1
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
2
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
3
|
Nkamga VD, Henrissat B, Drancourt M. Archaea: Essential inhabitants of the human digestive microbiota. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2016.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Bang C, Ehlers C, Orell A, Prasse D, Spinner M, Gorb SN, Albers SV, Schmitz RA. Biofilm formation of mucosa-associated methanoarchaeal strains. Front Microbiol 2014; 5:353. [PMID: 25071757 PMCID: PMC4086402 DOI: 10.3389/fmicb.2014.00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/24/2014] [Indexed: 01/02/2023] Open
Abstract
Although in nature most microorganisms are known to occur predominantly in consortia or biofilms, data on archaeal biofilm formation are in general scarce. Here, the ability of three methanoarchaeal strains, Methanobrevibacter smithii and Methanosphaera stadtmanae, which form part of the human gut microbiota, and the Methanosarcina mazei strain Gö1 to grow on different surfaces and form biofilms was investigated. All three strains adhered to the substrate mica and grew predominantly as bilayers on its surface as demonstrated by confocal laser scanning microscopy analyses, though the formation of multi-layered biofilms of Methanosphaera stadtmanae and Methanobrevibacter smithii was observed as well. Stable biofilm formation was further confirmed by scanning electron microscopy analysis. Methanosarcina mazei and Methanobrevibacter smithii also formed multi-layered biofilms in uncoated plastic μ-dishesTM, which were very similar in morphology and reached a height of up to 40 μm. In contrast, biofilms formed by Methanosphaera stadtmanae reached only a height of 2 μm. Staining with the two lectins ConA and IB4 indicated that all three strains produced relatively low amounts of extracellular polysaccharides most likely containing glucose, mannose, and galactose. Taken together, this study provides the first evidence that methanoarchaea can develop and form biofilms on different substrates and thus, will contribute to our knowledge on the appearance and physiological role of Methanobrevibacter smithii and Methanosphaera stadtmanae in the human intestine.
Collapse
Affiliation(s)
- Corinna Bang
- Institute for General Microbiology, University of Kiel Kiel, Germany
| | - Claudia Ehlers
- Institute for General Microbiology, University of Kiel Kiel, Germany
| | - Alvaro Orell
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology Marburg, Germany ; Molecular Microbiology of Extremophiles Research Group, Centre for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor Santiago, Chile
| | - Daniela Prasse
- Institute for General Microbiology, University of Kiel Kiel, Germany
| | - Marlene Spinner
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel Kiel, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, University of Kiel Kiel, Germany
| |
Collapse
|
5
|
Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1130-47. [PMID: 24333786 DOI: 10.1016/j.bbabio.2013.12.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only -36kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Cornelia Welte
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany; Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Abstract
Biofilms are currently viewed as the most common form in which microorganisms exist in nature. Bacterial biofilms play important roles in disease and industrial applications, and they have been studied in great detail. Although it is well accepted that archaea are not only the extremists they were thought to be as they occupy nearly every habitat where also bacteria are found, it is surprising how little molecular details are known about archaeal biofilm formation. Therefore, we aim to highlight the available information and indicate open questions in this field.
Collapse
Affiliation(s)
- Alvaro Orell
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| | | | | |
Collapse
|
7
|
Abstract
Biofilms or multicellular structures become accepted as the dominant microbial lifestyle in Nature, but in the past they were only studied extensively in bacteria. Investigations on archaeal monospecies cultures have shown that many archaeal species are able to adhere on biotic and abiotic surfaces and form complex biofilm structures. Biofilm-forming archaea were identified in a broad range of extreme and moderate environments. Natural biofilms observed are mostly mixed communities composed of archaeal and bacterial species of various abundances. The physiological functions of the archaea identified in such mixed communities suggest a significant impact on the biochemical cycles maintaining the flow and recycling of the nutrients on earth. Therefore it is of high interest to investigate the characteristics and mechanisms underlying the archaeal biofilm formation. In the present review, I summarize and discuss the present investigations of biofilm-forming archaeal species, i.e. their diverse biofilm architectures in monospecies or mixed communities, the identified EPSs (extracellular polymeric substances), archaeal structures mediating surface adhesion or cell–cell connections, and the response to physical and chemical stressors implying that archaeal biofilm formation is an adaptive reaction to changing environmental conditions. A first insight into the molecular differentiation of cells within archaeal biofilms is given.
Collapse
|
8
|
Fröls S, Dyall-Smith M, Pfeifer F. Biofilm formation by haloarchaea. Environ Microbiol 2012; 14:3159-74. [DOI: 10.1111/j.1462-2920.2012.02895.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Fröls
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| | - Mike Dyall-Smith
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2678; Australia
| | - Felicitas Pfeifer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| |
Collapse
|
9
|
Kumar S, Dagar SS, Mohanty AK, Sirohi SK, Puniya M, Kuhad RC, Sangu KPS, Griffith GW, Puniya AK. Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 2011; 98:457-72. [PMID: 21475941 DOI: 10.1007/s00114-011-0791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.
Collapse
Affiliation(s)
- Sanjay Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sirohi SK, Pandey N, Singh B, Puniya AK. Rumen methanogens: a review. Indian J Microbiol 2010; 50:253-62. [PMID: 23100838 PMCID: PMC3450062 DOI: 10.1007/s12088-010-0061-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 08/06/2008] [Indexed: 10/18/2022] Open
Abstract
The Methanogens are a diverse group of organisms found in anaerobic environments such as anaerobic sludge digester, wet wood of trees, sewage, rumen, black mud, black sea sediments, etc which utilize carbon dioxide and hydrogen and produce methane. They are nutritionally fastidious anaerobes with the redox potential below -300 mV and usually grow at pH range of 6.0-8.0 [1]. Substrates utilized for growth and methane production include hydrogen, formate, methanol, methylamine, acetate, etc. They metabolize only restricted range of substrates and are poorly characterized with respect to other metabolic, biochemical and molecular properties.
Collapse
Affiliation(s)
- S. K. Sirohi
- Nutrition Biotechnology Lab, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132 001 India
| | - Neha Pandey
- Nutrition Biotechnology Lab, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132 001 India
| | - B. Singh
- Nutrition Biotechnology Lab, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132 001 India
| | - A. K. Puniya
- Dairy Microbiology Division, NDRI, Karnal, India
| |
Collapse
|
11
|
Aravind L, Anantharaman V, Venancio TM. Apprehending multicellularity: regulatory networks, genomics, and evolution. ACTA ACUST UNITED AC 2009; 87:143-64. [PMID: 19530132 DOI: 10.1002/bdrc.20153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the "network view" of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and nonprotein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch subnetwork, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
12
|
Osumi N, Kakehashi Y, Matsumoto S, Nagaoka K, Sakai J, Miyashita K, Kimura M, Asakawa S. Identification of the gene for disaggregatase from Methanosarcina mazei. ARCHAEA (VANCOUVER, B.C.) 2008; 2:185-91. [PMID: 19054745 PMCID: PMC2685598 DOI: 10.1155/2008/949458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 03/07/2008] [Indexed: 11/18/2022]
Abstract
The gene sequences encoding disaggregatase (Dag), the enzyme responsible for dispersion of cell aggregates of Methanosarcina mazei to single cells, were determined for three strains of M. mazei (S-6(T), LYC and TMA). The dag genes of the three strains were 3234 bp in length and had almost the same sequences with 97% amino acid sequence identities. Dag was predicted to comprise 1077 amino acid residues and to have a molecular mass of 120 kDa containing three repeats of the DNRLRE domain in the C terminus, which is specific to the genus Methanosarcina and may be responsible for structural organization and cell wall function. Recombinant Dag was overexpressed in Escherichia coli and preparations of the expressed protein exhibited enzymatic activity. The RT-PCR analysis showed that dag was transcribed to mRNA in M. mazei LYC and indicated that the gene was expressed in vivo. This is the first time the gene involved in the morphological change of Methanosarcina spp. from aggregate to single cells has been identified.
Collapse
Affiliation(s)
- Naoki Osumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihiro Kakehashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Present address: Kirin Food-Tech Company Ltd., Takasago 676-0028, Japan
| | - Shiho Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Present address: Graduate School of Medicine, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kazunari Nagaoka
- Kyushu National Agricultural Experiment Station, Nishigoshi 861-1192, Japan
- Present address: National Agricultural Research Center, Tsukuba 305-8666, Japan
| | - Junichi Sakai
- Kyushu National Agricultural Experiment Station, Nishigoshi 861-1192, Japan
- Present address: National Agricultural Research Center for Tohoku Region, Morioka 020-0198, Japan
| | - Kiyotaka Miyashita
- National Institute of Agro-environmental Sciences, Tsukuba 305-8604, Japan
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Susumu Asakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Kyushu National Agricultural Experiment Station, Nishigoshi 861-1192, Japan
| |
Collapse
|
13
|
Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJM, Schleper C, Albers SV. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 2008; 70:938-52. [DOI: 10.1111/j.1365-2958.2008.06459.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kawakami Y, Hayashi N, Ema M, Nakayama M. Effects of divalent cations on Halobacterium salinarum cell aggregation. J Biosci Bioeng 2007; 104:42-6. [PMID: 17697982 DOI: 10.1263/jbb.104.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/12/2007] [Indexed: 11/17/2022]
Abstract
Ca(2+) was found to be essential for initiating Halobacterium salinarum CCM 2090 cell aggregation. The floc formed from such aggregation could easily be dissociated without cellular lysis by sodium citrate. Cr(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) could replace Ca(2+). However, Mg(2+), Sr(2+), Mo(2+), Cd(2+), Sn(2+), Hg(2+), and Pb(2+) induced no flocculation of cells of this halophilic archaeon. Mg(2+) acted antagonistically against Ca(2+)-induced aggregation. Such aggregation might be directly caused by the interaction of Ca(2+) and aggregation factors from 55 degrees C-treated cell extract.
Collapse
Affiliation(s)
- Yoshitaka Kawakami
- Division of Natural Science, Department of Arts and Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara-Shi, Osaka, Japan.
| | | | | | | |
Collapse
|
15
|
Stabnikova O, Liu XY, Wang JY, Ivanov V. Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Microbiol Biotechnol 2006; 73:696-702. [PMID: 16767462 DOI: 10.1007/s00253-006-0490-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/26/2006] [Accepted: 05/02/2006] [Indexed: 11/27/2022]
Abstract
To monitor anaerobic environmental engineering system, new method of quantification for methanogens was tested. It is based on the measurement of specific binding (hybridization) of 16S rRNA-targeted oligonucleotide probe Arc915, performed by fluorescence in situ hybridization (FISH) and quantified by fluorescence spectrometry. Average specific binding of Arc915 probe was 13.4+/-0.5 amol/cell of autofluorescent methanogens. It was 14.3, 13.3, and 12.9 amol/cell at the log phase, at stationary phase and at the period of cell lysis of batch culture, respectively. Specific binding of Arc915 probe per 1 ml of microbial sludge suspension from anaerobic digester linearly correlated with concentration of autofluorescent cells of methanogens. Coefficient of correlation was 0.95. Specific binding of oligonucleotide probe Arc915 can be used for the comparative estimation of methanogens during anaerobic digestion of organic waste. Specific binding of Arc915 probe was linear function of anaerobic sludge concentration when it was between 1.4 and 14.0 mg/ml. Accuracy of the measurements in this region was from 5 to 12%.
Collapse
Affiliation(s)
- O Stabnikova
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | | | |
Collapse
|
16
|
Conway de Macario E, Macario AJL. Molecular biology of stress genes in methanogens: potential for bioreactor technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 81:95-150. [PMID: 12747562 DOI: 10.1007/3-540-45839-5_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many agents of physical, chemical, or biological nature, have the potential for causing cell stress. These agents are called stressors and their effects on cells are due to protein denaturation. Cells, microbes, for instance, perform their physiological functions and survive stress only if they have their proteins in the necessary concentrations and shapes. To be functional a protein shape must conform to a specific three-dimensional arrangement, named the native configuration. When a stressor (e.g., temperature elevation or heat shock, decrease in pH, hypersalinity, heavy metals) hits a microbe, it causes proteins to lose their native configuration, which is to say that stressors cause protein denaturation. The cell mounts an anti-stress response: house-keeping genes are down-regulated and stress genes are activated. Among the latter are the genes that produce the Hsp70(DnaK), Hsp60, and small heat protein (sHsp) families of stress proteins. Hsp70(DnaK) is part of the molecular chaperone machine together with Hsp40(DnaJ) and GrpE, and Hsp60 is a component of the chaperonin complex. Both the chaperone machine and the chaperonins play a crucial role in assisting microbial proteins to reach their native, functional configuration and to regain it when it is partially lost due to stress. Proteins that are denatured beyond repair are degraded by proteases so they do not accumulate and become a burden to the cell. All Archaea studied to date possess chaperonins but only some methanogens have the chaperone machine. A recent genome survey indicates that Archaea do not harbor well conserved equivalents of the co-chaperones trigger factor, Hip, Hop, BAG-1, and NAC, although the data suggest that Archaea have proteins related to Hop and to the NAC alpha subunit whose functions remain to be elucidated. Other anti-stress means involve osmolytes, ion traffic, and formation of multicellular structures. All cellular anti-stress mechanisms depend on genes whose products are directly involved in counteracting the effects of stressors, or are regulators. The latter proteins monitor and modulate gene activity. Biomethanation depends on the concerted action of at least three groups of microbes, the methanogens being one of them. Their anti-stress mechanisms are briefly discussed in this Chapter from the standpoint of their role in biomethanation with emphasis on their potential for optimizing bioreactor performance. Bioreactors usually contain stressors that come with the influent, or are produced during the digestion process. If the stressors reach levels above those that can be dealt with by the anti-stress mechanisms of the microbes in the bioreactor, the microbes will die or at least cease to function. The bioreactor will malfunction and crash. Manipulation of genes involved in the anti-stress response, particularly those pertinent to the synthesis and regulation of the Hsp70(DnaK) and Hsp60 molecular machines, is a promising avenue for improving the capacity of microbes to withstand stress, and thus to continue biomethanation even when the bioreactor is loaded with harsh waste. The engineering of methanogenic consortia with stress-resistant microbes, made on demand for efficient bioprocessing of stressor-containing effluents and wastes, is a tangible possibility for the near future. This promising biotechnological development will soon become a reality due to the advances in the study of the stress response and anti-stress mechanisms at the molecular and genetic levels.
Collapse
Affiliation(s)
- Everly Conway de Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
17
|
Jing H, Takagi J, Liu JH, Lindgren S, Zhang RG, Joachimiak A, Wang JH, Springer TA. Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins. Structure 2002; 10:1453-64. [PMID: 12377130 DOI: 10.1016/s0969-2126(02)00840-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The surface layer of archaeobacteria protects cells from extreme environments and, in Methanosarcina, may regulate cell adhesion. We identify three domain types that account for the complete architecture of numerous Methanosarcina surface layer proteins (SLPs). We solve the crystal structure for two of these domains, which correspond to the two N-terminal domains of an M. mazei SLP. One domain displays a unique, highly symmetrical, seven-bladed beta propeller fold, and the other belongs to the polycystic kidney disease (PKD) superfamily fold. The third domain is predicted to adopt a beta helix fold. These domains have homologs in metazoan cell surface proteins, suggesting remarkable relationships between domains in archaeal SLPs and metazoan cell surface proteins.
Collapse
Affiliation(s)
- Hua Jing
- Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
De Biase A, Macario AJL, Conway de Macario E. Effect of heat stress on promoter binding by transcription factors in the cytosol of the archaeon Methanosarcina mazeii. Gene 2002; 282:189-97. [PMID: 11814691 DOI: 10.1016/s0378-1119(01)00832-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulation of archaeal stress genes is not yet fully understood. This work is part of a research effort aimed at elucidating the molecular mechanisms of transcription initiation and regulation of the stress genes in the hsp70(dnaK) locus of the mesophilic, methanogenic archaeon Methanosarcina mazeii. The locus has the stress genes 5'-grpE-hsp70(dnaK)-hsp40(dnaJ)-3' encoding the chaperone machine components GrpE, Hsp70(DnaK), and Hsp40(DnaJ), respectively, flanked by non-heat shock inducible genes, orf16 and orf11-trkA. Thus, the M. mazeii hsp70(dnaK) locus offers the opportunity for studying heat shock and non-heat shock inducible genes side by side. The objectives of the work reported here were to develop procedures for studying basal transcription factors in the cytosol of M. mazeii and their interaction with these genes' promoters in stressed cells for comparison with unstressed counterparts. The preparation of non-radioactive DNA probes for electrophoretic mobility shift assay (EMSA), and the combination of EMSA with Western blotting for DNA-binding protein identification were standardized for this investigation. DNA probes bearing the genes' promoter regions were used for detecting and identifying DNA-binding proteins in the cytosol of unstressed and heat-shocked cells. Cytosolic TATA-binding protein (TBP) was found to bind the stress-gene promoters in both unstressed and heat-shocked cells but more strongly in the latter. Likewise, in stressed cells TBP-transcription factor B (TFB)(TFIIB) association was increased by comparison with unstressed controls. The level of cytosolic TBP assessed by its DNA-binding activity using EMSA remained unchanged during the various phases of culture growth in the absence of heat stress. The results indicate that heat stress of cells in culture modulates the level and/or the stress-gene promoter-binding activity of the M. mazeii TBP, and enhances TBP-TFB association in the cytosol and DNA binding.
Collapse
Affiliation(s)
- Andrea De Biase
- Wadsworth Center, New York State Department of Health, Division of Molecular Medicine, Albany, NY 12201, USA
| | | | | |
Collapse
|
19
|
Lange M, Ahring BK. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiol Rev 2001; 25:553-71. [PMID: 11742691 DOI: 10.1111/j.1574-6976.2001.tb00591.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict demands to anaerobic culture conditions. These differences may, at least partly, be responsible for the delay in availability of genetic research tools for methanogens. At present, however, the research within genetics of methanogens and their gene regulation and expression is in rapid progress. Two complete methanogenic genomes have been sequenced and published and more are underway. Besides, sequences are known from a multitude of individual genes from methanogens. Standard methods for simple DNA and RNA work can normally be employed, but permeabilization of the cell wall may demand special procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology.
Collapse
Affiliation(s)
- M Lange
- Biocentrum-DTU, Technical University of Denmark, Building 227, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
20
|
Thomsen J, De Biase A, Kaczanowski S, Macario AJ, Thomm M, Zielenkiewicz P, MacColl R, Conway de Macario E. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters. J Mol Biol 2001; 309:589-603. [PMID: 11397082 DOI: 10.1006/jmbi.2001.4705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcription of archaeal non-stress genes involves the basal factors TBP and TFB, homologs of the eucaryal TATA-binding protein and transcription factor IIB, respectively. No comparable information exists for the archaeal molecular-chaperone, stress genes hsp70(dnaK), hsp40(dnaJ), and grpE. These do not occur in some archaeal species, but are present in others possibly due to lateral transfer from bacteria, which provides a unique opportunity to study regulation of stress-inducible bacterial genes in organisms with eukaryotic-like transcription machinery. Among the Archaea with the genes, those from the mesophilic methanogen Methanosarcina mazeii are the only ones whose basal (constitutive) and stress-induced transcription patterns have been determined. To continue this work, tbp and tfb were cloned from M. mazeii, sequenced, and the encoded recombinant proteins characterized in solution, separately and in complex with each other and with DNA. M. mazeii TBP ranks among the shortest within Archaea and, contrary to other archaeal TBPs, it lacks tryptophan or an acidic tail at the C terminus and has a basic N-terminal third. M. mazeii TFB is similar in length to archaeal and eucaryal homologs and all have a zinc finger and HTH motifs. Phylogenetically, the archaeal and eucaryal proteins form separate clusters and the M. mazeii molecules are closer to the homologs from Archaeoglobus fulgidus than to any other. Antigenically, M. mazeii TBP and TFB are close to archaeal homologs within each factor family, but the two families are unrelated. The purified recombinant factors were functionally active in a cell-free in vitro transcription system, and were interchangeable with the homologs from Methanococcus thermolithotrophicus. The M. mazeii factors have a similar secondary structure by circular dichroism (CD). The CD spectra changed upon binding to the promoters of the stress genes grpE, dnaK, and dnaJ, with the changes being distinctive for each promoter; in contrast, no effect was produced by the promoter of a non-stress-gene. Factor(s)-DNA modeling predicted that modifications of H bonds are caused by TBP binding, and that these modifications are distinctive for each promoter. It also showed which amino acid residues would contact an extended TATA box with a B recognition element, and evolutionary conservation of the TBP-TFB-DNA complex orientation between two archaeal organisms with widely different optimal temperature for growth (37 and 100 degrees C).
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins
- Base Sequence
- Binding Sites
- Cell-Free System
- Circular Dichroism
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Archaeal/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Eukaryotic Cells/chemistry
- Evolution, Molecular
- Genes, Archaeal/genetics
- Hydrogen Bonding
- Metals/metabolism
- Methanosarcina/chemistry
- Methanosarcina/genetics
- Methanosarcina/metabolism
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Nuclear Proteins/chemistry
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Phylogeny
- Promoter Regions, Genetic/genetics
- Protein Structure, Secondary
- Sequence Alignment
- Sequence Homology, Amino Acid
- TATA-Box Binding Protein
- Transcription Factor TFIIB
- Transcription Factors/chemistry
- Transcription Factors/immunology
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- J Thomsen
- Institut fuer Allgemeine Mikrobiologie, University of Kiel, Am Botanischen Garten 1-9, Kiel, D-24118, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Macario AJ, Lange M, Ahring BK, Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923-67, table of contents. [PMID: 10585970 PMCID: PMC98981 DOI: 10.1128/mmbr.63.4.923-967.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of approximately 60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication-hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
22
|
Schmidt JE, Ahring BK. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors. Appl Environ Microbiol 1999; 65:1050-4. [PMID: 10049862 PMCID: PMC91143 DOI: 10.1128/aem.65.3.1050-1054.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and mumax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor.
Collapse
Affiliation(s)
- J E Schmidt
- The Anaerobic Microbiology/Biotechnology Research Group, Department of Environmental Science and Engineering, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
23
|
Bahl H, Scholz H, Bayan N, Chami M, Leblon G, Gulik-Krzywicki T, Shechter E, Fouet A, Mesnage S, Tosi-Couture E, Gounon P, Mock M, Conway de Macario E, Macario AJ, Fernández-Herrero LA, Olabarría G, Berenguer J, Blaser MJ, Kuen B, Lubitz W, Sára M, Pouwels PH, Kolen CP, Boot HJ, Resch S. Molecular biology of S-layers. FEMS Microbiol Rev 1997; 20:47-98. [PMID: 9276928 DOI: 10.1111/j.1574-6976.1997.tb00304.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this chapter we report on the molecular biology of crystalline surface layers of different bacterial groups. The limited information indicates that there are many variations on a common theme. Sequence variety, antigenic diversity, gene expression, rearrangements, influence of environmental factors and applied aspects are addressed. There is considerable variety in the S-layer composition, which was elucidated by sequence analysis of the corresponding genes. In Corynebacterium glutamicum one major cell wall protein is responsible for the formation of a highly ordered, hexagonal array. In contrast, two abundant surface proteins from the S-layer of Bacillus anthracis. Each protein possesses three S-layer homology motifs and one protein could be a virulence factor. The antigenic diversity and ABC transporters are important features, which have been studied in methanogenic archaea. The expression of the S-layer components is controlled by three genes in the case of Thermus thermophilus. One has repressor activity on the S-layer gene promoter, the second codes for the S-layer protein. The rearrangement by reciprocal recombination was investigated in Campylobacter fetus. 7-8 S-layer proteins with a high degree of homology at the 5' and 3' ends were found. Environmental changes influence the surface properties of Bacillus stearothermophilus. Depending on oxygen supply, this species produces different S-layer proteins. Finally, the molecular bases for some applications are discussed. Recombinant S-layer fusion proteins have been designed for biotechnology.
Collapse
Affiliation(s)
- H Bahl
- Universität Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim BK, Conway de Macario E, Nölling J, Daniels L. Isolation and characterization of a copper-resistant methanogen from a copper-mining soil sample. Appl Environ Microbiol 1996; 62:2629-35. [PMID: 8779599 PMCID: PMC168042 DOI: 10.1128/aem.62.7.2629-2635.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A copper-resistant methanogen for which the CuSO4 MICs were approximately 2- to 36-fold higher than those for other methanogens tested was isolated from a copper-mining area in the upper peninsula of Michigan. The rod-shaped methanogen used H2-CO2 or formate, but not acetate or methanol, as a growth substrate. Standing incubation with H2-CO2 medium resulted in a mat-like surface growth, dependent on the presence of hydrogen. The presence of 1 mM cupric salt resulted in longer filamentous and intertwined cells. Antigenic fingerprinting, 16S rRNA gene analysis, morphology, and substrate use suggest that the new isolate is a novel strain of Methanobacterium bryantii that is able to use formate.
Collapse
Affiliation(s)
- B K Kim
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
25
|
Macario AJ, Simon VH, Conway de Macario E. An archaeal gene upstream of grpE different from eubacterial counterparts. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:173-7. [PMID: 7495860 DOI: 10.1016/0167-4781(95)00163-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In some eubacteria with a dnaK locus in which grpE is close upstream of dnaK, grpE is preceded by an open reading frame (orf) believed to be a heat-shock gene. We also found an orf, orf16, upstream of grpE in the archaeon Methanosarcina mazei S-6, but this gene differs from the eubacterial counterpart: it is shorter, does not respond to a temperature upshift as heat-shock genes do, and the deduced protein Orf16, does not resemble the proteins coded by the eubacterial equivalents. orf16 is expressed monocistronically, with a transcription initiation site 24 bases upstream of the translation start codon, 22 bases downstream of a putative promoter identical to the consensus promoter for genes in methanogens. This initiation site is used by heat-shocked and non-heat-shocked cells in the two morphologic stages of M. mazei S-6 tested, i.e., packets and single cells. Three transcription termination sites were identified, one of which is detectable only in non-heat-shocked cells. Data from comparative analyses of the Orf16 deduced amino acid sequence and those of other known proteins, as well as the apparent biochemical characteristics of Orf16, suggest that the latter is a membrane molecule.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | |
Collapse
|
26
|
Conway de Macario E, Macario AJ. Transcription of the archaeal trkA homolog in Methanosarcina mazei S-6. J Bacteriol 1995; 177:6077-82. [PMID: 7592370 PMCID: PMC177445 DOI: 10.1128/jb.177.21.6077-6082.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription of the archaeal trkA gene homolog in Methanosarcina mazei S-6 was studied at the optimal growth temperature of 37 degrees C and after heat shock at 45 degrees C. Northern (RNA) blotting results (transcript size) and data from primer extension experiments to map the transcription initiation site indicate that trkA is cotranscribed with another gene. The latter, orf11, encodes a protein of 94 amino acids (10,611 Da) and is located upstream of trkA, with which it overlaps: the translation stop codon of orf11, TGA, shares the bases T and G with the translation start codon of trkA, ATG. These genes' transcription was decreased by heat shock to the point of making the transcript undetectable by Northern or dot blotting procedures. orf11 and trkA differ in codon usage patterns, and the proteins coded by them, i.e., Orf11 and TrkA, are dissimilar in amino acid sequence and composition.
Collapse
Affiliation(s)
- E Conway de Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, Albany 12201-0509, USA
| | | |
Collapse
|
27
|
Conway De Macario E, Clarens M, Macario AJ. Archaeal grpE: transcription in two different morphologic stages of Methanosarcina mazei and comparison with dnaK and dnaJ. J Bacteriol 1995; 177:544-50. [PMID: 7836285 PMCID: PMC176626 DOI: 10.1128/jb.177.3.544-550.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription of the heat shock gene grpE was studied in two different morphologic stages of the archaeon Methanosarcina mazei S-6 that differ in resistance to physical and chemical traumas: single cells and packets. While single cells are directly exposed to environmental changes, such as temperature elevations, cells in packets are surrounded by intercellular and peripheral material that keeps them together in a globular structure which can reach several millimeters in diameter. grpE transcript levels determined by Northern (RNA) blotting peaked after a 15-min heat shock in single cells. In contrast, the highest transcript levels in packets were observed after the longest heat shock tested, 60 min. The same response profiles were demonstrated by primer extension experiments and S1 nuclease analysis. A comparison of the grpE response to heat shock with those of dnaK and dnaJ showed that the grpE transcript level was the most increased, closely followed by that of the dnaK transcript, with that of the dnaJ gene being the least augmented. Transcription of grpE started at the same site under normal and heat shock temperatures, and the transcript was consistently approximately 700 bases long. Codon usage patterns revealed that the three archaeal genes use most codons and have the same codon preference for 61% of the amino acids.
Collapse
Affiliation(s)
- E Conway De Macario
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany
| | | | | |
Collapse
|
28
|
Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 1994; 60:1241-8. [PMID: 7517129 PMCID: PMC201465 DOI: 10.1128/aem.60.4.1241-1248.1994] [Citation(s) in RCA: 263] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The microbial community structure of anaerobic biological reactors was evaluated by using oligonucleotide probes complementary to conserved tracts of the 16S rRNAs of phylogenetically defined groups of methanogens. Phylogenetically defined groups of methanogens were quantified and visualized, respectively, by hybridization of 32P- and fluorescent-dye-labeled probes to the 16S rRNAs from samples taken from laboratory acetate-fed chemostats, laboratory municipal solid waste digestors, and full-scale sewage sludge digestors. Methanosarcina species, members of the order Methanobacteriales, and Methanosaeta species were the most abundant methanogens present in the chemostats, the solid-waste digestors, and the sewage sludge digestors, respectively.
Collapse
Affiliation(s)
- L Raskin
- Department of Civil Engineering, University of Illinois at Urbana-Champaign, 61801
| | | | | | | | | |
Collapse
|
29
|
Ahring BK, Schmidt JE, Winther-Nielsen M, Macario AJ, Conway de Macario E. Effect of medium composition and sludge removal on the production, composition, and architecture of thermophilic (55 degrees C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 1993; 59:2538-45. [PMID: 8368841 PMCID: PMC182317 DOI: 10.1128/aem.59.8.2538-2545.1993] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A thermophilic upflow anaerobic sludge blanket (UASB) reactor degrading acetate was started by applying published methods (W. M. Wiegant and A. W. A. de Man, Biotechnol. Bioeng. 28:718-77, 1986) for production of granules dominated by Methanothrix spp. The reactor was inoculated with thermophilic digested sludge. No granules were observed during the first 7 months of start-up of the UASB reactor. However, after the concentrations of potassium, phosphate, ammonium, and magnesium in the medium were gradually increased, granules developed, indicating that there was a critical concentration of one or more of the ions required for production of granules from the starting material. After several years of stable operation, the effect of removing 60% of the granular sludge was investigated. Immunologic qualitative and quantitative studies showed that removal of the granular sludge resulted in an increase in the number of the predominant methanogens, antigenically related to Methanosarcina thermophila TM-1 and Methanosarcina mazeii S-6, and Methanobacterium thermoautotrophicum delta H and GC1. These changes were accompanied by modifications of the microanatomy of the granules, as demonstrated histochemically and immunohistochemically. The results indicated that different catabolic pathways dominated in different regions of the granules, i.e., acetate oxidation in the middle of the granules, where there is a low acetate concentration, and an aceticlastic reaction in the outer surfaces, with a high acetate concentration. The results also showed that removal of granules from a UASB reactor which has been under steady-state operation for a long period can improve the reactor's performance via formation of denser and larger granules with improved microbial activities.
Collapse
Affiliation(s)
- B K Ahring
- Department of Biotechnology, Technical University of Denmark, Lyngby
| | | | | | | | | |
Collapse
|
30
|
Effect of changes in mineral composition and growth temperature on filament length and flagellation in the Archaeon Methanospirillum hungatei. Arch Microbiol 1993. [DOI: 10.1007/bf00249028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Conway de Macario E, Macario AJ, Mok T, Beveridge TJ. Immunochemistry and localization of the enzyme disaggregatase in Methanosarcina mazei. J Bacteriol 1993; 175:3115-20. [PMID: 8491727 PMCID: PMC204633 DOI: 10.1128/jb.175.10.3115-3120.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The enzyme disaggregatase (Dag) from Methanosarcina mazei was studied immunochemically. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified Dag under reducing and nonreducing conditions revealed a single band with a 94-kDa molecular mass. Dag was found to be immunogenic in rabbits; a polyclonal antibody probe was prepared and used to detect the enzyme by slide immunoenzymatic assay, immunofluorescence, and immunoblotting in various species of Methanosarcina known to convert from packets to single cells, including M. mazei. The enzyme could not be detected in other members of the family Methanosarcinaceae that do not convert. By immunogold electron microscopy, Dag was mapped to the cell wall of packets and to the cell membrane of single cells of two M. mazei strains.
Collapse
Affiliation(s)
- E Conway de Macario
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany
| | | | | | | |
Collapse
|
32
|
Clarens M, Cairó JJ, París JM, Macario AJL, de Macario EC. Characterization and forms of JC3, a newMethanoarcina isolate: Comparison withMethanosarcina mazei strains S-6T MC3, and LYC. Curr Microbiol 1993. [DOI: 10.1007/bf01577373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Yao R, Macario AJ, Conway de Macario E. Immunochemical differences among Methanosarcina mazei S-6 morphologic forms. J Bacteriol 1992; 174:4683-8. [PMID: 1624456 PMCID: PMC206264 DOI: 10.1128/jb.174.14.4683-4688.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Methanosarcinae are the only archaeobacteria known to undergo major morphologic changes during growth involving unicellular and multicellular forms, and Methanosarcina mazei S-6 is the only strain for which three distinct forms, packets, single cells, and lamina, have so far been observed. It is reported that two pairs of these forms, either packets and single cells or single cells and lamina, grew and interconverted in medium with the same composition, Ca2+ and Mg2+ concentrations, and growth substrate, and that the two forms in each pair displayed distinctive differences revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting, the same growth medium-substrate notwithstanding.
Collapse
Affiliation(s)
- R Yao
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany
| | | | | |
Collapse
|
34
|
Schmidt JE, Macario AJ, Ahring BK, Conway de Macario E. Effect of magnesium on methanogenic subpopulations in a thermophilic acetate-degrading granular consortium. Appl Environ Microbiol 1992; 58:862-8. [PMID: 1575487 PMCID: PMC195346 DOI: 10.1128/aem.58.3.862-868.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The effects of Mg2+ on thermophilic (55 degrees C) granules grown on acetate in 0.2-liter upflow anaerobic sludge blanket reactors were studied. The methanogens in the granules were identified and counted by using antibody probes and the antigenic fingerprinting method. Packets of large coccoidal cells antigenically related to Methanosarcina thermophila TM-1 were scarce in the absence of Mg2+ but increased with increasing Mg2+ concentrations up to 30 mM; Methanosarcina packets immunologically related to Methanosarcina barkeri R1M3 showed a similar trend, and their numbers increased up to 100 mM Mg2+. The number of single cells antigenically related to TM-1, R1M3, and Methanosarcina mazei S-6 were scarce at low Mg2+ concentrations but increased drastically at 30 and 100 mM Mg2+. The number of rod-shaped bacteria antigenically related to Methanobacterium thermoautotrophicum GC1 and delta H was highest with no Mg2+ present, and their numbers decreased with increasing concentrations of the cation. These quantitative data, obtained by counting cells in suspensions made from disrupted granules, were confirmed by microscopic observation of the methanogenic subpopulations in thin histologic sections of the granules.
Collapse
Affiliation(s)
- J E Schmidt
- Department of Biotechnology, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|