1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Li LY, Hu YL, Sun JL, Yu LB, Shi J, Wang ZR, Guo ZK, Zhang B, Guo WJ, Tan RX, Ge HM. Resistance and phylogeny guided discovery reveals structural novelty of tetracycline antibiotics. Chem Sci 2022; 13:12892-12898. [DOI: 10.1039/d2sc03965f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Using resistance gene genome mining strategy and refinement with chain length factor, we obtained 25 distinct tetracycline biosynthetic gene clusters and a novel tetracycline. The biosynthesis of the highly modified tetracycline was investigated.
Collapse
Affiliation(s)
- Ling Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jia Lin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Long Bo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Bio-technology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Jie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
4
|
Tu J, Li S, Chen J, Song Y, Fu S, Ju J, Li Q. Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802. Microb Cell Fact 2018; 17:28. [PMID: 29463238 PMCID: PMC5819245 DOI: 10.1186/s12934-018-0875-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background The deep-sea-derived microbe Streptomyces koyangensis SCSIO 5802 produces neoabyssomicins A–B (1–2) and abyssomicins 2 (3) and 4 (4). Neoabyssomicin A (1) augments human immunodeficiency virus-1 (HIV-1) replication whereas abyssomicin 2 (3) selectively reactivates latent HIV and is also active against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Structurally, neoabyssomicins A–B constitute a new subtype within the abyssomicin family and feature unique structural traits characteristic of extremely interesting biosynthetic transformations. Results In this work, the biosynthetic gene cluster (BGC) for the neoabyssomicins and abyssomicins, composed of 28 opening reading frames, was identified in S. koyangensis SCSIO 5802, and its role in neoabyssomicin/abyssomicin biosynthesis was confirmed via gene inactivation and heterologous expression experiments. Bioinformatics and genomics analyses enabled us to propose a biosynthetic pathway for neoabyssomicin/abyssomicin biosynthesis. Similarly, a protective export system by which both types of compounds are secreted from the S. koyangensis producer was identified, as was a four-component ABC transporter-based import system central to neoabyssomicin/abyssomicin biosynthesis. Furthermore, two regulatory genes, abmI and abmH, were unambiguously shown to be positive regulators of neoabyssomicin/abyssomicin biosynthesis. Consistent with their roles as positive regulatory genes, the overexpression of abmI and abmH (independent of each other) was shown to improve neoabyssomicin/abyssomicin titers. Conclusions These studies provide new insight into the biosynthesis of the abyssomicin class of natural products, and highlight important exploitable features of its BGC for future efforts. Elucidation of the neoabyssomicin/abyssomicin BGC now enables combinatorial biosynthetic initiatives aimed at improving both the titers and pharmaceutical properties of these important natural products-based drug leads. Electronic supplementary material The online version of this article (10.1186/s12934-018-0875-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi, 563000, China
| | - Siting Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Bio and Marine Sciences, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, China
| | - Jiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi, 563000, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
5
|
Ortseifen V, Kalinowski J, Pühler A, Rückert C. The complete genome sequence of the actinobacterium Streptomyces glaucescens GLA.O (DSM 40922) carrying gene clusters for the biosynthesis of tetracenomycin C, 5`-hydroxy streptomycin, and acarbose. J Biotechnol 2017; 262:84-88. [PMID: 28917933 DOI: 10.1016/j.jbiotec.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022]
Abstract
The secondary metabolite acarbose is used worldwide in the clinical treatment of diabetes mellitus type 2 patients. Acarbose is a - glucosidase inhibitor and supports patients to control their blood glucose as well as their serum insulin levels. The secondary metabolite is produced by strains of the class Actinobacteria, in particular from Actinoplanes sp. SE50/110, which is a progenitor of today`s production strains. Moreover, secondary metabolite clusters could also be identified in Streptomyces coelicoflavus ZG0656 as well as Streptomyces glaucescens GLA.O. In this study, the genome S. glaucescens GLA.O with focus on the acarbose biosynthesis cluster (gac-cluster) was analyzed. First, the tetracenomycin C and the 5`-hydroxy streptomycin gene clusters could be described completely. Then the gac gene region in S. glaucescens GLA.O is compared to the other known biosynthesis gene cluster. In comparison to Actinoplanes sp. SE50/110 the gac-cluster showed structural variances, like the missing homolog of the glycosyltransferase AcbD in the whole genome of S. glaucescens GLA.O. Due to the lack of the glycosyltransferase, it was of particular interest whether additional acarviose metabolites other than acarbose could be formed. For detection of acarviose metabolites biosynthesis the supernatant of S. glaucescens GLA.O grown in starch supplemented complex media was harvested at 72 and 96 hours. Although a homolog of the known glycosyltransferase is absent, the LC-MS-supported analysis revealed that a spectrum of acarviose metabolites was formed.
Collapse
Affiliation(s)
- Vera Ortseifen
- Senior Research Group Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; CLIB-Graduate Cluster Industrial Biotechnology, CLIB2021, Völklinger Strasse 4, 40219 Düsseldorf, Germany; Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany; Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Zhou Y, Jiang T, Hu S, Wang M, Ming D, Chen S. Genomic insights of Pannonibacter phragmitetus strain 31801 isolated from a patient with a liver abscess. Microbiologyopen 2017; 6. [PMID: 28857514 PMCID: PMC5727363 DOI: 10.1002/mbo3.515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Pannonibacter phragmitetus is a bioremediation reagent for the detoxification of heavy metals and polycyclic aromatic compounds (PAHs) while it rarely infects healthy populations. However, infection by the opportunistic pathogen P. phragmitetus complicates diagnosis and treatments, and poses a serious threat to immunocompromised patients owing to its multidrug resistance. Unfortunately, genome features, antimicrobial resistance, and virulence potentials in P. phragmitetus have not been reported before. A predominant colony (31801) was isolated from a liver abscess patient, indicating that it accounted for the infection. To investigate its infection mechanism(s) in depth, we sequenced this bacterial genome and tested its antimicrobial resistance. Average nucleotide identity (ANI) analysis assigned the bacterium to the species P. phragmitetus (ANI, >95%). Comparative genomics analyses among Pannonibacter spp. representing the different living niches were used to describe the Pannonibacter pan‐genomes and to examine virulence factors, prophages, CRISPR arrays, and genomic islands. Pannonibacter phragmitetus 31801 consisted of one chromosome and one plasmid, while the plasmid was absent in other Pannonibacter isolates. Pannonibacter phragmitetus 31801 may have a great infection potential because a lot of genes encoding toxins, flagellum formation, iron uptake, and virulence factor secretion systems in its genome. Moreover, the genome has 24 genomic islands and 2 prophages. A combination of antimicrobial susceptibility tests and the detailed antibiotic resistance gene analysis provide useful information about the drug resistance mechanisms and therefore can be used to guide the treatment strategy for the bacterial infection.
Collapse
Affiliation(s)
- Yajun Zhou
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Jiang
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Shaohua Hu
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Mingxi Wang
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.,Institute of Nanomedicine Technology and Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
8
|
Complete genome sequence of the actinobacterium Streptomyces glaucescens GLA.O (DSM 40922) consisting of a linear chromosome and one linear plasmid. J Biotechnol 2015; 194:81-3. [PMID: 25499805 DOI: 10.1016/j.jbiotec.2014.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/22/2022]
Abstract
Here we report the complete and finished genome sequence of Streptomyces glaucescens GLA.O (DSM 40922), a natural producer of the alpha-glucosidase inhibitor acarbose, which is used in the treatment of type-2 diabetes mellitus. The genome of S. glaucescens GLA.O consists of two replicons, the chromosome with a size of 7,453,200bp and a G+C content of 73.0% as well as a plasmid named pSglau1 with a size of 170,574bp and a G+C content of 69.06%.
Collapse
|
9
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
10
|
GouR, a TetR family transcriptional regulator, coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus. Appl Environ Microbiol 2013; 80:714-22. [PMID: 24242236 DOI: 10.1128/aem.03003-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gougerotin is a peptidyl nucleoside antibiotic. It functions as a specific inhibitor of protein synthesis by binding ribosomal peptidyl transferase and exhibits a broad spectrum of biological activities. gouR, situated in the gougerotin biosynthetic gene cluster, encodes a TetR family transcriptional regulatory protein. Gene disruption and genetic complementation revealed that gouR plays an important role in the biosynthesis of gougerotin. Transcriptional analysis suggested that GouR represses the transcription of the gouL-to-gouB operon consisting of 11 structural genes and activates the transcription of the major facilitator superfamily (MFS) transporter gene (gouM). Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting experiments showed that GouR has specific DNA-binding activity for the promoter regions of gouL, gouM, and gouR. Our data suggested that GouR modulates gougerotin production by coordinating its biosynthesis and export in Streptomyces graminearus.
Collapse
|
11
|
Characterization of BreR interaction with the bile response promoters breAB and breR in Vibrio cholerae. J Bacteriol 2012; 195:307-17. [PMID: 23144245 DOI: 10.1128/jb.02008-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrio cholerae BreR protein is a transcriptional repressor of the breAB efflux system operon, which encodes proteins involved in bile resistance. In a previous study (F. A. Cerda-Maira, C. S. Ringelberg, and R. K. Taylor, J. Bacteriol. 190:7441-7452, 2008), we used gel mobility shift assays to determine that BreR binds at two independent binding sites at the breAB promoter and a single site at its own promoter. Here it is shown, by DNase I footprinting and site-directed mutagenesis, that BreR is able to bind at a distal and a proximal site in the breAB promoter. However, only one of these sites, the proximal 29-bp site, is necessary for BreR-mediated transcriptional repression of breAB expression. In addition, it was determined that BreR represses its own expression by recognizing a 28-bp site at the breR promoter. These sites comprise regions of dyad symmetry within which residues critical for BreR function could be identified. The BreR consensus sequence AANGTANAC-N(6)-GTNTACNTT overlaps the -35 region at both promoters, implying that the repression of gene expression is achieved by interfering with RNA polymerase binding at these promoters.
Collapse
|
12
|
Vargas P, Felipe A, Michán C, Gallegos MT. Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1207-19. [PMID: 21649511 DOI: 10.1094/mpmi-03-11-0077] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we have analyzed the expression of the Pseudomonas syringae pv. tomato DC3000 mexAB-oprM efflux pump operon and of the regulatory gene pmeR, and we have investigated the role of the PmeR protein on transcription from both promoters. We demonstrate that mexAB-oprM and pmeR are expressed in vivo at a relatively high and moderate basal level, respectively, which, in both cases, increases in the presence of different flavonoids and other compounds, such as butyl and methylparaben. We show that PmeR is the local repressor of the mexAB-oprM promoter and is able to regulate its own expression. The mechanism for this regulation includes binding to a pseudopalindromic operator site which overlaps both mexAB-oprM and pmeR promoters. We have also proven that flavonoids are able to interact with PmeR and induce a conformational change that interferes with the DNA binding ability of PmeR, thereby modulating mexAB-oprM and pmeR expression. Finally, we demonstrate by in vivo experiments that the PmeR/MexAB-OprM system contributes to the colonization of tomato plants. These results provide new insight into a transcriptional regulator and a transport system that play essential roles in the ability of P. syringae pv. tomato DC3000 to resist the action of flavonoids produced by the host.
Collapse
Affiliation(s)
- Paola Vargas
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidin, Granada, Spain
| | | | | | | |
Collapse
|
13
|
Cundliffe E, Demain AL. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 2010; 37:643-72. [PMID: 20446033 DOI: 10.1007/s10295-010-0721-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Many microbes synthesize potentially autotoxic antibiotics, mainly as secondary metabolites, against which they need to protect themselves. This is done in various ways, ranging from target-based strategies (i.e. modification of normal drug receptors or de novo synthesis of the latter in drug-resistant form) to the adoption of metabolic shielding and/or efflux strategies that prevent drug-target interactions. These self-defence mechanisms have been studied most intensively in antibiotic-producing prokaryotes, of which the most prolific are the actinomycetes. Only a few documented examples pertain to lower eukaryotes while higher organisms have hardly been addressed in this context. Thus, many plant alkaloids, variously described as herbivore repellents or nitrogen excretion devices, are truly antibiotics-even if toxic to humans. As just one example, bulbs of Narcissus spp. (including the King Alfred daffodil) accumulate narciclasine that binds to the larger subunit of the eukaryotic ribosome and inhibits peptide bond formation. However, ribosomes in the Amaryllidaceae have not been tested for possible resistance to narciclasine and other alkaloids. Clearly, the prevalence of suicide avoidance is likely to extend well beyond the remit of the present article.
Collapse
Affiliation(s)
- Eric Cundliffe
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
14
|
Study of the role of Mce3R on the transcription of mce genes of Mycobacterium tuberculosis. BMC Microbiol 2008; 8:38. [PMID: 18304349 PMCID: PMC2277422 DOI: 10.1186/1471-2180-8-38] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background mce3 is one of the four virulence-related mce operons of Mycobacterium tuberculosis. In a previous work we showed that the overexpression of Mce3R in Mycobacterium smegmatis and M. tuberculosis abolishes the expression of lacZ fused to the mce3 promoter, indicating that Mce3R represses mce3 transcription. Results We obtained a knockout mutant strain of M. tuberculosis H37Rv by inserting a hygromycin cassette into the mce3R gene. The mutation results in a significant increase in the expression of mce3 genes either in vitro or in a murine cell macrophages line as it was determined using promoter-lacZ fusions in M. tuberculosis. The abundance of mce1, mce2 and mce4 mRNAs was not affected by this mutation as it was demonstrated by quantitative RT-PCR. The mce3R promoter activity in the presence of Mce3R was significantly reduced compared with that in the absence of the regulator, during the in vitro culture of M. tuberculosis. Conclusion Mce3R repress the transcription of mce3 operon and self regulates its own expression but does not affect the transcription of mce1, mce2 and mce4 operons of M. tuberculosis.
Collapse
|
15
|
Rebets Y, Dutko L, Ostash B, Luzhetskyy A, Kulachkovskyy O, Yamaguchi T, Nakamura T, Bechthold A, Fedorenko V. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol 2007; 189:111-20. [PMID: 17786405 DOI: 10.1007/s00203-007-0299-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/01/2007] [Accepted: 07/26/2007] [Indexed: 11/30/2022]
Abstract
The transcriptional regulator of landomycin A biosynthesis encoded by lanI gene has been inactivated within the chromosome of Streptomyces cyanogenus S136. The obtained mutant strain did not produce landomycin A and its known intermediates. Loss of landomycin A production caused significant changes in morphology of the lanI deficient strain. RT-PCR analysis confirmed complete cessation of transcription of certain lan genes, including lanJ (encoding putative proton dependent transporter) and lanK (presumably involved in lanJ expression regulation). Introduction of either lanI or lndI [lanI homologue controlling landomycin E biosynthesis in Streptomyces globisporus 1912, both encoding Streptomyces antibiotic regulatory proteins (SARPs)] restored landomycin A production in the mutant strain. Chimeric constructs ladI and ladR were generated by exchanging the DNA sequences corresponding to N- and C-terminal parts of LndI and LanI. None of these genes were able to activate the production of landomycins in regulatory mutants of S. cyanogenus and S. globisporus. Nevertheless, the production of novel unidentified compound was observed in the case of S. cyanogenus harboring ladI gene. Various genes encoding SARPs have been expressed in S. globisporus and S. cyanogenus regulatory mutants and the results of these complementation experiments are discussed.
Collapse
Affiliation(s)
- Yuriy Rebets
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv, 79005, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 2007; 24:162-90. [PMID: 17268612 DOI: 10.1039/b507395m] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers advances in understanding of the biosynthesis of polyketides produced by type II PKS systems at the genetic, biochemical and structural levels.
Collapse
Affiliation(s)
- Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
17
|
Martín JF, Casqueiro J, Liras P. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 2005; 8:282-93. [PMID: 15939351 DOI: 10.1016/j.mib.2005.04.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 04/22/2005] [Indexed: 11/23/2022]
Abstract
Many secondary metabolites (e.g. antibiotics and mycotoxins) are toxic to the microorganisms that produce them. The clusters of genes that are responsible for the biosynthesis of secondary metabolites frequently contain genes for resistance to these toxic metabolites, such as different types of multiple drug resistance systems, to avoid suicide of the producer strains. Recently there has been research into the efflux systems of secondary metabolites in bacteria and in filamentous fungi, such as the large number of ATP-binding cassette transporters found in antibiotic-producing Streptomyces species and that are involved in penicillin secretion in Penicillium chrysogenum. A different group of efflux systems, the major facilitator superfamily exporters, occur very frequently in a variety of bacteria that produce pigments or antibiotics (e.g. the cephamycin and thienamycin producers) and in filamentous fungi that produce mycotoxins. Such efflux systems include the CefT exporters that mediate cephalosporin secretion in Acremonium chrysogenum. The evolutionary origin of these efflux systems and their relationship with current resistance determinants in pathogenic bacteria has been analyzed. Genetic improvement of the secretion systems of secondary metabolites in the producer strain has important industrial applications.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Campus de Vegazana, s/n, 24071 León, Spain.
| | | | | |
Collapse
|
18
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 848] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang J, O'Toole PW, Shen W, Amrine-Madsen H, Jiang X, Lobo N, Palmer LM, Voelker L, Fan F, Gwynn MN, McDevitt D. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 2004; 48:909-17. [PMID: 14982783 PMCID: PMC353085 DOI: 10.1128/aac.48.3.909-917.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic efflux is an important mechanism of resistance in pathogenic bacteria. Here we describe the identification and characterization of a novel chromosomally encoded multidrug resistance efflux protein in Staphylococcus aureus, MdeA (multidrug efflux A). MdeA was identified from screening an S. aureus open reading frame expression library for resistance to antibiotic compounds. When overexpressed, MdeA confers resistance on S. aureus to a range of quaternary ammonium compounds and antibiotics, but not fluoroquinolones. MdeA is a 52-kDa protein with 14 predicted transmembrane segments. It belongs to the major facilitator superfamily and is most closely related, among known efflux proteins, to LmrB of Bacillus subtilis and EmrB of Escherichia coli. Overexpression of mdeA in S. aureus reduced ethidium bromide uptake and enhanced its efflux, which could be inhibited by reserpine and abolished by an uncoupler. The mdeA promoter was identified by primer extension. Spontaneous mutants selected for increased resistance to an MdeA substrate had undergone mutations in the promoter for mdeA, and their mdeA transcription levels were increased by as much as 15-fold. The mdeA gene was present in the genomes of all six strains of S. aureus examined. Uncharacterized homologs of MdeA were present elsewhere in the S. aureus genome, but their overexpression did not mediate resistance to the antibacterials tested. However, MdeA homologs were identified in other bacteria, including Bacillus anthracis, some of which were shown to be functional orthologs of MdeA.
Collapse
Affiliation(s)
- Jianzhong Huang
- Department of Microbiology, Microbial Musculoskeletal and Proliferative Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Terán W, Felipe A, Segura A, Rojas A, Ramos JL, Gallegos MT. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob Agents Chemother 2004; 47:3067-72. [PMID: 14506010 PMCID: PMC201152 DOI: 10.1128/aac.47.10.3067-3072.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida is well known for its metabolic capabilities, but recently, it has been shown to exhibit resistance to a wide range of antibiotics. In P. putida DOT-T1E, the TtgABC efflux pump, which has a broad substrate specificity, extrudes antibiotics such as ampicillin, carbenicillin, tetracycline, nalidixic acid, and chloramphenicol. We have analyzed the expression of the ttgABC efflux pump operon and its regulatory gene, ttgR, in response to several structurally unrelated antibiotics at the transcriptional level and investigated the role of the TtgR protein in this process. ttgABC and ttgR are expressed in vivo at a moderate basal level, which increases in the presence of hydrophobic antibiotics like chloramphenicol and tetracycline. In vitro experiments show that, in the absence of inducers, TtgR binds to a palindromic operator site which overlaps both ttgABC and ttgR promoters and dissociates from it in the presence of chloramphenicol and tetracycline. These results suggest that the TtgR repressor is able to bind to structurally different antibiotics, which allows induction of TtgABC multidrug efflux pump expression in response to these antimicrobial agents. This is the first case in which the expression of a drug transporter of the resistance-nodulation-division family has been shown to be regulated directly by antibiotics.
Collapse
Affiliation(s)
- Wilson Terán
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Plant Biochemistry, Molecular and Cellular Biology, Granada, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol 2003; 49:1179-90. [PMID: 12940979 DOI: 10.1046/j.1365-2958.2003.03571.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The analysis of a candidate biosynthetic gene cluster (97 kbp) for the polyether ionophore monensin from Streptomyces cinnamonensis has revealed a modular polyketide synthase composed of eight separate multienzyme subunits housing a total of 12 extension modules, and flanked by numerous other genes for which a plausible function in monensin biosynthesis can be ascribed. Deletion of essentially all these clustered genes specifically abolished monensin production, while overexpression in S. cinnamonensis of the putative pathway-specific regulatory gene monR led to a fivefold increase in monensin production. Experimental support is presented for a recently-proposed mechanism, for oxidative cyclization of a linear polyketide intermediate, involving four enzymes, the products of monBI, monBII, monCI and monCII. In frame deletion of either of the individual genes monCII (encoding a putative cyclase) or monBII (encoding a putative novel isomerase) specifically abolished monensin production. Also, heterologous expression of monCI, encoding a flavin-linked epoxidase, in S. coelicolor was shown to significantly increase the ability of S. coelicolor to epoxidize linalool, a model substrate for the presumed linear polyketide intermediate in monensin biosynthesis.
Collapse
Affiliation(s)
- Markiyan Oliynyk
- Cambridge Centre for Molecular Recognition, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Garg RP, Ma Y, Hoyt JC, Parry RJ. Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin. Mol Microbiol 2002; 46:505-17. [PMID: 12406225 DOI: 10.1046/j.1365-2958.2002.03169.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces viridifaciens MG456-hF10 produces the antibiotic valanimycin, a naturally occurring azoxy compound. Valanimycin is known to be derived from valine and serine with the intermediacy of isobutylamine and isobutylhydroxylamine, but little is known about the stages in the pathway leading to the formation of the azoxy group. In previous studies, a cosmid containing S. viridifaciens DNA was isolated that conferred valanimycin production upon Strepto-myces lividans TK24. Subcloning of DNA from the valanimycin-producing cosmid has led to the identi-fication of a 22 kb segment of DNA sufficient to allow valanimycin production in S. lividans TK24. Sequencing of this DNA segment and the surrounding DNA revealed the presence of 20 genes. Gene disruption experiments defined the boundaries of the valanimycin gene cluster, which appears to contain 14 genes. The cluster includes an amino acid decar-boxylase gene (vlmD), a valanimycin resistance gene (vlmF ), at least two regulatory genes (vlmE, vlmI ), two genes encoding a flavin monooxygenase (vlmH, vlmR), a seryl tRNA synthetase gene (vlmL ) and seven genes of unknown function. Overproduction and characterization of VlmD demonstrated that it catalyses the decarboxylation of l-valine. An unusual feature of the valanimycin gene cluster is that four genes involved in branched amino acid biosynthesis are located near its 5' end.
Collapse
Affiliation(s)
- Ram P Garg
- Department of Chemistry, Rice University, St Houston, TX 77005, USA
| | | | | | | |
Collapse
|
23
|
Conlon KM, Humphreys H, O'Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 2002; 184:4400-8. [PMID: 12142410 PMCID: PMC135245 DOI: 10.1128/jb.184.16.4400-4408.2002] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR+) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation.
Collapse
Affiliation(s)
- Kevin M Conlon
- Department of Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | | | |
Collapse
|
24
|
Ryding NJ, Anderson TB, Champness WC. Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 2002; 184:794-805. [PMID: 11790750 PMCID: PMC139508 DOI: 10.1128/jb.184.3.794-805.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 11/05/2001] [Indexed: 01/08/2023] Open
Abstract
The Streptomyces coelicolor absA two-component system was initially identified through analysis of mutations in the sensor kinase absA1 that caused inhibition of all four antibiotics synthesized by this strain. Previous genetic analysis had suggested that the phosphorylated form of AbsA2 acted as a negative regulator of antibiotic biosynthesis in S. coelicolor (T. B. Anderson, P. Brian, and W. C. Champness, Mol. Microbiol. 39:553-566, 2001). Genomic sequence data subsequently provided by the Sanger Centre (Cambridge, United Kingdom) revealed that absA was located within the gene cluster for production of one of the four antibiotics, calcium-dependent antibiotic (CDA). In this paper we have identified numerous transcriptional start sites within the CDA cluster and have shown that the original antibiotic-negative mutants used to identify absA exhibit a stronger negative regulation of promoters upstream of the proposed CDA biosynthetic genes than of promoters in the clusters responsible for production of actinorhodin and undecylprodigiosin. The same antibiotic-negative mutants also showed an increase in transcription from a promoter divergent to that of absA, upstream of a putative ABC transporter, in addition to an increase in transcription of absA itself. Interestingly, the negative regulation of the biosynthetic transcripts did not appear to be mediated by transcriptional regulation of cdaR (a gene encoding a homolog of the pathway-specific regulators of the act and red clusters) or by any other recognizable transcriptional regulator associated with the cluster. The role of absA in regulating the expression of the diverse antibiotic biosynthesis clusters in the genome is discussed in light of its location in the cda cluster.
Collapse
Affiliation(s)
- N Jamie Ryding
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
25
|
Namwat W, Lee CK, Kinoshita H, Yamada Y, Nihira T. Identification of the varR gene as a transcriptional regulator of virginiamycin S resistance in Streptomyces virginiae. J Bacteriol 2001; 183:2025-31. [PMID: 11222601 PMCID: PMC95098 DOI: 10.1128/jb.183.6.2025-2031.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene designated varR (for virginiae antibiotic resistance regulator) was identified in Streptomyces virginiae 89 bp downstream of a varS gene encoding a virginiamycin S (VS)-specific transporter. The deduced varR product showed high homology to repressors of the TetR family with a conserved helix-turn-helix DNA binding motif. Purified recombinant VarR protein was present as a dimer in vitro and showed clear DNA binding activity toward the varS promoter region. This binding was abolished by the presence of VS, suggesting that VarR regulates transcription of varS in a VS-dependent manner. Northern blot analysis revealed that varR was cotranscribed with upstream varS as a 2.4-kb transcript and that VS acted as an inducer of bicistronic transcription. Deletion analysis of the varS promoter region clarified two adjacent VarR binding sites in the varS promoter.
Collapse
Affiliation(s)
- W Namwat
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
26
|
Folcher M, Morris RP, Dale G, Salah-Bey-Hocini K, Viollier PH, Thompson CJ. A transcriptional regulator of a pristinamycin resistance gene in Streptomyces coelicolor. J Biol Chem 2001; 276:1479-85. [PMID: 11050092 DOI: 10.1074/jbc.m007690200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pip is a pristinamycin-induced transcriptional regulator protein detected in many Streptomyces species by its ability to specifically bind sequence motifs within the promoter of a Streptomyces pristinaespiralis multidrug resistance gene (ptr). To investigate the possible role of Pip in regulating multidrug resistance, it was purified from a genetically characterized species, Streptomyces coelicolor, utilizing an affinity matrix of the ptr promoter conjugated to magnetic beads. Reverse genetics identified the corresponding locus and confirmed that it encoded Pip, a protein belonging to the TetR family of procaryotic transcriptional repressors. Pip binding motifs were located upstream of the adjacent gene pep, encoding a major facilitator antiporter homologous to ptr. In vivo analysis of antibiotic susceptibility profiles demonstrated that pep conferred elevated levels of resistance only to pristinamycin I (PI), a streptogramin B antibiotic having clinical importance. Purified recombinant Pip was a dimer (in the presence or absence of PI) and displayed a high affinity for its palindromic binding motifs within the ptr promoter and the upstream region of pep. The Pip/ptr promoter complex was dissociated by PI but not by any of the other nonstreptogramin antibiotics that were described previously as transcriptional inducers. These procaryotic regulatory elements served as the basis for the development of systems allowing repression or induction of cloned genes in mammalian and plant cells in response to streptogramin antibiotics (including pristinamycin, virginiamycin, and Synercid(R)).
Collapse
Affiliation(s)
- M Folcher
- Biozentrum, University of Basel, Department of Microbiology, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Crotonyl-CoA reductase (CCR), which catalyzes the reduction of crotonyl-CoA to butyryl-CoA, is common to most streptomycetes and appears to be inducible by either lysine or its catabolites in Streptomyces cinnamonensis grown in chemically defined medium. A major role of CCR in providing butyryl-CoA from acetate for monensin A biosynthesis has been demonstrated by the observation of a change in the monensin A/monensin B ratio in the parent C730.1 strain (50/50) and a ccr (encoding CCR) disruptant (12:88) of S. cinnamonensis in a complex medium. Both strains produce significantly higher monensin A/monensin B ratios in a chemically defined medium containing valine as a major carbon source than in either complex medium or chemically defined medium containing alternate amino acids. This observation demonstrates that under certain growth conditions valine catabolism may have a more significant role than CCR in providing butyryl-CoA. Such a process most likely involves an isomerization of the valine catabolite isobutyryl-CoA, catalyzed by the coenzyme B(12)-dependent isobutyryl-CoA mutase. Monensin labeling experiments using dual (13)C-labeled acetate in the ccr-disrupted S. cinnamonensis indicate the presence of an additional coenzyme B(12)-dependent mutase linking branched and straight-chain C(4) compounds by a new pathway.
Collapse
Affiliation(s)
- H Liu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | |
Collapse
|
28
|
Liu H, Reynolds KA. Role of crotonyl coenzyme A reductase in determining the ratio of polyketides monensin A and monensin B produced by Streptomyces cinnamonensis. J Bacteriol 1999; 181:6806-13. [PMID: 10542184 PMCID: PMC94147 DOI: 10.1128/jb.181.21.6806-6813.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ccr gene, encoding crotonyl coenzyme A (CoA) reductase (CCR), was cloned from Streptomyces cinnamonensis C730.1 and shown to encode a protein with 90% amino acid sequence identity to the CCRs of Streptomyces collinus and Streptomyces coelicolor. A ccr-disrupted mutant, S. cinnamonensis L1, was constructed by inserting the hyg resistance gene into a unique BglII site within the ccr coding region. By use of the ermE* promoter, the S. collinus ccr gene was expressed from plasmids in S. cinnamonensis C730. 1/pHL18 and L1/pHL18. CCR activity in mutant L1 was shown to decrease by more than 90% in both yeast extract-malt extract (YEME) medium and a complex fermentation medium, compared to that in wild-type C730.1. Compared to C730.1, mutants C730.1/pHL18 and L1/pHL18 exhibited a huge increase in CCR activity (14- and 13-fold, respectively) in YEME medium and a moderate increase (3.7- and 2. 7-fold, respectively) in the complex fermentation medium. In the complex fermentation medium, S. cinnamonensis L1 produced monensins A and B in a ratio of 12:88, dramatically lower than the 50:50 ratio observed for both C730.1 and C730.1/pHL18. Plasmid (pHL18)-based expression of the S. collinus ccr gene in mutant L1 increased the monensin A/monensin B ratio to 42:58. Labeling experiments with [1, 2-(13)C(2)]acetate demonstrated the same levels of intact incorporation of this material into the butyrate-derived portion of monensin A in both C730.1 and mutant C730.1/pLH18 but a markedly decreased level of such incorporation in mutant L1. The addition of crotonic acid at 15 mM led to significant increases in the monensin A/monensin B ratio in C730.1 and C730.1/pHL18 but had no effect in S. cinnamonensis L1. These results demonstrate that CCR plays a significant role in providing butyryl-CoA for monensin A biosynthesis and is present in wild-type S. cinnamonensis C730.1 at a level sufficient that the availability of the appropriate substrate (crotonyl-CoA) is limiting.
Collapse
Affiliation(s)
- H Liu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | |
Collapse
|
29
|
Kitani S, Kinoshita H, Nihira T, Yamada Y. In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J Bacteriol 1999; 181:5081-4. [PMID: 10438782 PMCID: PMC93999 DOI: 10.1128/jb.181.16.5081-5084.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FarA of Streptomyces lavendulae FRI-5 is a specific receptor protein for IM-2, a butyrolactone autoregulator that controls the production of a blue pigment and the nucleoside antibiotics showdomycin and minimycin. Gel shift assays demonstrated that FarA binds to the farA upstream region and that this binding is abolished in the presence of IM-2. The FarA binding sequence was localized by DNase I footprinting to a 28-bp sequence located approximately 70 bp upstream of the farA translational start site. High-resolution S1 nuclease mapping of farA transcripts revealed a putative transcription start site, located at an A residue positioned 64 bp upstream from the farA translation start codon and 4 bp downstream from an Escherichia coli sigma(70)-like -10 recognition region. The FarA-binding sequence overlaps this -10 region and contains the farA transcription initiation site, suggesting that FarA acts as a repressor that, in the absence of IM-2, represses transcription of farA.
Collapse
Affiliation(s)
- S Kitani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
30
|
Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. CHEMISTRY & BIOLOGY 1999; 6:251-63. [PMID: 10099135 DOI: 10.1016/s1074-5521(99)80040-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The mitomycins are natural products that contain a variety of functional groups, including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not, however, linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system, which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system, as well efforts to engineer the biosynthesis of novel natural products.
Collapse
Affiliation(s)
- Y Mao
- University of Minnesota, Department of Microbiology, Biological ProcessTechnology Institute, 1460 Mayo Memorial Building, Box 196 UFHC, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
31
|
Sheldon PJ, Mao Y, He M, Sherman DH. Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 1999; 181:2507-12. [PMID: 10198016 PMCID: PMC93678 DOI: 10.1128/jb.181.8.2507-2512.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of Streptomyces lavendulae NRRL 2564 chromosomal DNA adjacent to the mitomycin resistance locus mrd (encoding a previously described mitomycin-binding protein [P. Sheldon, D. A. Johnson, P. R. August, H.-W. Liu, and D. H. Sherman, J. Bacteriol. 179:1796-1804, 1997]) revealed a putative mitomycin C (MC) transport gene (mct) encoding a hydrophobic polypeptide that has significant amino acid sequence similarity with several actinomycete antibiotic export proteins. Disruption of mct by insertional inactivation resulted in an S. lavendulae mutant strain that was considerably more sensitive to MC. Expression of mct in Escherichia coli conferred a fivefold increase in cellular resistance to MC, led to the synthesis of a membrane-associated protein, and correlated with reduced intracellular accumulation of the drug. Coexpression of mct and mrd in E. coli resulted in a 150-fold increase in resistance, as well as reduced intracellular accumulation of MC. Taken together, these data provide evidence that MRD and Mct function as components of a novel drug export system specific to the mitomycins.
Collapse
Affiliation(s)
- P J Sheldon
- Department of Microbiology and Biological Process Technology Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
32
|
Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA. QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 1998; 273:18665-73. [PMID: 9660841 DOI: 10.1074/jbc.273.29.18665] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Staphylococcus aureus QacA protein is a multidrug transporter that confers resistance to a broad range of antimicrobial agents via proton motive force-dependent efflux of the compounds. Primer extension analysis was performed to map the transcription start points of the qacA and divergently transcribed qacR mRNAs. Each gene utilized a single promoter element, the locations of which were confirmed by site-directed mutagenesis. Fusions of the qacA and qacR promoters to a chloramphenicol acetyl transferase reporter gene were used to demonstrate that QacR is a trans-acting repressor of qacA transcription that does not autoregulate its own expression. An inverted repeat overlapping the qacA transcription start site was shown to be the operator sequence for control of qacA gene expression. Removal of one half of the operator prevented QacR-mediated repression of the qacA promoter. Purified QacR protein bound specifically to this operator sequence in DNase I-footprinting experiments. Importantly, addition of diverse QacA substrates was shown to induce qacA expression in vivo, as well as inhibit binding of QacR to operator DNA in vitro, by using gel-mobility shift assays. QacR therefore appears to interact directly with structurally dissimilar inducing compounds that are substrates of the QacA multidrug efflux pump.
Collapse
Affiliation(s)
- S Grkovic
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
33
|
Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y. Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 1997; 179:6986-93. [PMID: 9371444 PMCID: PMC179638 DOI: 10.1128/jb.179.22.6986-6993.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BarA of Streptomyces virginiae is a specific receptor protein for virginiae butanolides (VBs), a member of the butyrolactone autoregulators of Streptomyces species. Sequencing around the barA gene revealed two novel open reading frames: one upstream, barX, encoding a homolog of AfsA of Streptomyces griseus and another downstream, barB. Northern (RNA) blot analysis for S. virginiae demonstrated that the addition of VB during cultivation switched on the expression of barB. An in vivo expression system in Streptomyces lividans with the use of the xylE reporter gene indicated that BarA in conjunction with VB controlled the barB promoter. Furthermore, the DNA binding ability of BarA was demonstrated in vitro for the first time by means of surface plasmon resonance and a gel-shift assay. Complex formation with VB in vitro resulted in the dissociation of BarA from DNA, thus suggesting that the VB receptor, BarA, is a transcriptional regulator and that the VB signal is transduced to the next step in the signal transduction pathway by modification of the DNA binding ability of BarA.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/chemistry
- 4-Butyrolactone/metabolism
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Blotting, Northern
- Catechol 2,3-Dioxygenase
- Chromosome Mapping
- Cloning, Molecular
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Dioxygenases
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Molecular Sequence Data
- Molecular Structure
- Multigene Family
- Open Reading Frames
- Oxygenases/genetics
- Oxygenases/metabolism
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Alignment
- Signal Transduction
- Streptomyces/genetics
- Streptomyces/metabolism
- Transcription, Genetic
- Virginiamycin/metabolism
Collapse
Affiliation(s)
- H Kinoshita
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Kumano M, Tamakoshi A, Yamane K. A 32 kb nucleotide sequence from the region of the lincomycin-resistance gene (22 degrees-25 degrees) of the Bacillus subtilis chromosome and identification of the site of the lin-2 mutation. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2775-2782. [PMID: 9274031 DOI: 10.1099/00221287-143-8-2775] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 32 kb nucleotide sequence in the region of the lincomycin-resistance gene, located from 22 degrees to 25 degrees on the Bacillus subtilis chromosome, was determined. Among 32 putative ORFs identified, four [lipA for lipase, natA, natB and yzaE (renamed yccK)] have already been reported, although the functions of NatA, NatB and YccK remain to be characterized. Six putative products were found to exhibit significant similarity to known proteins in the databases, namely L-asparaginase precursor, protein aspartate phosphatase, alpha-glucosidase, two tellurite-resistance proteins and a hypothetical protein from B. subtilis. The region of the tellurite-resistance gene, consisting of seven ORFs, seems to correspond to an operon. The products of 14 ORFs exhibited considerable or limited similarity to known proteins. The sequenced region seems to be rich in membrane proteins, since at least 16 gene products appeared to contain membrane-spanning domains. The site of the lin-2 mutation (two nucleotide replacements) was mapped and identified by sequencing. This site is located between a putative promoter and the SD sequence of ImrA (yccB) [a putative repressor of the lmr operon, which consists of lmrA and lmrB (yccA)]. LmrB is a homologue of proteins involved in drug-export systems and seems likely to be the protein responsible for resistance to lincomycin.
Collapse
Affiliation(s)
- Miyuki Kumano
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan
| | - Atsuo Tamakoshi
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan
| | - Kunio Yamane
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan
| |
Collapse
|
35
|
Doran JL, Pang Y, Mdluli KE, Moran AJ, Victor TC, Stokes RW, Mahenthiralingam E, Kreiswirth BN, Butt JL, Baron GS, Treit JD, Kerr VJ, Van Helden PD, Roberts MC, Nano FE. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1997; 4:23-32. [PMID: 9008277 PMCID: PMC170471 DOI: 10.1128/cdli.4.1.23-32.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Mycobacterium tuberculosis H37Rv efpA gene encodes a putative efflux protein, EfpA, of 55,670 Da. The deduced EfpA protein was similar in secondary structure to Pur8, MmrA, TcmA, LfrA, EmrB, and other members of the QacA transporter family (QacA TF) which mediate antibiotic and chemical resistance in bacteria and yeast. The predicted EfpA sequence possessed all transporter motifs characteristic of the QacA TF, including those associated with proton-antiport function and the motif considered to be specific to exporters. The 1,590-bp efpA open reading frame was G+C rich (65%), whereas the 40-bp region immediately upstream had an A+T bias (35% G+C). Reverse transcriptase-PCR assays indicated that efpA was expressed in vitro and in situ. Putative promoter sequences were partially overlapped by the A+T-rich region and by a region capable of forming alternative secondary structures indicative of transcriptional regulation in analogous systems. PCR single-stranded conformational polymorphism analysis demonstrated that these upstream flanking sequences and the 231-bp, 5' coding region are highly conserved among both drug-sensitive and multiply-drug-resistant isolates of M. tuberculosis. The efpA gene was present in the slow-growing human pathogens M. tuberculosis, Mycobacterium leprae, and Mycobacterium bovis and in the opportunistic human pathogens Mycobacterium avium and Mycobacterium intracellular. However, efpA was not present in 17 other opportunistically pathogenic or nonpathogenic mycobacterial species.
Collapse
Affiliation(s)
- J L Doran
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Zwittermicin A is a novel aminopolyol antibiotic produced by Bacillus cereus that is active against diverse bacteria and lower eukaryotes (L.A. Silo-Suh, B.J. Lethbridge, S.J. Raffel, H. He, J. Clardy, and J. Handelsman, Appl. Environ. Microbiol. 60:2023-2030, 1994). To identify a determinant for resistance to zwittermicin A, we constructed a genomic library from B. cereus UW85, which produces zwittermicin A, and screened transformants of Escherichia coli DH5alpha, which is sensitive to zwittermicin A, for resistance to zwittermicin A. Subcloning and mutagenesis defined a genetic locus, designated zmaR, on a 1.2-kb fragment of DNA that conferred zwittermicin A resistance on E. coli. A DNA fragment containing zmaR hybridized to a corresponding fragment of genomic DNA from B. cereus UW85. Corresponding fragments were not detected in mutants of B. cereus UW85 that were sensitive to zwittermicin A, and the plasmids carrying zmaR restored resistance to the zwittermicin A-sensitive mutants, indicating that zmaR was deleted in the zwittermicin A-sensitive mutants and that zmaR is functional in B. cereus. Sequencing of the 1.2-kb fragment of DNA defined an open reading frame, designated ZmaR. Neither the nucleotide sequence nor the predicted protein sequence had significant similarity to sequences in existing databases. Cell extracts from an E. coli strain carrying zmaR contained a 43.5-kDa protein whose molecular mass and N-terminal sequence matched those of the protein predicted by the zmaR sequence. The results demonstrate that we have isolated a gene, zmaR, that encodes a zwIttermicin A resistance determinant that is functional in both B. cereus and E. coli.
Collapse
Affiliation(s)
- J L Milner
- Department of Plant Pathology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
37
|
Pitkin JW, Panaccione DG, Walton JD. A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1557-1565. [PMID: 8704997 DOI: 10.1099/13500872-142-6-1557] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Race 1 isolates of Cochliobolus carbonum are pathogenic on certain maize lines due to production of a host-selective cyclic tetrapeptide, HC-toxin. Flanking HTS1, which encodes the central enzyme in HC-toxin biosynthesis, a gene was identified and named TOXA. Like HTS1, TOXA occurred only in isolates of the fungus that make HC-toxin and was present as two linked copies in most toxin-producing isolates. HTS1 and TOXA were transcribed in the opposite orientation and their transcriptional start sites were 386 bp apart. The predicted product of TOXA was a 58 kDa hydrophobic protein with 10-13 membrane-spanning regions. The sequence was highly similar to several members of the major facilitator superfamily that confer resistance to tetracycline, methylenomycin, and other antibiotics. Although it was possible to mutate one copy or the other of TOXA by targeted gene disruption, numerous attempts to disrupt both copies in a single strain were unsuccessful, suggesting that TOXA is an essential gene in strains that synthesize HC-toxin. On the basis of its presence only in HC-toxin-producing strains, its proximity to HTS1 and its predicted amino acid sequence, we propose that TOXA encodes an HC-toxin efflux pump which contributes to self-protection against HC-toxin and/or the secretion of HC-toxin into the extracellular milieu.
Collapse
Affiliation(s)
- John W Pitkin
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| | - Daniel G Panaccione
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| | - Jonathan D Walton
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| |
Collapse
|
38
|
Lal R, Khanna R, Kaur H, Khanna M, Dhingra N, Lal S, Gartemann KH, Eichenlaub R, Ghosh PK. Engineering antibiotic producers to overcome the limitations of classical strain improvement programs. Crit Rev Microbiol 1996; 22:201-55. [PMID: 8989512 DOI: 10.3109/10408419609105481] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Improvement of the antibiotic yield of industrial strains is invariably the main target of industry-oriented research. The approaches used in the past were rational selection, extensive mutagenesis, and biochemical screening. These approaches have their limitations, which are likely to be overcome by the judicious application of recombinant DNA techniques. Efficient cloning vectors and transformation systems have now become available even for antibiotic producers that were previously difficult to manipulate genetically. The genes responsible for antibiotic biosynthesis can now be easily isolated and manipulated. In the first half of this review article, the limitations of classical strain improvement programs and the development of recombinant DNA techniques for cloning and analyzing genes responsible for antibiotic biosynthesis are discussed. The second half of this article addresses some of the major achievements, including the development of genetically engineered microbes, especially with reference to beta-lactams, anthracyclines, and rifamycins.
Collapse
Affiliation(s)
- R Lal
- Department of Zoology, University of Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- C R Hutchinson
- Dept of Medicinal Chemistry & Bacteriology, School of Pharmacy, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
40
|
Grimm A, Madduri K, Ali A, Hutchinson CR. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene X 1994; 151:1-10. [PMID: 7828855 DOI: 10.1016/0378-1119(94)90625-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The dps genes of Streptomyces peucetius, encoding daunorubicin (DNR)-doxorubicin (DXR) polyketide synthase (PKS), are largely within an 8.7-kb region of DNA that has been characterized by Southern analysis, and gene sequencing, mutagenesis and expression experiments. This region contains nine ORFs, many of whose predicted products are homologous to known PKS enzymes. Surprisingly, the gene encoding the DXR PKS acyl carrier protein is not in this region, but is located about 10 kb distant from the position it usually occupies in other gene clusters encoding type-II PKS. An in-frame deletion in the dpsB gene, encoding a putative subunit of the DXR PKS, resulted in loss of production of DXR and the known intermediates of its biosynthetic pathway, confirming that this gene and, by implication, the adjacent dps genes are required for DXR biosynthesis. This was verified by expression of the dps genes in the heterologous host, Streptomyces lividans, which resulted in the production of aklanonic acid, an early intermediate of DXR biosynthesis.
Collapse
Affiliation(s)
- A Grimm
- Department of Genetics, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
41
|
Hutchinson CR, Decker H, Madduri K, Otten SL, Tang L. Genetic control of polyketide biosynthesis in the genus Streptomyces. Antonie Van Leeuwenhoek 1994; 64:165-76. [PMID: 8092857 DOI: 10.1007/bf00873025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The genetic control of polyketide metabolite biosynthesis in Streptomyces sp. producing actinorhodin, daunorubicin, erythromycin, spiramycin, tetracenomycin and tylosin is reviewed. Several examples of positively-acting transcriptional regulators of polyketide metabolism are known, including some two-component sensor kinase-response regulator systems. Translational and posttranslational control mechanisms are only briefly mentioned since very little is known about either of these processes. Examples of how enzyme levels and substrate supply affect polyketide metabolism also are discussed.
Collapse
Affiliation(s)
- C R Hutchinson
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
42
|
Abstract
Over the past year, dramatic developments in the technology for isolating and manipulating genes for polyketide synthases have been reported. Significant progress has been made in understanding the mechanisms by which these complex enzymes generate the carbon chains of the polyketides, a highly versatile class of natural products. With the demonstration of the production of novel metabolites by synthase engineering, the stage is excitingly set for rationally manipulating synthase 'programming' to generate tailor-made carbon chains.
Collapse
Affiliation(s)
- D A Hopwood
- Genetics Department, John Innes Institute, John Innes Centre, Norwich, UK
| |
Collapse
|
43
|
Decker H, Hutchinson CR. Transcriptional analysis of the Streptomyces glaucescens tetracenomycin C biosynthesis gene cluster. J Bacteriol 1993; 175:3887-92. [PMID: 8509340 PMCID: PMC204805 DOI: 10.1128/jb.175.12.3887-3892.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 12.6-kb DNA fragment from Streptomyces glaucescens GLA.0 containing the 12 genes for tetracenomycin (TCM) C biosynthesis and resistance enabled Streptomyces lividans to produce TCM C. Transcriptional analysis of the tcmPG intergenic region in this cluster established the presence of two divergent promoters. The tcmIc mutation, a T-to-G transversion in the -10 region of the tcmG promoter, decreased promoter activity drastically at the stationary growth stage and time of maximum TCM C accumulation. This promoter may direct the transcription of a tcmGHIJKLMNO operon, while the other promoter is for tcmP.
Collapse
Affiliation(s)
- H Decker
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
44
|
Guilfoile PG, Hutchinson CR. Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 1992; 174:3651-8. [PMID: 1592819 PMCID: PMC206054 DOI: 10.1128/jb.174.11.3651-3658.1992] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sequence analysis of the tcmA tetracenomycin C resistance gene from Streptomyces glaucescens GLA.O (ETH 22794) identifies one large open reading frame whose deduced product has sequence similarity to the mmr methylenomycin resistance gene from Streptomyces coelicolor, the Streptomyces rimosus tet347 (otrB) tetracycline resistance gene, and the atr1 aminotriazole resistance gene from Saccharomyces cerevisiae. These genes are thought to encode proteins that act as metabolite export pumps powered by transmembrane electrochemical gradients. A divergently transcribed gene, tcmR, is located in the region upstream of tcmA. The deduced product of tcmR resembles the repressor proteins encoded by tetR regulatory genes from Escherichia coli and the actII-orf1 gene from S. coelicolor. Transcriptional analysis of tcmA and tcmR indicates that these genes have back-to-back and overlapping promoter regions.
Collapse
Affiliation(s)
- P G Guilfoile
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|