1
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
2
|
Wirth NT, Nikel PI. Combinatorial pathway balancing provides biosynthetic access to 2-fluoro- cis, cis-muconate in engineered Pseudomonas putida. CHEM CATALYSIS 2021; 1:1234-1259. [PMID: 34977847 PMCID: PMC8711041 DOI: 10.1016/j.checat.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
The wealth of bio-based building blocks produced by engineered microorganisms seldom include halogen atoms. Muconate is a platform chemical with a number of industrial applications that could be broadened by introducing fluorine atoms to tune its physicochemical properties. The soil bacterium Pseudomonas putida naturally assimilates benzoate via the ortho-cleavage pathway with cis,cis-muconate as intermediate. Here, we harnessed the native enzymatic machinery (encoded within the ben and cat gene clusters) to provide catalytic access to 2-fluoro-cis,cis-muconate (2-FMA) from fluorinated benzoates. The reactions in this pathway are highly imbalanced, leading to accumulation of toxic intermediates and limited substrate conversion. By disentangling regulatory patterns of ben and cat in response to fluorinated effectors, metabolic activities were adjusted to favor 2-FMA biosynthesis. After implementing this combinatorial approach, engineered P. putida converted 3-fluorobenzoate to 2-FMA at the maximum theoretical yield. Hence, this study illustrates how synthetic biology can expand the diversity of nature's biochemical catalysis.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Caballo-Ponce E, van Dillewijn P, Wittich RM, Ramos C. WHOP, a Genomic Region Associated With Woody Hosts in the Pseudomonas syringae Complex Contributes to the Virulence and Fitness of Pseudomonas savastanoi pv. savastanoi in Olive Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:113-126. [PMID: 28027024 DOI: 10.1094/mpmi-11-16-0233-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacteria from the Pseudomonas syringae complex belonging to phylogroups 1 and 3 (PG1 and PG3, respectively) isolated from woody hosts share a genomic region herein referred to as WHOP (from woody host and Pseudomonas spp.), which is absent in strains infecting herbaceous organs. In this work, we show that this region is also encoded in P. syringae pv. actinidifoliorum (PG1) and six additional members of PG3, namely, Pseudomonas savastanoi pv. retacarpa, three P. syringae pathovars, Pseudomonas meliae, and Pseudomonas amygdali. Partial conservation of the WHOP occurs in only a few PG2 strains. In P. savastanoi pv. savastanoi NCPPB 3335, the WHOP region is organized into four operons and three independently transcribed genes. While the antABC and catBCA operons mediate the catabolism of anthranilate and catechol, respectively, the ipoABC operon confers oxygenase activity to aromatic compounds. The deletion of antABC, catBCA, or ipoABC in NCPPB 3335 caused reduced virulence in woody olive plants without affecting knot formation in nonwoody plants; catBCA, dhoAB, and PSA3335_3206 (encoding a putative aerotaxis receptor) were also required for the full fitness of this strain exclusively in woody olive plants. Overall, this study sheds light on the evolution and adaptation of bacteria from the P. syringae complex to woody hosts and highlights the enzymatic activities encoded within the WHOP region that are essential for this process.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| | - Pieter van Dillewijn
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Regina Michaela Wittich
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Cayo Ramos
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| |
Collapse
|
4
|
Transcriptional kinetics of the cross-talk between the ortho -cleavage and TOL pathways of toluene biodegradation in Pseudomonas putida mt-2. J Biotechnol 2016; 228:112-123. [DOI: 10.1016/j.jbiotec.2016.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 11/23/2022]
|
5
|
Deng Y, Ma L, Mao Y. Biological production of adipic acid from renewable substrates: Current and future methods. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
NADH-dependent lactate dehydrogenase from Alcaligenes eutrophus H16 reduces 2-oxoadipate to 2-hydroxyadipate. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0381-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Pérez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V. The differential response of thePbenpromoter ofPseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts inm-xylene biodegradation. Environ Microbiol 2014; 17:64-75. [DOI: 10.1111/1462-2920.12443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Juhyun Kim
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| |
Collapse
|
8
|
Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 2013; 167:75-84. [DOI: 10.1016/j.jbiotec.2012.07.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/07/2012] [Accepted: 07/13/2012] [Indexed: 11/23/2022]
|
9
|
Murdoch RW, Hay AG. Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. MICROBIOLOGY (READING, ENGLAND) 2013; 159:621-632. [PMID: 23329679 PMCID: PMC4083657 DOI: 10.1099/mic.0.062273-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/05/2012] [Accepted: 01/14/2013] [Indexed: 01/03/2023]
Abstract
Sphingomonas Ibu-2 has the unusual ability to cleave the acid side chain from the pharmaceutical ibuprofen and related arylacetic acid derivatives to yield corresponding catechols under aerobic conditions via a previously uncharacterized mechanism. Screening a chromosomal library of Ibu-2 DNA in Escherichia coli EPI300 allowed us to identify one fosmid clone (pFOS3G7) that conferred the ability to metabolize ibuprofen to isobutylcatechol. Characterization of pFOS3G7 loss-of-function transposon mutants permitted identification of five ORFs, ipfABDEF, whose predicted amino acid sequences bore similarity to the large and small units of an aromatic dioxygenase (ipfAB), a sterol carrier protein X (SCPx) thiolase (ipfD), a domain of unknown function 35 (DUF35) protein (ipfE) and an aromatic CoA ligase (ipfF). Two additional ORFs, ipfH and ipfI, which encode putative ferredoxin reductase and ferredoxin components of an aromatic dioxygenase system, respectively, were also identified on pFOS3G7. Complementation of a markerless loss-of-function ipfD deletion mutant restored catechol production as did complementation of the ipfF Tn mutant. Expression of subcloned ipfABDEF alone in E. coli did not impart full metabolic activity unless coexpressed with ipfHI. CoA ligation followed by ring oxidation is common to phenylacetic acid pathways. However, the need for a putative SCPx thiolase (IpfD) and DUF35 protein (IpfE) in aerobic arylacetic acid degradation is unprecedented. This work provides preliminary insights into the mechanism behind this novel arylacetic acid-deacylating, catechol-generating activity.
Collapse
Affiliation(s)
- Robert W. Murdoch
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY 14850, USA
| | - Anthony G. Hay
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY 14850, USA
- Department of Microbiology, B53A Wing Hall, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
10
|
Transcriptional cross-regulation between Gram-negative and gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol 2012; 194:5657-66. [PMID: 22904281 DOI: 10.1128/jb.00947-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein-gene pairs ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum are orthologous, with the first member of each pair being a LysR-type transcriptional regulator and the second its target gene encoding a basic amino acid exporter. Whereas LysE is an exporter of arginine (Arg) and lysine (Lys) whose expression is induced by Arg, Lys, or histidine (His), ArgO exports Arg alone, and its expression is activated by Arg but not Lys or His. We have now reconstituted in E. coli the activation of lysE by LysG in the presence of its coeffectors and have shown that neither ArgP nor LysG can regulate expression of the noncognate orthologous target. Of several ArgP-dominant (ArgP(d)) variants that confer elevated Arg-independent argO expression, some (ArgP(d)-P274S, -S94L, and, to a lesser extent, -P108S) activated lysE expression in E. coli. However, the individual activating effects of LysG and ArgP(d) on lysE were mutually extinguished when both proteins were coexpressed in Arg- or His-supplemented cultures. In comparison with native ArgP, the active ArgP(d) variants exhibited higher affinity of binding to the lysE regulatory region and less DNA bending at both argO and lysE. We conclude that the transcription factor LysG from a Gram-positive bacterium, C. glutamicum, is able to engage appropriately with the RNA polymerase from a Gram-negative bacterium, E. coli, for activation of its cognate target lysE in vivo and that single-amino-acid-substitution variants of ArgP can also activate the distantly orthologous target lysE, but by a subtly different mechanism that renders them noninterchangeable with LysG.
Collapse
|
11
|
van Duuren J, Wijte D, Leprince A, Karge B, Puchałka J, Wery J, dos Santos VM, Eggink G, Mars A. Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J Biotechnol 2011; 156:163-72. [DOI: 10.1016/j.jbiotec.2011.08.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 01/21/2023]
|
12
|
Saavedra JM, Acevedo F, González M, Seeger M. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Appl Microbiol Biotechnol 2010; 87:1543-54. [DOI: 10.1007/s00253-010-2575-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/29/2022]
|
13
|
Retallack DM, Thomas TC, Shao Y, Haney KL, Resnick SM, Lee VD, Squires CH. Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions. Microb Cell Fact 2006; 5:1. [PMID: 16396686 PMCID: PMC1360089 DOI: 10.1186/1475-2859-5-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/05/2006] [Indexed: 11/13/2022] Open
Abstract
Background In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC) and the benzoate operon (benABCD). Results The antABC and benABCD operons were identified by homology to the Acinetobacter sp. anthranilate operon and Pseudomonas putida benzoate operon, and were confirmed to be regulated by anthranilate or benzoate, respectively. Fusions of the putative promoter regions to the E. coli lacZ gene were constructed to confirm inducible gene expression. Each operon was found to be controlled by an AraC family transcriptional activator, located immediately upstream of the first structural gene in each respective operon (antR or benR). Conclusion We have found the anthranilate and benzoate promoters to be useful for tightly controlling recombinant gene expression at both small (< 1 L) and large (20 L) fermentation scales.
Collapse
Affiliation(s)
- Diane M Retallack
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| | - Tracey C Thomas
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| | - Ying Shao
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| | - Keith L Haney
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| | - Sol M Resnick
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| | - Vincent D Lee
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| | - Charles H Squires
- The Dow Chemical Company, Biotechnology Research and Development, 5501 Oberlin Dr. San Diego, CA 92121, USA
| |
Collapse
|
14
|
Clingenpeel SR, Keener WK, Keller CR, De Jesus K, Howard MH, Watwood ME. Activity-dependent fluorescent labeling of bacterial cells expressing the TOL pathway. J Microbiol Methods 2005; 60:41-6. [PMID: 15567223 DOI: 10.1016/j.mimet.2004.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 08/03/2004] [Accepted: 08/23/2004] [Indexed: 11/17/2022]
Abstract
3-Ethynylbenzoate (3EB) functions as a novel, activity-dependent, fluorogenic, and chromogenic probe for bacterial strains expressing the TOL pathway, which degrade toluene via conversion to benzoate, followed by meta ring fission of the intermediate catechol. This direct physiological analysis allows the fluorescent labeling of cells whose toluene-degrading enzymes have been induced by an aromatic substrate.
Collapse
Affiliation(s)
- Scott R Clingenpeel
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | | | | | | | | | | |
Collapse
|
15
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
16
|
Jiménez JI, Miñambres B, García JL, Díaz E. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 2002; 4:824-41. [PMID: 12534466 DOI: 10.1046/j.1462-2920.2002.00370.x] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.
Collapse
Affiliation(s)
- José Ignacio Jiménez
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Ledger T, Pieper DH, Pérez-Pantoja D, González B. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3431-3440. [PMID: 12427935 DOI: 10.1099/00221287-148-11-3431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacteria can grow on chloroaromatic pollutants because they can transform them into chlorocatechols, which are further degraded by enzymes of a specialized ortho-cleavage pathway. Ralstonia eutropha JMP134 is able to grow on 3-chlorobenzoate by using two pJP4-encoded, ortho-cleavage chlorocatechol degradation gene clusters (tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II)). Very little is known about the acquisition of new catabolic genes encoding enzymes that lead to the formation of chlorocatechols in R. eutropha JMP134. The effect on the catabolic properties of an R. eutropha JMP134 derivative that received the xylS-xylXYZL gene module, encoding the xylS-regulated expression of the broad-substrate-range toluate 1,2-dioxygenase (xylXYZ) and the 1,2-dihydro-1,2-dihydroxytoluate dehydrogenase (xylL) from pWW0, which allows the transformation of 4-chlorobenzoate into 4-chlorocatechol, was studied. Such a derivative could efficiently grow on 4-chlorobenzoate. Unexpectedly, this derivative also grew on 3,5-dichlorobenzoate, a substrate for XylXYZL but not an inducer of the XylS regulatory protein. The ability to grow on 4-chlorobenzoate or 3,5-dichlorobenzoate was also observed in derivatives of strain JMP134 containing the xyl gene module but lacking xylS, indicating the presence of an xylS-like element in R. eutropha with an inducer profile different from that of the pWW0-encoded regulator. Growth on 4-chlorobenzoate was also observed after introduction of the xyl gene module into strain JMP222, a JMP134 derivative lacking pJP4, but only if multiple copies of tfdC(I)D(I)E(I)F(I) or tfdD(II)C(II)E(II)F(II) were present. However, only the derivative containing multiple copies of tfdD(II)C(II)E(II)F(II) was able to grow on 3,5-dichlorobenzoate. These observations indicate that although the acquisition of new catabolic genes actually enhances the catabolic abilities of R. eutropha JMP134, these new properties are strongly influenced by the dosage of the tfd genes, the presence of a chromosomal xylS-like regulatory element and the different contributions of the tfd gene clusters.
Collapse
Affiliation(s)
- Thomas Ledger
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D Santiago, Chile1
| | - Dietmar H Pieper
- Division of Microbiology, National Research Centre for Biotechnology - GBF, Braunschweig, Germany2
| | - Danilo Pérez-Pantoja
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D Santiago, Chile1
| | - Bernardo González
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D Santiago, Chile1
| |
Collapse
|
18
|
Ge Y, Vaillancourt FH, Agar NYR, Eltis LD. Reactivity of toluate dioxygenase with substituted benzoates and dioxygen. J Bacteriol 2002; 184:4096-103. [PMID: 12107126 PMCID: PMC135208 DOI: 10.1128/jb.184.15.4096-4103.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe(2)S(2) centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 +/- 1 microM, k(cat) = 3.9 +/- 0.2 s(-1), and K(m)O(2) = 16 +/- 2 microM (100 mM sodium phosphate, pH 7.0; 25 degrees C), where K(m)O(2) represents the K(m) for O(2) and KmA represents the K(m) for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate approximately 3-chlorobenzoate > p-toluate approximately 4-chlorobenzoate >> o-toluate approximately 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O(2) utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O(2) utilization, with >10 times more O(2) being consumed than benzoate. However, the apparent K(m) of TADO for these benzoates was >100 microM, indicating that they do not effectively inhibit the turnover of good substrates.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology and Immunology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
19
|
Wolfe MD, Altier DJ, Stubna A, Popescu CV, Münck E, Lipscomb JD. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Biochemistry 2002; 41:9611-26. [PMID: 12135383 DOI: 10.1021/bi025912n] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The benzoate 1,2-dioxygenase system (BZDOS) from Pseudomonas putida mt-2 catalyzes the NADH-dependent oxidation of benzoate to 1-carboxy-1,2-cis-dihydroxycyclohexa-3,5-diene. Both the oxygenase (BZDO) and reductase (BZDR) components of BZDOS have been purified and characterized kinetically and by optical, EPR, and Mössbauer spectroscopies. BZDO has an (alpha beta)(3) subunit structure in which each alpha subunit contains a Rieske [2Fe-2S] cluster and a mononuclear iron site. Two different purification protocols were developed for BZDO allowing the mononuclear iron to be stabilized in either the Fe(III) or the Fe(II) state for spectroscopic characterization. Using single turnover reactions, it is shown that fully reduced BZDO alone is capable of yielding the cis-diol product in high yield at rates that exceed the BZDOS turnover number. At the conclusion of turnover, quantification of each oxidation state of the metal sites by EPR and Mössbauer spectroscopies shows that the Rieske cluster and mononuclear iron are each oxidized in amounts equal to the product yield, suggesting that the two electrons required for catalysis derive from the two metal centers. These results are in agreement with our previous study of naphthalene 1,2-dioxygenase [Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953], which belongs to a different Rieske dioxygenase subclass, suggesting that it is a universal characteristic of Rieske dioxygenases that oxygen activation and substrate oxidation are catalyzed by the oxygenase component alone. The EPR spectrum of the Fe(III) center after a single turnover is distinct from either of those of substrate-free or substrate-bound enzyme. The complex with this spectrum is not formed by addition of cis-diol product to the resting Fe(III) form of the enzyme but is observed when the Fe(II) form is oxidized in the presence of product. Together, these results suggest that product exchange occurs only when the mononuclear iron is reduced. Stopped-flow and rapid scan analyses monitoring the oxidation of the Rieske cluster during the single turnover reaction show that it occurs in three phases that are kinetically competent for catalysis. The rate of each phase was found to be dependent on the type of substrate present, suggesting that the substrate influences the rate of electron transfer between the metal clusters. The participation of substrate in the oxygen activation reaction suggests a new aspect of the mechanism of this process by the Rieske dioxygenase class.
Collapse
Affiliation(s)
- Matt D Wolfe
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kitagawa W, Miyauchi K, Masai E, Fukuda M. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J Bacteriol 2001; 183:6598-606. [PMID: 11673430 PMCID: PMC95491 DOI: 10.1128/jb.183.22.6598-6606.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC.
Collapse
Affiliation(s)
- W Kitagawa
- Department of Bioengineering, Nagaoka University of Technology, Japan
| | | | | | | |
Collapse
|
21
|
Providenti MA, Wyndham RC. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 2001; 67:3530-41. [PMID: 11472929 PMCID: PMC93053 DOI: 10.1128/aem.67.8.3530-3541.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni BR60 (formerly Alcaligenes sp. strain BR60), catabolism of the pollutant 3-chlorobenzoate (3CBA) is initiated by enzymes encoded by cbaABC, an operon found on composite transposon Tn5271 of plasmid pBRC60. The cbaABC gene product CbaABC converts 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. In this study, cbaA was found to possess a sigma(70) type promoter. O(2) uptake experiments with whole cells and expression studies with cbaA-lacZ constructs showed that cbaABC was induced by 3CBA. Benzoate, which is not a substrate of the 3CBA pathway, was a gratuitous inducer, and CbaR, a MarR family repressor coded for by a divergently transcribed gene upstream of cbaABC, could modulate induction mediated by benzoate. Purified CbaR bound specifically to two regions of the cbaA promoter (P(cbaA)); site I, a high-affinity site, is between the transcriptional start point (position +1) and the start codon of cbaA, while site II, a lower-affinity site, overlaps position +1. 3CBA at concentrations as low as 40 microM interfered with binding to P(cbaA). PCA also interfered with binding, while benzoate only weakly disrupted binding. Unexpectedly, benzoate with a hydroxyl or carboxyl at position 3 improved CbaR binding. Data are also presented that suggest that an unidentified regulator is encoded on the chromosome that induces cbaABC in response to benzoate and 3CBA.
Collapse
Affiliation(s)
- M A Providenti
- Institute of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
22
|
Francisco P, Ogawa N, Suzuki K, Miyashita K. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. MICROBIOLOGY (READING, ENGLAND) 2001; 147:121-33. [PMID: 11160806 DOI: 10.1099/00221287-147-1-121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia sp. NK8 grows abundantly on 3-chlorobenzoate (3CB),4-chlorobenzoate (4CB) and benzoate. The genes encoding the oxidation of (chloro)benzoates (cbeABCD) and catechol (catA, catBC), the LysR-type regulatory gene cbeR and the gene cbeE with unknown function, all of which form a single cluster in NK8, were cloned and analysed. The protein sequence of chlorobenzoate 1,2-dioxygenase (CbeABC) is 50-65% identical to the benzoate dioxygenase (BenABC) of Acinetobacter sp. ADP1, toluate dioxygenase (XylXYZ) of the TOL plasmid pWW0 and 2-halobenzoate dioxygenase (CbdABC) of Burkholderia cepacia 2CBS. Disruption of the cbeA gene resulted in the simultaneous loss of the ability to grow on benzoate and monochlorobenzoates, indicating the involvement of the cbeABCD genes in the degradation of these aromatics. The cbeABCD genes are preceded by catA, the gene for catechol dioxygenase. lacZ transcriptional fusion studies in Pseudomonas putida showed that catA and cbeA are co-expressed under the positive control of cbeR, a LysR-type transcriptional regulatory gene. The cbeA::lacZ transcriptional fusion studies showed that the inducers of the genes are 3CB, 4CB, benzoate and probably cis,cis-muconate. On the other hand, 2-chlorobenzoate (2CB) did not activate the expression of the genes. The chlorobenzoate dioxygenase was able to transform 2CB, 3CB, 4CB and benzoate at considerable rates. 2CB yielded both catechol and 3-chlorocatechol (3CC), and 3CB gave rise to 4-chlorocatechol and 3CC as the major and minor intermediate products, respectively, indicating that the NK8 dioxygenase lacks absolute regiospecificity. The absence of growth of NK8 on 2CB, despite its considerable degradation activity against 2CB, is apparently due to the inability of CbeR to recognize 2CB as an inducer of the expression of the cbe genes.
Collapse
Affiliation(s)
- P Francisco
- Soil General Microbiology Laboratory, National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba City, Ibaraki 305-8604, Japan
| | | | | | | |
Collapse
|
23
|
Cowles CE, Nichols NN, Harwood CS. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 2000; 182:6339-46. [PMID: 11053377 PMCID: PMC94779 DOI: 10.1128/jb.182.22.6339-6346.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida converts benzoate to catechol using two enzymes that are encoded on the chromosome and whose expression is induced by benzoate. Benzoate also binds to the regulator XylS to induce expression of the TOL (toluene degradation) plasmid-encoded meta pathway operon for benzoate and methylbenzoate degradation. Finally, benzoate represses the ability of P. putida to transport 4-hydroxybenzoate (4-HBA) by preventing transcription of pcaK, the gene encoding the 4-HBA permease. Here we identified a gene, benR, as a regulator of benzoate, methylbenzoate, and 4-HBA degradation genes. A benR mutant isolated by random transposon mutagenesis was unable to grow on benzoate. The deduced amino acid sequence of BenR showed high similarity (62% identity) to the sequence of XylS, a member of the AraC family of regulators. An additional seven genes located adjacent to benR were inferred to be involved in benzoate degradation based on their deduced amino acid sequences. The benABC genes likely encode benzoate dioxygenase, and benD likely encodes 2-hydro-1,2-dihydroxybenzoate dehydrogenase. benK and benF were assigned functions as a benzoate permease and porin, respectively. The possible function of a final gene, benE, is not known. benR activated expression of a benA-lacZ reporter fusion in response to benzoate. It also activated expression of a meta cleavage operon promoter-lacZ fusion inserted in an E. coli chromosome. Third, benR was required for benzoate-mediated repression of pcaK-lacZ fusion expression. The benA promoter region contains a direct repeat sequence that matches the XylS binding site previously defined for the meta cleavage operon promoter. It is likely that BenR binds to the promoter region of chromosomal benzoate degradation genes and plasmid-encoded methylbenzoate degradation genes to activate gene expression in response to benzoate. The action of BenR in repressing 4-HBA uptake is probably indirect.
Collapse
Affiliation(s)
- C E Cowles
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
24
|
Mallavarapu M, Möhler I, Krüger M, Hosseini MM, Bartels F, Timmis KN, Holtel A. Genetic requirements for the expression of benzylamine dehydrogenase activity in Pseudomonas putida. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13190.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Collier LS, Gaines GL, Neidle EL. Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 1998; 180:2493-501. [PMID: 9573203 PMCID: PMC107193 DOI: 10.1128/jb.180.9.2493-2501.1998] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Acinetobacter sp. strain ADP1, benzoate degradation requires the ben genes for converting benzoate to catechol and the cat genes for degrading catechol. Here we describe a novel transcriptional activator, BenM, that regulates the chromosomal ben and cat genes. BenM is homologous to CatM, a LysR-type transcriptional activator of the cat genes. Unusual regulatory features of this system include the abilities of both BenM and CatM to recognize the same inducer, cis,cis-muconate, and to regulate some of the same genes, such as catA and catB. Unlike CatM, BenM responded to benzoate. Benzoate together with cis,cis-muconate increased the BenM-dependent expression of the benABCDE operon synergistically. CatM was not required for this synergism, nor did CatM regulate the expression of a chromosomal benA::lacZ transcriptional fusion. BenM-mediated regulation differs significantly from that of the TOL plasmid-encoded conversion of benzoate to catechol in pseudomonads. The benM gene is immediately upstream of, and divergently transcribed from, benA, and a possible DNA binding site for BenM was identified between the two coding regions. Two mutations in the predicted operator/promoter region rendered ben gene expression either constitutive or inducible by cis,cis-muconate but not benzoate. Mutants lacking BenM, CatM, or both of these regulators degraded aromatic compounds at different rates, and the levels of intermediary metabolites that accumulated depended on the genetic background. These studies indicated that BenM is necessary for ben gene expression but not for expression of the cat genes, which can be regulated by CatM. In a catM-disrupted strain, BenM was able to induce higher levels of catA expression than catB expression.
Collapse
Affiliation(s)
- L S Collier
- Department of Microbiology, University of Georgia, Athens 30602-2605, USA
| | | | | |
Collapse
|
26
|
Kim SI, Leem SH, Choi JS, Ha KS. Organization and transcriptional characterization of the cat1 gene cluster in Acinetobacter lwoffi K24. Biochem Biophys Res Commun 1998; 243:289-94. [PMID: 9473520 DOI: 10.1006/bbrc.1997.7912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously, we have reported that two clustered cat genes from Acenitobacter lwoffi K24 had different arrangements, catB1C1A1 and catB2A2C2 (Kim, S.I., S.-H. Leem, J.-S. Choi, Y.H. Chung, S. Kim, Y.-M. Park, Y.K. Park, Y.N. Lee, and K.-S. Ha. 1997, J. Bacteriol. 179, 5226-5231). By further analysis of the organization of the cat1 gene cluster, we obtained a complete sequence of the catB1 gene, which encoded 40.8-kDa polypeptide containing 379 amino acids, and found a open reading frame (ORF) coding a putative regulatory protein in upstream region of catB1 on plasmid pCD1-1. This ORF encoded 34.2-kDa polypeptide containing 379 amino acids and had more than 40% identity with catR, LysR family regulatory protein of Pseudomonas putida. RT-PCR, Northern blot analysis and primer extension assay for transcriptional analysis of the cat1 gene cluster revealed that the catB1C1 genes were cotranscribed and the catA1 gene was independently transcribed.
Collapse
Affiliation(s)
- S I Kim
- Biomolecule Research Group, Korea Basic Science Institute, Taejon, Korea.
| | | | | | | |
Collapse
|
27
|
Ramos JL, Marqués S, Timmis KN. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 1997; 51:341-73. [PMID: 9343354 DOI: 10.1146/annurev.micro.51.1.341] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The xyl genes of Pseudomonas putida TOL plasmid that specify catabolism of toluene and xylenes are organized in four transcriptional units: the upper-operon xylUWCAMBN for conversion of toluene/xylenes into benzoate/alkylbenzoates; the meta-operon xylXYZLTEGFJQKIH, which encodes the enzymes for further conversion of these compounds into Krebs cycle intermediates; and xylS and xylR, which are involved in transcriptional control. The XylS and XylR proteins are members of the XylS/AraC and NtrC families, respectively, of transcriptional regulators. The xylS gene is constitutively expressed at a low level from the Ps2 promoter. The XylS protein is activated by interaction with alkylbenzoates, and this active form stimulates transcription from Pm by sigma70- or sigmaS-containing RNA polymerase (the meta loop). The xylR gene is also expressed constitutively. The XylR protein, which in the absence of effectors binds in a nonactive form to target DNA sequences, is activated by aromatic hydrocarbons and ATP; it subsequently undergoes multimerization and structural changes that result in stimulation of transcription from Pu of the upper operon. This latter process is assisted by the IHF protein and mediated by sigma54-containing RNA polymerase. Once activated, the XylR protein also stimulates transcription from the Ps1 promoter of xylS without interfering with expression from Ps2. This process is assisted by the HU protein and is mediated by sigma54-containing RNA polymerase. As a consequence of hyperexpression of the xylS gene, the XylS protein is hyperproduced and stimulates transcription from Pm even in the absence of effectors (the cascade loop). The two sigma54-dependent promoters are additionally subject to global (catabolite repression) control.
Collapse
Affiliation(s)
- J L Ramos
- Consejo Superior de Investigaciones Científicas, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain.
| | | | | |
Collapse
|
28
|
|
29
|
Romine MF, Brockman FJ. Recruitment and expression of toluene/trichloroethylene biodegradation genes in bacteria native to deep-subsurface sediments. Appl Environ Microbiol 1996; 62:2647-50. [PMID: 8779603 PMCID: PMC168046 DOI: 10.1128/aem.62.7.2647-2650.1996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Four plasmids, each encoding a combination of either an Escherichia coli or Pseudomonas putida promoter and either toluene dioxygenase or toluene monooxygenase, were electroporated into five bacterial strains isolated from sediments found at depths of 91 to 295 m. Four of these engineered bacterial strains demonstrated both toluene and trichloroethylene degradation activities.
Collapse
Affiliation(s)
- M F Romine
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
30
|
Gallegos MT, Marqués S, Ramos JL. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth. J Bacteriol 1996; 178:2356-61. [PMID: 8636038 PMCID: PMC177945 DOI: 10.1128/jb.178.8.2356-2361.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Growth of Pseudomonas putida (pWWO) on alkylbenzoates requires the expression of the meta pathway operon, which is mediated by the XylS protein after binding of a benzoate effector. Alternatively, in cells growing on toluene or its aromatic alcohols, overexpression of xylS mediated by XylR activated by these compounds leads to overproduction of the XylS regulator, which even in the absence of benzoate effectors stimulates transcription from the meta cleavage pathway operon promoter. We show here that in bacteria growing on glycerol or alkylbenzoates, the xylS gene is expressed at a low but constitutive level from a newly found sigma 70-dependent promoter called Ps2. The amount of XylS protein made from the transcript originated from Ps2 was sufficient to allow high levels of expression from the meta cleavage pathway operon promoter when the cells were grown in the presence of 3-methylbenzoate. The transcription initiation point of the transcript generated from Ps2 mapped 9 bp upstream from the proposed ATG of the xylS gene; this transcript contains the ribosome-binding site. The Ps2 promoter was located 110 bp downstream from a previously described sigma54-dependent promoter located upstream from the xylS open reading frame, now called Ps1. In cells growing on toluene or benzyl alcohols, the XylS regulator is overproduced as a consequence of increased expression of the gene through the effect of the two promoters working in tandem: the newly found sigma 70-dependent promoter, whose expression is XylR and toluene independent, and the sigma 54-dependent promoter, whose expression is dependent on XylR activated by its effectors. This expression pathway of the xylS gene explains why sigma 54-deficient P. putida bearing the wild-type TOL plasmid, or the wild-type P. putida strain bearing a TOL plasmid with a knocked-out xylR gene, can grow on alkylbenzoates. Until now this has been one of the unresolved paradoxes in the transcriptional control of the TOL meta cleavage pathway.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental Zaidin, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | |
Collapse
|
31
|
Danganan CE, Shankar S, Ye RW, Chakrabarty AM. Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100. Appl Environ Microbiol 1995; 61:4500-4. [PMID: 8534119 PMCID: PMC167763 DOI: 10.1128/aem.61.12.4500-4504.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Burkholderia cepacia AC1100 uses the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid as a sole source of carbon and energy. The genes encoding the proteins involved in the first step (tftA and tftB [previously designated tftA1 and tftA2, respectively]) have been cloned and sequenced. The oxygenase, TftAB, is capable of converting not only 2,4,5-trichlorophenoxyacetic acid to 2,4,5-trichlorophenol but also a wide range of chlorinated aromatic phenoxyacetates to their corresponding phenolic derivatives, as shown by whole-cell and cell-free assays. The rate of substrate utilization by TftAB depends upon the extent of chlorination of the substrate, the positions of the chlorines, and the phenoxy group. These results indicate a mechanistic similarity between TftAB and the 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate-dependent dioxygenase, TfdA, from Alcaligenes eutrophus JMP134. The promoter of the oxygenase genes was localized by promoter-probe analysis, and the transcriptional start site was identified by primer extension. The beta-galactosidase activity of the construct containing the promoter region cloned upstream of the beta-galactosidase gene in the promoter-probe vector pKRZ-1 showed that this construct is constitutively expressed in Escherichia coli and in AC1100. The -35 and -10 regions of the oxygenase genes show significant sequence identity to typical Escherichia coli sigma 70 promoters.
Collapse
Affiliation(s)
- C E Danganan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago 60612, USA
| | | | | | | |
Collapse
|
32
|
Nichols NN, Harwood CS. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J Bacteriol 1995; 177:7033-40. [PMID: 8522507 PMCID: PMC177579 DOI: 10.1128/jb.177.24.7033-7040.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas putida PRS2000 degrades the aromatic acids benzoate and 4-hydroxybenzoate via two parallel sequences of reactions that converge at beta-ketoadipate, a derivative of which is cleaved to form tricarboxylic acid cycle intermediates. Structural genes (pca genes) required for the complete degradation of 4-hydroxybenzoate via the protocatechuate branch of the beta-ketoadipate pathway have been characterized, and a specific transport system for 4-hydroxybenzoate has recently been described. To better understand how P. putida coordinates the processes of 4-hydroxybenzoate transport and metabolism to achieve complete degradation, the regulation of pcaK, the 4-hydroxybenzoate transport gene, and that of pcaF, a gene required for both benzoate and 4-hydroxybenzoate degradation, were compared. Primer extension analysis and lacZ fusions showed that pcaK and pcaF, which are adjacent on the chromosome, are transcribed independently. PcaR, a transcriptional activator of several genes of the beta-ketoadipate pathway, is required for expression of both pcaF and pcaK, and the pathway intermediate beta-ketoadipate induces both genes. In addition to these expected regulatory elements, expression of pcaK, but not pcaF, is repressed by benzoate. This previously unrecognized layer of regulatory control in the beta-ketoadipate pathway appears to extend to the first two steps of 4-hydroxybenzoate degradation, since levels of 4-hydroxybenzoate hydroxylase and protocatechuate 3,4-dioxygenase activities were also depressed when cells were grown on a mixture of 4-hydroxybenzoate and benzoate. The apparent consequence of benzoate repression is that cells degrade benzoate in preference to 4-hydroxybenzoate. These findings indicate that 4-hydroxybenzoate transport is an integral feature of the beta-ketoadipate pathway in P. putida and that transport plays a role in establishing the preferential degradation of benzoate over 4-hydroxybenzoate. These results also demonstrate that there is communication between the two branches of the beta-ketoadipate pathway.
Collapse
Affiliation(s)
- N N Nichols
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
33
|
Eaton RW, Chapman PJ. Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol 1995; 177:6983-8. [PMID: 7592495 PMCID: PMC177570 DOI: 10.1128/jb.177.23.6983-6988.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The p-cumate-degrading strain Pseudomonas putida F1 and the m- and p-toluate-degrading strain P. putida mt-2 transform indole-2-carboxylate and indole-3-carboxylate to colored products identified here as indigo, indirubin, and isatin. A mechanism by which these products could be formed spontaneously following dioxygenase-catalyzed dihydroxylation of the indolecarboxylates is proposed. Indolecarboxylates were employed as chromogenic substrates for identifying recombinant bacteria carrying genes encoding p-cumate dioxygenase and toluate dioxygenase. Dioxygenase gene-carrying bacteria could be readily distinguished as dark green-blue colonies among other colorless recombinant Escherichia coli colonies on selective agar plates containing either indole-2-carboxylate or indole-3-carboxylate.
Collapse
Affiliation(s)
- R W Eaton
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA
| | | |
Collapse
|
34
|
Haak B, Fetzner S, Lingens F. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 1995; 177:667-75. [PMID: 7530709 PMCID: PMC176642 DOI: 10.1128/jb.177.3.667-675.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones.
Collapse
Affiliation(s)
- B Haak
- Institut für Mikrobiologie, Universität Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
35
|
Lal R, Lal S, Dhanaraj PS, Saxena DM. Manipulations of catabolic genes for the degradation and detoxification of xenobiotics. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:55-95. [PMID: 7572336 DOI: 10.1016/s0065-2164(08)70308-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R Lal
- Department of Zoology, University of Delhi, India
| | | | | | | |
Collapse
|
36
|
Parsek MR, McFall SM, Shinabarger DL, Chakrabarty AM. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Proc Natl Acad Sci U S A 1994; 91:12393-7. [PMID: 7809047 PMCID: PMC45444 DOI: 10.1073/pnas.91.26.12393] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The soil bacteria Pseudomonas putida can use benzoate or 3-chlorobenzoate as a sole carbon source. Benzoate and 3-chlorobenzoate are converted into catechol and 3-chlorocatechol, respectively, which are in turn converted into tricarboxylic acid cycle intermediates. The catabolic pathways of both compounds proceed through similar intermediates, have similar genetic organization, and have homologous enzymes responsible for different catabolic steps. This has led to suggestions that the plasmid-borne 3-chlorocatechol degradation genes evolved from the chromosomal catechol degradation genes. Both catechol and 3-chlorocatechol pathways are positively regulated by the homologous regulatory proteins CatR and ClcR, respectively. These proteins belong to the LysR family of DNA binding proteins and bind to highly conserved target sequences. We examined the ability of CatR and ClcR to cross-regulate the two pathways. CatR was shown in vitro by DNase I footprinting and gel-shift assays to interact with the clcABD promoter region. Likewise, ClcR was shown to interact in vitro with the catBC promoter region. In in vivo experiments, CatR complemented a ClcR- P. putida strain harboring the clcABD operon for growth on 3-chlorobenzoate. However, ClcR was not capable of complementing a CatR- P. putida strain for growth on benzoate. These observations were confirmed by lacZ-transcriptional fusion expression experiments. Differences in the CatR and ClcR binding sites and their in vitro binding characteristics may explain the ability of CatR and not ClcR to cross-activate. These differences may provide insight about the evolution of regulatory systems in P. putida.
Collapse
Affiliation(s)
- M R Parsek
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612
| | | | | | | |
Collapse
|
37
|
Kessler B, Marqués S, Köhler T, Ramos JL, Timmis KN, de Lorenzo V. Cross talk between catabolic pathways in Pseudomonas putida: XylS-dependent and -independent activation of the TOL meta operon requires the same cis-acting sequences within the Pm promoter. J Bacteriol 1994; 176:5578-82. [PMID: 8071244 PMCID: PMC196754 DOI: 10.1128/jb.176.17.5578-5582.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Pm promoter of the meta cleavage operon in the TOL (toluene degradation) plasmid pWW0 of Pseudomonas putida becomes activated by the plasmid-encoded XylS regulator in the presence of benzoate and certain substituted analogs such as 3-methylbenzoate. In the absence of XylS, Pm was still responsive to unsubstituted benzoate but with induction kinetics and a range of transcriptional activity which differed substantially from those for the XylS-mediated activation. XylS-independent induction by benzoate did not occur in a rpoN genetic background. Pm was also silent while cells were actively growing in rich medium. However, XylS-dependent transcription and XylS-independent transcription were initiated at the same nucleotide, as determined with primer extension mapping. Furthermore, a series of deletions and mutations at the Pm promoter sequence showed the same overall pattern of responsiveness to benzoate with and without XylS, thus providing genetic evidence that the same promoter structure is recognized and activated by at least two different regulators. One of them is XylS, while the other, provided by the host bacterium, could be related to the chromosome-encoded benzoate degradation pathway.
Collapse
Affiliation(s)
- B Kessler
- GBF-National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Zhang C, Huang M, Holloway BW. Mapping of theben, antandcatgenes ofPseudomonas aeruginosaand evolutionary relationship of thebenregion ofP. aeruginosaandP. putida. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|