenfold, yet normal two- to threefold regulation was maintained. This indicates that repressor-operator control is independent of the purB promoter and other 5' flanking sequences. Transcriptional regulation was likewise independent of coupled translation. An approximately 260-nucleotide truncated in vivo purB mRNA was identified which was dependent upon repressor-operator interaction. Thus, binding of purine repressor to the purB operator inhibits transcription elongation by a roadblock mechanism. The roadblock was not influenced by a sevenfold increase in promoter strength or by an operator mutation resulting in a 2.5-fold increase in repressor-operator affinity.
Collapse
Affiliation(s)
- B He
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
29
|
Choi KY, Zalkin H. Structural characterization and corepressor binding of the Escherichia coli purine repressor. J Bacteriol 1992; 174:6207-14. [PMID: 1400170 PMCID: PMC207689 DOI: 10.1128/jb.174.19.6207-6214.1992] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Escherichia coli purine repressor, PurR, binds to a 16-bp operator sequence and coregulates the genes for de novo synthesis of purine and pyrimidine nucleotides, formation of a one-carbon unit for biosynthesis, and deamination of cytosine. We have characterized the purified repressor. Chemical cross-linking indicates that PurR is dimeric. Each subunit has an N-terminal domain of 52 amino acids for DNA binding and a C-terminal 289-residue domain for corepressor binding. Each domain was isolated after cleavage by trypsin. Sites for dimer formation are present within the corepressor binding domain. The corepressors hypoxanthine and guanine bind cooperatively to distinct sites in each subunit. Competition experiments indicate that binding of one purine abolishes cooperativity and decreases the affinity and the binding of the second corepressor. Binding of each corepressor results in a conformation change in the corepressor binding domain that was detected by intrinsic fluorescence of three tryptophan residues. These experiments characterize PurR as a complex allosteric regulatory protein.
Collapse
Affiliation(s)
- K Y Choi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | |
Collapse
|
30
|
Zalkin H, Dixon JE. De novo purine nucleotide biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:259-87. [PMID: 1574589 DOI: 10.1016/s0079-6603(08)60578-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|