1
|
Shomo ZD, Mahboub S, Vanviratikul H, McCormick M, Tulyananda T, Roston RL, Warakanont J. All members of the Arabidopsis DGAT and PDAT acyltransferase families operate during high and low temperatures. PLANT PHYSIOLOGY 2024; 195:685-697. [PMID: 38386316 DOI: 10.1093/plphys/kiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing temperatures. It has been hypothesized that TAG accumulation is required as a storage location for maladaptive membrane lipids. The TAG acyltransferase family has five members (DIACYLGLYCEROL ACYLTRANSFERSE1/2/3 and PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1/2), and their individual roles during temperature challenges have either been described conflictingly or not at all. Therefore, we used Arabidopsis (Arabidopsis thaliana) loss of function mutants in each acyltransferase to investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and temperature tolerance. All mutants were tested under one high- and two low-temperature regimens, during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one temperature regimen for all acyltransferase mutants compared to the wild type, resolved conflicting roles of pdat1 and dgat1 by demonstrating their distinct temperature-specific actions, and uncovered that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress.
Collapse
Affiliation(s)
- Zachery D Shomo
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Samira Mahboub
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Mason McCormick
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tatpong Tulyananda
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rebecca L Roston
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jaruswan Warakanont
- Department of Botany, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Abstract
Lipid extracts from plants represent a mixture of polar membrane lipids and nonpolar lipids. The main constituents of the polar lipid fraction are glycerolipids, that is, galactolipids, sulfolipid, and phospholipids. In addition, betaine lipids are found in pteridophytes, bryophytes, and algae. Nonpolar lipids include the storage lipid triacylglycerol, wax esters, diacylglycerol and free fatty acids. The complex lipid mixtures from plant tissues can be separated by thin-layer chromatography (TLC) into different lipid classes. In most cases glass plates coated with a silica gel are used as stationary phase and an organic solvent as mobile phase. Different solvent systems are required to separate polar membrane lipids or nonpolar lipids by TLC. Depending on the complexity of the lipid mixture, lipids are separated using one- or two-dimensional TLC systems. Different dyes and reagents allow the visualization of all lipid classes, or the selective staining of glycolipids or phospholipids. Lipids can be isolated from the TLC plate for subsequent analysis, provided that nondestructive methods are used for visualization.
Collapse
|
3
|
Abstract
Marine microorganisms play crucial roles in Earth's element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a crucial player in climate processes. With sulfur already being well studied in the ocean in its inorganic forms, organic sulfur compounds are emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can readily be reduced by phytoplankton, provides a freely available source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly assimilated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, cofactors, signalling compounds and antibiotics. In this Review, we examine the current knowledge of sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microorganisms, and the ecological links facilitated by their diversity in structures, oxidation states and chemistry.
Collapse
|
4
|
Warakanont J, Li-Beisson Y, Benning C. LIP4 Is Involved in Triacylglycerol Degradation in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2019; 60:1250-1259. [PMID: 30796452 DOI: 10.1093/pcp/pcz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 05/03/2023]
Abstract
Degradation of the storage compound triacylglycerol (TAG) is a crucial process in response to environmental stimuli. In microalgae, this process is important for re-growth when conditions become favorable after cells have experienced stresses. Mobilization of TAG is initiated by actions of lipases causing the release of glycerol and free fatty acids, which can be further broken down for energy production or recycled to synthesize membrane lipids. Although key enzymes in the process, TAG lipases remain to be characterized in the model green alga Chlamydomonas reinhardtii. Here, we describe the functional analysis of a putative TAG lipase, i.e. LIP4, which shares 44% amino acid identity with the major TAG lipase in Arabidopsis (SUGAR DEPENDENT1-SDP1). The LIP4 transcript level was downregulated during nitrogen deprivation when TAG accumulates, but was upregulated during nitrogen resupply (NR) when TAG was degraded. Both artificial microRNA and insertional mutants showed a delay in TAG mobilization during NR. The difference in TAG degradation was more pronounced when the cultures were incubated without acetate in the dark. Furthermore, the lip4 insertional mutants over-accumulated TAG during optimal growth conditions. Taken together, the results suggest to us that LIP4 likely acts as a TAG lipase and plays a role in TAG homeostasis in Chlamydomonas.
Collapse
Affiliation(s)
- Jaruswan Warakanont
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Lad Yao, Chatuchak, Bangkok, Thailand
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Aix Marseille University, CEA, CNRS, BIAM, Saint-Paul-Lez-Durance, Marseille F, France
| | - Yonghua Li-Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Saint-Paul-Lez-Durance, Marseille F, France
| | - Christoph Benning
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Research Laboratory, US Department of Energy, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Du ZY, Lucker BF, Zienkiewicz K, Miller TE, Zienkiewicz A, Sears BB, Kramer DM, Benning C. Galactoglycerolipid Lipase PGD1 Is Involved in Thylakoid Membrane Remodeling in Response to Adverse Environmental Conditions in Chlamydomonas. THE PLANT CELL 2018; 30:447-465. [PMID: 29437989 PMCID: PMC5868692 DOI: 10.1105/tpc.17.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 05/20/2023]
Abstract
Photosynthesis occurs in the thylakoid membrane, where the predominant lipid is monogalactosyldiacylglycerol (MGDG). As environmental conditions change, photosynthetic membranes have to adjust. In this study, we used a loss-of-function Chlamydomonas reinhardtii mutant deficient in the MGDG-specific lipase PGD1 (PLASTID GALACTOGLYCEROLIPID DEGRADATION1) to investigate the link between MGDG turnover, chloroplast ultrastructure, and the production of reactive oxygen species (ROS) in response to different adverse environmental conditions. The pgd1 mutant showed altered MGDG abundance and acyl composition and altered abundance of photosynthesis complexes, with an increased PSII/PSI ratio. Transmission electron microscopy showed hyperstacking of the thylakoid grana in the pgd1 mutant. The mutant also exhibited increased ROS production during N deprivation and high light exposure. Supplementation with bicarbonate or treatment with the photosynthetic electron transport blocker DCMU protected the cells against oxidative stress in the light and reverted chlorosis of pgd1 cells during N deprivation. Furthermore, exposure to stress conditions such as cold and high osmolarity induced the expression of PGD1, and loss of PGD1 in the mutant led to increased ROS production and inhibited cell growth. These findings suggest that PGD1 plays essential roles in maintaining appropriate thylakoid membrane composition and structure, thereby affecting growth and stress tolerance when cells are challenged under adverse conditions.
Collapse
Affiliation(s)
- Zhi-Yan Du
- U.S. Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Ben F Lucker
- U.S. Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Krzysztof Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Goettingen, Germany
| | - Tarryn E Miller
- U.S. Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Agnieszka Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Goettingen, Germany
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Barbara B Sears
- U.S. Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - David M Kramer
- U.S. Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- U.S. Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
6
|
Zhan X, Shen Q, Wang X, Hong Y. The Sulfoquinovosyltransferase-like Enzyme SQD2.2 is Involved in Flavonoid Glycosylation, Regulating Sugar Metabolism and Seed Setting in Rice. Sci Rep 2017; 7:4685. [PMID: 28680100 PMCID: PMC5498572 DOI: 10.1038/s41598-017-04002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Seed setting is an important trait that contributes to seed yield and relies greatly on starch accumulation. In this study, a sulfoquinovosyl transferase-like protein, designated as SQD2.2 involved in seed setting and flavonoid accumulation, was identified and characterized in rice. Rice SQD2.2 is localized to the cytoplasm, and the SQD2.2 transcript was highest in leaves. Rice SQD2.2-overexpressing (OE) plants exhibited a decreased seed setting rate and diminished tiller number simultaneously with an increased glycosidic flavonoid level compared with wild-type (WT) plants. SQD2.2 catalyzes the glycosylation of apigenin to produce apigenin 7-O-glucoside using uridine diphosphate-glucose (UDPG) as a sugar donor, but it failed to compensate for sulfoquinovosyldiacylglycerol (SQDG) synthesis in the Arabidopsis sqd2 mutant. Furthermore, apigenin 7-O-glucoside inhibited starch synthase (SS) activity in a concentration-dependent manner, and SQD2.2-OE plants exhibited reduced SS activity accompanied by a significant reduction in starch levels and an elevation in soluble sugar levels relative to WT plants. Both adenosine diphosphate-glucose (ADPG) and UDPG levels in SQD2.2-OE plants were notably lower than those in WT plants. Taken together, rice SQD2.2 exhibits a novel role in flavonoid synthesis and plays an important role in mediating sugar allocation between primary and secondary metabolism in rice.
Collapse
Affiliation(s)
- Xinqiao Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J 2017; 474:827-849. [DOI: 10.1042/bcj20160508] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/19/2023]
Abstract
The sulfonated carbohydrate sulfoquinovose (SQ) is produced in quantities estimated at some 10 billion tonnes annually and is thus a major participant in the global sulfur biocycle. SQ is produced by most photosynthetic organisms and incorporated into the sulfolipid sulfoquinovosyl diacylglycerol (SQDG), as well as within some archaea for incorporation into glycoprotein N-glycans. SQDG is found mainly within the thylakoid membranes of the chloroplast, where it appears to be important for membrane structure and function and for optimal activity of photosynthetic protein complexes. SQDG metabolism within the sulfur cycle involves complex biosynthetic and catabolic processes. SQDG biosynthesis is largely conserved within plants, algae and bacteria. On the other hand, two major sulfoglycolytic pathways have been discovered for SQDG degradation, the sulfo-Embden–Meyerhof–Parnas (sulfo-EMP) and sulfo-Entner–Doudoroff (sulfo-ED) pathways, which mirror the major steps in the glycolytic EMP and ED pathways. Sulfoglycolysis produces C3-sulfonates, which undergo biomineralization to inorganic sulfur species, completing the sulfur cycle. This review discusses the discovery and structural elucidation of SQDG and archaeal N-glycans, the occurrence, distribution, and speciation of SQDG, and metabolic pathways leading to the biosynthesis of SQDG and its catabolism through sulfoglycolytic and biomineralization pathways to inorganic sulfur.
Collapse
|
8
|
Handee W, Li X, Hall KW, Deng X, Li P, Benning C, Williams BL, Kuo MH. An Energy-Independent Pro-longevity Function of Triacylglycerol in Yeast. PLoS Genet 2016; 12:e1005878. [PMID: 26907989 PMCID: PMC4764362 DOI: 10.1371/journal.pgen.1005878] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/27/2016] [Indexed: 01/09/2023] Open
Abstract
Intracellular triacylglycerol (TAG) is a ubiquitous energy storage lipid also involved in lipid homeostasis and signaling. Comparatively, little is known about TAG’s role in other cellular functions. Here we show a pro-longevity function of TAG in the budding yeast Saccharomyces cerevisiae. In yeast strains derived from natural and laboratory environments a correlation between high levels of TAG and longer chronological lifespan was observed. Increased TAG abundance through the deletion of TAG lipases prolonged chronological lifespan of laboratory strains, while diminishing TAG biosynthesis shortened lifespan without apparently affecting vegetative growth. TAG-mediated lifespan extension was independent of several other known stress response factors involved in chronological aging. Because both lifespan regulation and TAG metabolism are conserved, this cellular pro-longevity function of TAG may extend to other organisms. Triacylglycerol (TAG) is a ubiquitous lipid species well-known for its roles in storing surplus energy, providing insulation, and maintaining cellular lipid homeostasis. Here we present evidence for a novel pro-longevity function of TAG in the budding yeast, a model organism for aging research. Yeast cells that are genetically engineered to store more TAG live significantly longer without suffering obvious growth defects, whereas those lean cells that are depleted of TAG die early. Yeast strains isolated from the wild in general contain more fat and also display longer lifespan. One of the approaches taken here to force the increase of intracellular TAG is to delete lipases responsible for lipid hydrolysis. Energy extraction from TAG thus is unlikely an underlying cause of the observed lifespan extension. Our results are reminiscent of certain animal studies linking higher body fat to longer lifespan. Potential mechanisms for the connection of TAG and yeast lifespan regulation are discussed.
Collapse
Affiliation(s)
- Witawas Handee
- Department of Cell and Molecular Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Xiaobo Li
- DOE-Plant Research Laboratory, Michigan State University. East Lansing, Michigan, United States of America
- Department of Plant Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Kevin W. Hall
- Department of Integrative Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Xiexiong Deng
- Department of Biochemistry and Molecular Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Pan Li
- Department of Biochemistry and Molecular Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Barry L. Williams
- Department of Integrative Biology, Michigan State University. East Lansing, Michigan, United States of America
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University. East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
9
|
Warakanont J, Tsai CH, Michel EJS, Murphy GR, Hsueh PY, Roston RL, Sears BB, Benning C. Chloroplast lipid transfer processes in Chlamydomonas reinhardtii involving a TRIGALACTOSYLDIACYLGLYCEROL 2 (TGD2) orthologue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1005-20. [PMID: 26496373 DOI: 10.1111/tpj.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 05/10/2023]
Abstract
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl-constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER-to-chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.
Collapse
Affiliation(s)
- Jaruswan Warakanont
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Chia-Hong Tsai
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elena J S Michel
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - George R Murphy
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Peter Y Hsueh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Rebecca L Roston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Barbara B Sears
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
10
|
Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism. Proc Natl Acad Sci U S A 2015; 112:14978-83. [PMID: 26627249 DOI: 10.1073/pnas.1515240112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions.
Collapse
|
11
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
12
|
Kruse J, Abraham M, Amelung W, Baum C, Bol R, Kühn O, Lewandowski H, Niederberger J, Oelmann Y, Rüger C, Santner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Leinweber P. Innovative methods in soil phosphorus research: A review. JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE = ZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE 2015; 178:43-88. [PMID: 26167132 PMCID: PMC4497464 DOI: 10.1002/jpln.201400327] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2014] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is an indispensable element for all life on Earth and, during the past decade, concerns about the future of its global supply have stimulated much research on soil P and method development. This review provides an overview of advanced state-of-the-art methods currently used in soil P research. These involve bulk and spatially resolved spectroscopic and spectrometric P speciation methods (1 and 2D NMR, IR, Raman, Q-TOF MS/MS, high resolution-MS, NanoSIMS, XRF, XPS, (µ)XAS) as well as methods for assessing soil P reactions (sorption isotherms, quantum-chemical modeling, microbial biomass P, enzymes activity, DGT, 33P isotopic exchange, 18O isotope ratios). Required experimental set-ups and the potentials and limitations of individual methods present a guide for the selection of most suitable methods or combinations.
Collapse
Affiliation(s)
- Jens Kruse
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of RostockJustus-von-Liebig Weg 6, 18051 Rostock, Germany
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of BonnNussallee 13, 53115 Bonn, Germany
| | - Marion Abraham
- Leibniz Institute for Baltic Sea ResearchSeestraße 15, 18119 Rostock, Germany
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of BonnNussallee 13, 53115 Bonn, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and GeosciencesIBG-3: Agrosphere, 52425 Jülich, Germany
| | - Christel Baum
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of RostockJustus-von-Liebig Weg 6, 18051 Rostock, Germany
| | - Roland Bol
- Forschungszentrum Jülich GmbH, Institute of Bio- and GeosciencesIBG-3: Agrosphere, 52425 Jülich, Germany
| | - Oliver Kühn
- Institute of Physics, Faculty of Mathematics and Natural Sciences, University of RostockWismarsche Straße 43–45,18057 Rostock, Germany
| | - Hans Lewandowski
- Forschungszentrum Jülich GmbH, Institute of Bio- and GeosciencesIBG-3: Agrosphere, 52425 Jülich, Germany
| | - Jörg Niederberger
- Chair of Silviculture, Albert Ludwig University FreiburgTennenbacherstraße 4, 79085 Freiburg im Breisgau, Germany
| | - Yvonne Oelmann
- Geoecology, Geosciences, University of TübingenRümelinstraße 19–23.72070 Tübingen, Germany
| | - Christopher Rüger
- Analytical Chemistry, Faculty of Mathematics and Natural Sciences, University of RostockDr.-Lorenzweg 1, 18059 Rostock, Germany
| | - Jakob Santner
- Institute of Soil Research, University of Natural Resources and Life Sciences ViennaKonrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Meike Siebers
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnKarlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Nina Siebers
- Forschungszentrum Jülich GmbH, Institute of Bio- and GeosciencesIBG-3: Agrosphere, 52425 Jülich, Germany
| | - Marie Spohn
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University BayreuthDr.-Hans-Frisch-Str. 1–3, 95448 Bayreuth, Germany
| | - Johan Vestergren
- Chemistry, Umeå University, Kemi A, plan 4, Linnaeus väg10 Umeå, Sweden
| | - Angela Vogts
- Leibniz Institute for Baltic Sea ResearchSeestraße 15, 18119 Rostock, Germany
| | - Peter Leinweber
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of RostockJustus-von-Liebig Weg 6, 18051 Rostock, Germany
- *
Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18051 Rostock, Germany e-mail:
| |
Collapse
|
13
|
Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 2014; 78:304-41. [PMID: 24847024 PMCID: PMC4054257 DOI: 10.1128/mmbr.00052-13] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Benjamin H Meyer
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lina Kaminski
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| |
Collapse
|
14
|
Abd El Baky HH, El Baz FK, El Baroty GS, Abd El-Salam OI, Ibrahim EA. Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae. GRASAS Y ACEITES 2013. [DOI: 10.3989/gya.050213] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Villanueva L, Bale N, Hopmans EC, Schouten S, Damsté JSS. Diversity and distribution of a key sulpholipid biosynthetic gene in marine microbial assemblages. Environ Microbiol 2013; 16:774-87. [PMID: 23879770 DOI: 10.1111/1462-2920.12202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/31/2013] [Accepted: 06/22/2013] [Indexed: 11/29/2022]
Abstract
Sulphoquinovosyldiacylglycerols (SQDG) are polar sulphur-containing membrane lipids, whose presence has been related to a microbial strategy to adapt to phosphate deprivation. In this study, we have targeted the sqdB gene coding the uridine 5'-diphosphate-sulphoquinovose (UDP-SQ) synthase involved in the SQDG biosynthetic pathway to assess potential microbial sources of SQDGs in the marine environment. The phylogeny of the sqdB-coding protein reveals two distinct clusters: one including green algae, higher plants and cyanobacteria, and another one comprising mainly non-photosynthetic bacteria, as well as other cyanobacteria and algal groups. Evolutionary analysis suggests that the appearance of UDP-SQ synthase occurred twice in cyanobacterial evolution, and one of those branches led to the diversification of the protein in members of the phylum Proteobacteria. A search of homologues of sqdB-proteins in marine metagenomes strongly suggested the presence of heterotrophic bacteria potential SQDG producers. Application of newly developed sqdB gene primers in the marine environment revealed a high diversity of sequences affiliated to cyanobacteria and Proteobacteria in microbial mats, while in North Sea surface water, most of the detected sqdB genes were attributed to the cyanobacterium Synechococcus sp. Lipid analysis revealed that specific SQDGs were characteristic of microbial mat depth, suggesting that SQDG lipids are associated with specific producers.
Collapse
Affiliation(s)
- Laura Villanueva
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg, 179AB, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Lin CI, McCarty RM, Liu HW. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars. Chem Soc Rev 2013; 42:4377-407. [PMID: 23348524 PMCID: PMC3641179 DOI: 10.1039/c2cs35438a] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.
Collapse
Affiliation(s)
| | | | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712
| |
Collapse
|
17
|
Zhang X, Fhaner CJ, Ferguson-Miller SM, Reid GE. Evaluation of ion activation strategies and mechanisms for the gas-phase fragmentation of sulfoquinovosyldiacylglycerol lipids from Rhodobacter sphaeroides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 316-318:100-107. [PMID: 22712000 PMCID: PMC3375827 DOI: 10.1016/j.ijms.2012.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sulfoquinovosyldiacylglycerol (SQDG) lipids, found in plants and photosynthetic bacteria, can substitute for phospholipids under phosphate limiting conditions. Here, various low-energy ion activation strategies have been evaluated for the identification and characterization of deprotonated SQDG lipids from a crude membrane lipid extract of Rhodobacter sphaeroides, using collision- induced dissociation - tandem mass spectrometry (CID-MS/MS) in either a triple quadrupole mass spectrometer or in a hybrid quadrupole ion trap-multipole mass spectrometer coupled with high resolution / accurate mass analysis capabilities. In the triple quadrupole instrument, using energy resolved CID-MS/MS experiments, the SQDG head group specific product ion at m/z 225 (C(6)H(9)O(7)S(-)), rather than m/z 81 (SO(3)H(-)), was determined to provide the greatest sensitivity for SQDG lipid detection, and is therefore the preferred `fingerprint' ion for the identification of this lipid class from within complex lipid mixtures when using precursor ion scan mode MS/MS experiments. A comparison of conventional ion trap CID-MS/MS and -MS(n), with `low Q' CID-MS/MS, pulsed Q dissociation (PQD)-MS/MS and higher energy collision induced dissociation (HCD)-MS/MS performed in an LTQ Orbitrap Velos mass spectrometer, revealed that HCD-MS/MS coupled with high resolution/accurate mass analysis represents the most sensitive, and perhaps most importantly the most specific strategy, for ion trap based identification and characterization of SQDG lipids, due to the ability to readily distinguish the SQDG head group specific product ion at m/z 225.0069 from other products that may be present at the same nominal m/z value. Finally, the mechanisms responsible for formation of each of the major product ions observed by low-energy CID-MS/MS of deprotonated SQDG lipids were elucidated using uniform H/D exchange, HCD-MS/MS and high resolution mass analysis. Formation of the m/z 225 `fingerprint' ion occurs via a charge-remote cis-elimination reaction, likely involving transfer of a hydrogen from the hydroxyl group located on the C2 position of the sugar ring.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology. Michigan State University, East Lansing, MI 48824
| | - Cassie J. Fhaner
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | | | - Gavin E. Reid
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology. Michigan State University, East Lansing, MI 48824
- Corresponding Author. Department of Chemistry 229 Chemistry Building Michigan State University. East Lansing, Michigan, 48824 USA Phone: (517)-355-9715 x198 Fax: (517)-353-1793
| |
Collapse
|
18
|
Meyer BH, Zolghadr B, Peyfoon E, Pabst M, Panico M, Morris HR, Haslam SM, Messner P, Schäffer C, Dell A, Albers SV. Sulfoquinovose synthase - an important enzyme in the N-glycosylation pathway of Sulfolobus acidocaldarius. Mol Microbiol 2011; 82:1150-63. [PMID: 22059775 DOI: 10.1111/j.1365-2958.2011.07875.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, the Surface (S)-layer glycoprotein of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius was found to be N-glycosylated with a heterogeneous family of glycans, with the largest having a composition Glc(1)Man(2)GlcNAc(2) plus 6-sulfoquinovose. However, genetic analyses of genes involved in the N-glycosylation process in Crenarchaeota were missing so far. In this study we identify a gene cluster involved in the biosynthesis of sulfoquinovose and important for the assembly of the S-layer N-glycans. A successful markerless in-frame deletion of agl3 resulted in a decreased molecular mass of the S-layer glycoprotein SlaA and the flagellin FlaB, indicating a change in the N-glycan composition. Analyses with nanoLC ES-MS/MS confirmed the presence of only a reduced trisaccharide structure composed of Man(1) GlcNAc(2) , missing the sulfoquinovose, a mannose and glucose. Biochemical studies of the recombinant Agl3 confirmed the proposed function as a UDP-sulfoquinovose synthase. Furthermore, S. acidocaldarius cells lacking agl3 had a significantly lower growth rate at elevated salt concentrations compared with the background strain, underlining the importance of the N-glycosylation to maintain an intact and stable cell envelope, to enable the survival of S. acidocaldarius in its extreme environment.
Collapse
Affiliation(s)
- Benjamin H Meyer
- Molecular Biology of Archaea, Max-Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stancu MM, Grifoll M. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. J GEN APPL MICROBIOL 2011; 57:1-18. [PMID: 21478643 DOI: 10.2323/jgam.57.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology, Center of Microbiology, 296 Spl. Independentei St, Bucharest, Romania.
| | | |
Collapse
|
20
|
Verissimo AF, Yang H, Wu X, Sanders C, Daldal F. CcmI subunit of CcmFHI heme ligation complex functions as an apocytochrome c chaperone during c-type cytochrome maturation. J Biol Chem 2011; 286:40452-63. [PMID: 21956106 DOI: 10.1074/jbc.m111.277764] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation (Ccm) is a sophisticated post-translational process. It occurs after translocation of apocytochromes c to the p side of energy transducing membranes and forms stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of cysteines at their conserved heme binding sites. In many organisms this process involves up to 10 (CcmABCDEFGHI and CcdA) membrane proteins. One of these proteins is CcmI, which has an N-terminal membrane-embedded domain with two transmembrane helices and a large C-terminal periplasmic domain with protein-protein interaction motifs. Together with CcmF and CcmH, CcmI forms a multisubunit heme ligation complex. How the CcmFHI complex recognizes its apocytochrome c substrates remained unknown. In this study, using Rhodobacter capsulatus apocytochrome c(2) as a Ccm substrate, we demonstrate for the first time that CcmI binds apocytochrome c(2) but not holocytochrome c(2). Mainly the C-terminal portions of both CcmI and apocytochrome c(2) mediate this binding. Other physical interactions via the conserved structural elements in apocytochrome c(2), like the heme ligating cysteines or heme iron axial ligands, are less crucial. Furthermore, we show that the N-terminal domain of CcmI can also weakly bind apocytochrome c(2), but this interaction requires a free thiol group at apocytochrome c(2) heme binding site. We conclude that the CcmI subunit of the CcmFHI complex functions as an apocytochrome c chaperone during the Ccm process used by proteobacteria, archaea, mitochondria of plants and red algae.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania Philadelphia, Pennsylvania 19014-6019, USA
| | | | | | | | | |
Collapse
|
21
|
Gong Y, Guo X, Wan X, Liang Z, Jiang M. Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum. J Basic Microbiol 2011; 51:666-72. [DOI: 10.1002/jobm.201000520] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 11/07/2022]
|
22
|
Zhang X, Hiser C, Tamot B, Benning C, Reid GE, Ferguson-Miller SM. Combined genetic and metabolic manipulation of lipids in Rhodobacter sphaeroides reveals non-phospholipid substitutions in fully active cytochrome c oxidase. Biochemistry 2011; 50:3891-902. [PMID: 21476580 DOI: 10.1021/bi1017039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A specific requirement for lipids, particularly cardiolipin (CL), in cytochrome c oxidase (CcO) has been reported in many previous studies using mainly in vitro lipid removal approaches in mammalian systems. Our accompanying paper shows that CcO produced in markedly CL-depleted Rhodobacter sphaeroides displays wild-type properties in all respects, likely allowed by quantitative substitution with other negatively charged lipids. To further examine the structural basis for the lipid requirements of R. sphaeroides CcO and the extent of interchangeability between lipids, we employed a metabolic approach to enhance the alteration of the lipid profiles of the CcO-expressing strains of R. sphaeroides in vivo using a phosphate-limiting growth medium in addition to the CL-deficient mutation. Strikingly, the purified CcO produced under these conditions still maintained wild-type function and characteristics, in spite of even greater depletion of cardiolipin compared to that of the CL-deficient mutant alone (undetectable by MS) and drastically altered profiles of all the phospholipids and non-phospholipids. The lipids in the membrane and in the purified CcO were identified and quantified by ESI and MALDI mass spectrometry and tandem mass spectrometry. Comparison between the molecular structures of those lipids that showed major changes provides new insight into the structural rationale for the flexible lipid requirements of CcO from R. sphaeroides and reveals a more comprehensive interchangeability network between different phospholipids and non-phospholipids.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | | | | | |
Collapse
|
23
|
Zhang X, Tamot B, Hiser C, Reid GE, Benning C, Ferguson-Miller S. Cardiolipin deficiency in Rhodobacter sphaeroides alters the lipid profile of membranes and of crystallized cytochrome oxidase, but structure and function are maintained. Biochemistry 2011; 50:3879-90. [PMID: 21476578 DOI: 10.1021/bi101702c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many recent studies highlight the importance of lipids in membrane proteins, including in the formation of well-ordered crystals. To examine the effect of changes in one lipid, cardiolipin, on the lipid profile and the production, function, and crystallization of an intrinsic membrane protein, cytochrome c oxidase, we mutated the cardiolipin synthase (cls) gene of Rhodobacter sphaeroides, causing a >90% reduction in cardiolipin content in vivo and selective changes in the abundances of other lipids. Under these conditions, a fully native cytochrome c oxidase (CcO) was produced, as indicated by its activity, spectral properties, and crystal characteristics. Analysis by MALDI tandem mass spectrometry (MS/MS) revealed that the cardiolipin level in CcO crystals, as in the membranes, was greatly decreased. Lipid species present in the crystals were directly analyzed for the first time using MS/MS, documenting their identities and fatty acid chain composition. The fatty acid content of cardiolipin in R. sphaeroides CcO (predominantly 18:1) differs from that in mammalian CcO (18:2). In contrast to the cardiolipin dependence of mammalian CcO activity, major depletion of cardiolipin in R. sphaeroides did not impact any aspect of CcO structure or behavior, suggesting a greater tolerance of interchange of cardiolipin with other lipids in this bacterial system.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | | | | | |
Collapse
|
24
|
Shimojima M. Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 2011; 50:234-9. [PMID: 21371504 DOI: 10.1016/j.plipres.2011.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
Abstract
Higher-plant chloroplast membranes are composed primarily of four characteristic lipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol. Among them, SQDG is the only sulfur-containing anionic glycerolipid and is the least prevalent component of photosynthetic membrane lipids. SQDG biosynthesis is mostly mediated by UDP-sulfoquinovose synthase (SQD1) and SQDG synthase (SQD2). Recently, another essential gene for SQDG synthesis, UGP3, was identified using transcriptome coexpression analysis and reverse genetics. UGP3 is a novel plastid UDP-glucose pyrophosphorylase that supplies UDP-glucose to SQD1 in plastids. In Arabidopsis, SQDG is dispensable under normal growth conditions but important in certain environments, particularly phosphate-depleted conditions. The function of SQDG under phosphate-limited growth conditions is highly correlated with the regulation of other plant glycerolipid biosyntheses. This review summarizes recent research defining the mechanism for SQDG biosynthesis and its biological function in higher plants, particularly under phosphate-starved conditions.
Collapse
Affiliation(s)
- Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
25
|
Vences-Guzmán MÁ, Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara IM, Martínez-Romero E, Geiger O, Sohlenkamp C. Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 2011; 79:1496-514. [PMID: 21205018 DOI: 10.1111/j.1365-2958.2011.07535.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ornithine lipids (OLs) are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increased stress tolerance. Rhizobium tropici, a nodule-forming α-proteobacterium known for its stress tolerance, forms four different OLs. Studies of the function of these OLs have been hampered due to lack of knowledge about their biosynthesis. Here we describe that OL biosynthesis increases under acid stress and that OLs are enriched in the outer membrane. Using a functional expression screen, the OL hydroxylase OlsE was identified, which in combination with the OL hydroxylase OlsC is responsible for the synthesis of modified OLs in R. tropici. Unlike described OL hydroxylations, the OlsE-catalysed hydroxylation occurs within the ornithine moiety. Mutants deficient in OlsE or OlsC and double mutants deficient in OlsC/OlsE were characterized. R. tropici mutants deficient in OlsC-mediated OL hydroxylation are more susceptible to acid and temperature stress. All three mutants lacking OL hydroxylases are affected during symbiosis.
Collapse
Affiliation(s)
- Miguel Á Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zbierzak AM, Dörmann P, Hölzl G. Analysis of lipid content and quality in Arabidopsis plastids. Methods Mol Biol 2011; 775:411-426. [PMID: 21863456 DOI: 10.1007/978-1-61779-237-3_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplasts of plants contain an intricate membrane system, the thylakoids, which harbor the complexes of the photosynthetic machinery. Chloroplasts are confined by two membranes, the inner and outer envelope. The major glycerolipids of chloroplasts are the glycolipids monogalactosyl diacylglycerol (MGD), digalactosyl diacylglycerol (DGD), and sulfoquinovosyl diacylglycerol (SQD). Furthermore, two phospholipids, phosphatidyl glycerol (PG) and phosphatidyl choline (PC), are found in chloroplast membranes. The photosystems and light-harvesting complexes in the thylakoids are rich in photosynthetic pigments (chlorophyll, carotenoids, and xanthophylls) and contain a unique set of prenylquinol lipids (tocochromanol/vitamin E, plastoquinol, and phylloquinol/vitamin K1). In this chapter, methods for the isolation and quantification of chloroplast and leaf glycerolipids and prenylquinol lipids are presented. Glycerolipids are separated by thin-layer chromatography prior to conversion of the fatty acids into methyl esters. Fatty acid methyl esters are subsequently quantified by gas chromatography. Prenylquinol lipids are separated by HPLC and quantified by UV absorption (plastoquinol) or fluorescence (tocochromanol, phylloquinol).
Collapse
Affiliation(s)
- Anna Maria Zbierzak
- Institute of Molecular Physiology and Molecular Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
27
|
Marilena Lăzăroaie M. Multiple responses of gram-positive and gram-negative bacteria to mixture of hydrocarbons. Braz J Microbiol 2010; 41:649-67. [PMID: 24031541 PMCID: PMC3768651 DOI: 10.1590/s1517-83822010000300016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 03/29/2010] [Indexed: 11/22/2022] Open
Abstract
Most of our knowledge about pollutants and the way they are biodegraded in the environment has previously been shaped by laboratory studies using hydrocarbon-degrading bacterial strains isolated from polluted sites. In present study Gram-positive (Mycobacterium sp. IBBPo1, Oerskovia sp. IBBPo2, Corynebacterium sp. IBBPo3) and Gram-negative (Chryseomonas sp. IBBPo7, Pseudomonas sp. IBBPo10, Burkholderia sp. IBBPo12) bacteria, isolated from oily sludge, were found to be able to tolerate pure and mixture of saturated hydrocarbons, as well as pure and mixture of monoaromatic and polyaromatic hydrocarbons. Isolated Gram-negative bacteria were more tolerant to mixture of saturated (n-hexane, n-hexadecane, cyclohexane), monoaromatic (benzene, toluene, ethylbenzene) and polyaromatic (naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons than Gram-positive bacteria. There were observed cellular and molecular modifications induced by mixture of saturated, monoaromatic and polyaromatic hydrocarbons to Gram-positive and Gram-negative bacteria. These modifications differ from one strain to another and even for the same bacterial strain, according to the nature of hydrophobic substrate.
Collapse
Affiliation(s)
- Mihaela Marilena Lăzăroaie
- Center of Microbiology, Institute of Biology , Romanian Academy, 296 Spl. Independentei St, 060031, PO 56-53, Bucharest , Romania
| |
Collapse
|
28
|
Johnston NC, Aygun-Sunar S, Guan Z, Ribeiro AA, Daldal F, Raetz CRH, Goldfine H. A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. J Lipid Res 2010; 51:1953-61. [PMID: 20173213 DOI: 10.1194/jlr.m004788] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polar lipids of the anaerobic bacterium Clostridium tetani, the causative agent of tetanus, have been examined by two-dimensional thin layer chromatography, ESI mass spectrometry, and NMR spectroscopy. Plasmalogen and di- and tetra-acylated species of phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and N-acetylglucosaminyl diradylglycerol were the major lipids present in most strains examined except for strain ATCC 10779, the parent of strain E88, the first C. tetani strain to have its genome sequenced. This strain contained the same di- and tetra-acylated species but did not contain plasmalogens. All strains contained a novel derivative of N-acetylglucosaminyl diradylglycerol in which a phosphoethanolamine unit is attached to the 6'-position of the sugar, as judged by selective 31P-decoupled, 1H-detected NMR difference spectroscopy. The N-acetylglucosamine (GlcNAc) residue is presumably linked to the 3-positon of the diradylglycerol moiety, and it has the beta-anomeric configuration. Very little plasmalogen component was detected by mass spectrometry in the precursors phosphatidic acid and phosphatidylserine, consistent with the idea that plasmalogens are formed from diacylated phospholipids at a late stage of phospholipid assembly in anaerobic clostridia.
Collapse
Affiliation(s)
- Norah C Johnston
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Chapter 12 The Anionic Chloroplast Membrane Lipids: Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
|
31
|
Membrane Lipid Biosynthesis in Purple Bacteria. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
32
|
|
33
|
Sanders C, Turkarslan S, Lee DW, Onder O, Kranz RG, Daldal F. The cytochrome c maturation components CcmF, CcmH, and CcmI form a membrane-integral multisubunit heme ligation complex. J Biol Chem 2008; 283:29715-22. [PMID: 18753134 PMCID: PMC2573057 DOI: 10.1074/jbc.m805413200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/27/2008] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation (Ccm) is a post-translational and post-export protein modification process that involves ten (CcmABCDEFGHI and CcdA or DsbD) components in most Gram-negative bacteria. The absence of any of these components abolishes the ability of cells to form cytochrome c, leading in the case of Rhodobacter capsulatus to the loss of photosynthetic proficiency and respiratory cytochrome oxidase activity. Based on earlier molecular genetic studies, we inferred that R. capsulatus CcmF, CcmH, and CcmI interact with each other to perform heme-apocytochrome c ligation. Here, using functional epitope-tagged derivatives of these components coproduced in appropriate mutant strains, we determined protein-protein interactions between them in detergent-dispersed membranes. Reciprocal affinity purification as well as tandem size exclusion and affinity chromatography analyses provided the first biochemical evidence that CcmF, CcmH, and CcmI associate stably with each other, indicating that these Ccm components form a membrane-integral complex. Under the conditions used, the CcmFHI complex does not contain CcmG, suggesting that the latter thio-reduction component is not always associated with the heme ligation components. The findings are discussed with respect to defining the obligatory components of a minimalistic heme-apocytochrome c ligation complex in R. capsulatus.
Collapse
Affiliation(s)
- Carsten Sanders
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Turkarslan S, Sanders C, Ekici S, Daldal F. Compensatory thio-redox interactions between DsbA, CcdA and CcmG unveil the apocytochrome c holdase role of CcmG during cytochrome c maturation. Mol Microbiol 2008; 70:652-66. [PMID: 18786143 DOI: 10.1111/j.1365-2958.2008.06441.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During cytochrome c maturation (Ccm), the DsbA-dependent thio-oxidative protein-folding pathway is thought to introduce a disulphide bond into the haem-binding motif of apocytochromes c. This disulphide bond is believed to be reduced through a thio-reductive pathway involving the Ccm components CcdA (DsbD), CcmG and CcmH. Here, we show in Rhodobacter capsulatus that in the absence of DsbA cytochrome c levels were decreased and CcdA or CcmG or the putative glutathione transporter CydDC was not needed for Ccm. This decrease was not due to overproduction of the periplasmic protease DegP as a secondary effect of DsbA absence. In contrast, CcmH was absolutely necessary regardless of DsbA, indicating that compensatory thio-redox interactions excluded it. Remarkably, the double (DsbA-CcmG) and triple (DsbA-CcmG-CcdA) mutants produced cytochromes c at lower levels than the DsbA-null mutants, unless they contained a CcmG derivative (CcmG*) lacking its thio-reductive activity. Purified CcmG* can bind apocytochrome c in vitro, revealing for the first time a thiol-independent, direct interaction between apocytochrome c and CcmG. Furthermore, elimination of the thio-redox components does not abolish cytochrome c production, restricting the number of Ccm components essential for haem-apocyt c ligation per se during Ccm.
Collapse
Affiliation(s)
- Serdar Turkarslan
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
35
|
Sato N, Tsuzuki M, Matsuda Y, Ehara T, Osafune T, Kawaguchi A. Isolation and Characterization of Mutants Affected in Lipid Metabolism of Chlamydomonas Reinhardtii. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0987g.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Mishima E, Hosokawa A, Imaizumi-Anraku H, Saito K, Kawaguchi M, Saeki K. Requirement for Mesorhizobium loti ornithine transcarbamoylase for successful symbiosis with Lotus japonicus as revealed by an unexpected long-range genome deletion. PLANT & CELL PHYSIOLOGY 2008; 49:301-313. [PMID: 18184692 DOI: 10.1093/pcp/pcn004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With the original aim of surveying the role of exopolysaccharide (EPS) in Lotus-Mesorhizobium symbiosis, we carried out Tn5 mutagenesis of Mesorhizobium loti and obtained 32 mutants with defects in EPS biosynthesis. One of the mutants, HIA22, formed pseudonodules and failed to fix nitrogen with Lotus japonicus. However, complementation analysis unexpectedly revealed that the potential gene with the locus tag, mll2073, interrupted by Tn5 was responsible for neither normal EPS synthesis nor symbiosis. Further analysis uncovered that HIA22 had a genome deletion of approximately 20 kbp, resulting in the loss of two separate genes responsible for EPS biosynthesis and symbiosis. One gene with the locus tag, mll5669, was needed to synthesize normal EPS that fluoresced on medium containing Calcofluor and encoded a homolog of O-antigen acetyl transferase in Salmonella typhimurium. A specific mutant of mll5669, EMB-B58, successfully fixed nitrogen when infected onto L. japonicus. Another gene, mlr5647, was needed to establish fully functional nodules and encoded ornithine carbamoyl transferase [ArgF (EC 2.1.3.3)], which participates in arginine biosynthesis. A specific mutant of mlr5647, EMB-Y2, showed arginine auxotrophy and formed infection threads, but the nodules formed by this strain had few infected cells filled with bacteroids. These mutant phenotypes were complemented by supplementation of arginine or citrulline to bacterial or plant medium. EMB-Y2 represented a novel class of rhizobial arginine auxotrophs with symbiotic deficiency, and its phenotypes indicated that sufficient supply of citrulline or its derivative is essential for successful infection or for a stage in the infection process in Lotus-Mesorhizobium symbiosis.
Collapse
Affiliation(s)
- Elina Mishima
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Okazaki S, Hattori Y, Saeki K. The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus. J Bacteriol 2007; 189:8347-52. [PMID: 17827288 PMCID: PMC2168702 DOI: 10.1128/jb.00788-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purB and purH mutants of Mesorhizobium loti exhibited purine auxotrophy and nodulation deficiency on Lotus japonicus. In the presence of adenine, only the purH mutant induced nodule formation and the purB mutant produced few infection threads, suggesting that 5-aminoimidazole-4-carboxamide ribonucleotide biosynthesis catalyzed by PurB is required for the establishment of symbiosis.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630- 8506, Japan
| | | | | |
Collapse
|
39
|
Benning C. Questions remaining in sulfolipid biosynthesis: a historical perspective. PHOTOSYNTHESIS RESEARCH 2007; 92:199-203. [PMID: 17334828 DOI: 10.1007/s11120-007-9144-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 01/25/2007] [Indexed: 05/03/2023]
Abstract
The plant sulfolipid sulfoquinovosyldiacylglycerol was discovered by A.A. Benson in the late 1950s. The increasing availability of radioisotope-containing biological substrates such as (35)S-sulfate provided the means to discover novel biological compounds and to sketch out their biosynthetic pathways. During this time the structure of sulfolipid with its 6-deoxy-6-sulfo-alpha-D: -glucose (sulfoquinovose) headgroup was determined. Immediately, the origin of this unusual biological sulfonic acid mystified the scientific community and several proposals for its biosynthesis were developed and tested. Strong supportive evidence for the nucleotide pathway of sulfolipid biosynthesis became available with the discovery of the bacterial and plant genes encoding the enzymes of sulfolipid biosynthesis during the 1990s. This latter work was based on the foundations laid by A.A. Benson and confirmed one initial hypothesis on sulfolipid biosynthesis. An abbreviated summary of the turning points in defining the mechanism for sulfolipid biosynthesis and remaining issues in sulfolipid biochemistry are provided.
Collapse
Affiliation(s)
- Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
40
|
Sanders C, Boulay C, Daldal F. Membrane-spanning and periplasmic segments of CcmI have distinct functions during cytochrome c Biogenesis in Rhodobacter capsulatus. J Bacteriol 2006; 189:789-800. [PMID: 17122341 PMCID: PMC1797287 DOI: 10.1128/jb.01441-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, like Rhodobacter capsulatus, about 10 membrane-bound components (CcmABCDEFGHI and CcdA) are required for periplasmic maturation of c-type cytochromes. These components perform the chaperoning and thio-oxidoreduction of the apoproteins as well as the delivery and ligation of the heme cofactors. In the absence of any of these components, including CcmI, proposed to act as an apocytochrome c chaperone, R. capsulatus does not have the ability to produce holocytochromes c or consequently to exhibit photosynthetic growth and cytochrome cbb3 oxidase activity. Previously, we have demonstrated that null mutants of CcmI partially overcome cytochrome c deficiency phenotypes upon overproduction of the CcmF-R. capsulatus CcmH (CcmF-CcmH(Rc)) couple in a growth medium-dependent manner and fully bypass these defects by additional overproduction of CcmG. Here, we show that overproduction of the CcmF-CcmH(Rc) couple and overproduction of the N-terminal membrane-spanning segment of CcmI (CcmI-1) have similar suppression effects of cytochrome c maturation defects in CcmI-null mutants. Likewise, additional overproduction of CcmG, the C-terminal periplasmic segment of CcmI (CcmI-2), or even of apocytochrome c2 also provides complementation abilities similar to those of these mutants. These results indicate that the two segments of CcmI have different functions and support our earlier findings that two independent steps are required for full recovery of the loss of CcmI function. We therefore propose that CcmI-1 is part of the CcmF-CcmH(Rc)-dependent heme ligation, while CcmI-2 is involved in the CcdA- and CcmG-dependent apoprotein thioreduction steps, which intersect at the level of CcmI during cytochrome c biogenesis.
Collapse
Affiliation(s)
- Carsten Sanders
- Department of Biology, Plant Science Institute, University of Pennsylvania, 103B Lynch Building, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
41
|
Aygun-Sunar S, Mandaci S, Koch HG, Murray IVJ, Goldfine H, Daldal F. Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Mol Microbiol 2006; 61:418-35. [PMID: 16856942 DOI: 10.1111/j.1365-2958.2006.05253.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.
Collapse
Affiliation(s)
- Semra Aygun-Sunar
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Riekhof WR, Andre C, Benning C. Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 2005; 441:96-105. [PMID: 16095555 DOI: 10.1016/j.abb.2005.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/06/2005] [Indexed: 11/30/2022]
Abstract
Betaine lipids are non-phosphorous glycerolipid analogs of phosphatidylcholine. The biosynthesis of the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine has previously been studied in phosphate-starved cells of the purple bacterium Rhodobacter sphaeroides, and a genetic approach identified two proteins that are necessary for this process. Here, we show that all reactions of DGTS biosynthesis in R. sphaeroides are attributable to RsBtaA and RsBtaB, as co-expression of the respective genes leads to DGTS formation in Escherichia coli, which normally lacks this lipid. The recombinant RsBtaA protein was membrane-associated and showed S-adenosylmethionine/diacylglycerol 3-amino-3-carboxypropyl transferase activity. RsBtaA directed the transfer of label from 1-[(14)C]S-adenosylmethionine or [(14)C]diacylglycerol at equal rates into the betaine lipid precursor diacylglycerylhomoserine identifying both metabolites as the substrates of the reaction. Comparative analysis of RsBtaA and its bacterial orthologs revealed a motif with similarity to the AdoMet binding pocket of methyltransferases, and allowed the prediction of residues involved in substrate binding.
Collapse
Affiliation(s)
- Wayne R Riekhof
- Department of Biochemistry and Molecular Biology , Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
43
|
Yano T, Sanders C, Catalano J, Daldal F. sacB-5-Fluoroorotic acid-pyrE-based bidirectional selection for integration of unmarked alleles into the chromosome of Rhodobacter capsulatus. Appl Environ Microbiol 2005; 71:3014-24. [PMID: 15932997 PMCID: PMC1151845 DOI: 10.1128/aem.71.6.3014-3024.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative, purple nonsulfur, facultative photosynthetic bacterium Rhodobacter capsulatus is a widely used model organism and has well-developed molecular genetics. In particular, interposon mutagenesis using selectable gene cartridges is frequently employed for construction of a variety of chromosomal knockout mutants. However, as the gene cartridges are often derived from antibiotic resistance-conferring genes, their numbers are limited, which restricts the construction of multiple knockout mutants. In this report, sacB-5-fluoroorotic acid (5FOA)--pyrE-based bidirectional selection that facilitates construction of unmarked chromosomal knockout mutations is described. The R. capsulatus pyrE gene encoding orotate phosphoribosyl transferase, a key enzyme of the de novo pyrimidine nucleotide biosynthesis pathway, was used as an interposon in a genetic background that is auxotrophic for uracil (Ura-) and hence resistant to 5FOA (5FOA(r)). Although Ura+ selection readily yielded chromosomal allele replacements via homologous recombination, selection for 5FOA(r) to replace pyrE with unmarked alleles was inefficient. To improve the latter step, 5FOA(r) selection was combined with sucrose tolerance selection using a suicide plasmid carrying the Bacillus subtilis sacB gene encoding levansucrase that induces lethality upon exposure to 5% (wt/vol) sucrose in the growth medium. Sucrose-tolerant, 5FOA(r) colonies that were obtained carried chromosomal unmarked mutant alleles of the target gene via double crossovers between the resident pyrE-marked and incoming unmarked alleles. The effectiveness of this double selection was proven by seeking insertion and deletion alleles of helC involved in R. capsulatus cytochrome c biogenesis, which illustrated the usefulness of this system as a genetic means for facile construction of R. capsulatus unmarked chromosomal mutants.
Collapse
Affiliation(s)
- Takahiro Yano
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
44
|
Sanders C, Deshmukh M, Astor D, Kranz RG, Daldal F. Overproduction of CcmG and CcmFH(Rc) fully suppresses the c-type cytochrome biogenesis defect of Rhodobacter capsulatus CcmI-null mutants. J Bacteriol 2005; 187:4245-56. [PMID: 15937187 PMCID: PMC1151712 DOI: 10.1128/jb.187.12.4245-4256.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c-type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus, CcmI-null mutants are unable to produce c-type Cyts and thus sustain photosynthetic (Ps) growth. Previously, we have shown that overproduction of the putative heme ligation components CcmF and CcmH(Rc) (also called Ccl1 and Ccl2) can partially bypass the function of CcmI on minimal, but not on enriched, media. Here, we demonstrate that either additional overproduction of CcmG (also called HelX) or hyperproduction of CcmF-CcmH(Rc) is needed to completely overcome the role of CcmI during the biogenesis of c-type Cyts on both minimal and enriched media. These findings indicate that, in the absence of CcmI, interactions between the heme ligation and thioreduction pathways become restricted for sufficient Cyt c production. We therefore suggest that CcmI, along with its apo-Cyt chaperoning function, is also critical for the efficacy of holo-Cyt c formation, possibly via its close interactions with other components performing the final heme ligation steps during Cyt c biogenesis.
Collapse
Affiliation(s)
- Carsten Sanders
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Kern J, Loll B, Lüneberg C, DiFiore D, Biesiadka J, Irrgang KD, Zouni A. Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:147-57. [PMID: 15620375 DOI: 10.1016/j.bbabio.2004.10.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/08/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022]
Abstract
The thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this cyanobacterium was developed using fast protein liquid chromatography (FPLC). The obtained PSII core complexes (PSIIcc) were analysed for their pigment stoichiometry, photochemical and oxygen evolution activities, as well as lipid and detergent composition. Thirty-six chlorophyll a (Chla), 2 pheophytin a (Pheoa), 9+/- 1 beta-carotene (Car), 2.9+/-0.8 plastoquinone 9 (PQ9) and 3.8+/-0.5 Mn were found per active centre. For the monomeric and dimeric PSIIcc, 18 and 20 lipid as well as 145 and 220 detergent molecules were found in the detergent shell, respectively. The monomeric and dimeric complexes showed high oxygen evolution activity with 1/4 O(2) released per 37-38 Chla and flash in the best cases. Crystals were obtained from dimeric PSIIcc by a micro-batch method. They diffract synchrotron X-rays to a maximum resolution of 2.9-A, resulting in complete data sets of 3.2 A resolution.
Collapse
Affiliation(s)
- J Kern
- Max-Volmer-Laboratory for Biophysical Chemistry and Biochemistry, Technical University Berlin, 10623 Berlin, Strasse des 17. Juni 135, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry 215, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
47
|
Abstract
Flax (Linum usitatissimum L.) is an annual plant species widely cultivated in temperate climates for bast fibres and linseed oil. Apart from traditional textile use, the fibres are fast becoming an integral part of new composite materials utilized in automobile and constructive industry. Especially attractive for environmental safety demands are biodegradable and renewable biocomposities based on polyhydroxybutyrate (PHB) polymer as a matrix and reinforced with the flax fibres. Manufacturing of PHB by bacteria fermentation is however substantially more expansive as compared to technologies producing conventional plastics. We report for the first time generation of transgenic plants which produce both components of flax/PHB composites, i.e. the fibres and the thermoplastic matrix in the same plant organ of a crop. The flax (cv. Nike) plants were transformed using constructs bearing either single cDNA, encoding the beta-ketothiolase enzyme (C plants), or all three of the genes necessary for poly-beta-hydroxybutyrate (PHB) synthesis (M plants). Both constructs contained a plastidial targeting sequence. The amount of PHB produced by the transgenic plants was up to over 70-fold higher than in wild-type plants, when analysed using the gas chromatography/mass spectrometry (GC-MS method). The PHB accumulation in plastids caused change both in their shape and size. The use of a stem-specific promoter for transgene expression protected the transgenic plant from growth retardation and also provided higher PHB synthesis than in the case of constructs governed by the 35S CaMV constitutive promoter. None toxic effects that could lead to stunted growth or the loss of fertility were observed, when 14-3-3 promoter was used as the stem-specific. Significant modifications in stem mechanical properties were accompanied to the PHB accumulation in growing cell of fibres in the transgenic plants. The Young's modulus E, the average measure of stem tissues resistance to tensile loads increased up to twice in M plants as compared to a single gene transformed ones. However, a wide range of E values, from 24.1 to 54.4 MPa, was observed in dependence of tested strain. Potential commercial significance of the genetic manipulation approach enabling synthesis of thermoplastic in crops cultivated for fibres is discussed.
Collapse
Affiliation(s)
- Magdalena Wróbel
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego Street 63-77, 51-148 Wroclaw, Poland
| | | | | |
Collapse
|
48
|
Riekhof WR, Ruckle ME, Lydic TA, Sears BB, Benning C. The sulfolipids 2'-O-acyl-sulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. PLANT PHYSIOLOGY 2003; 133:864-74. [PMID: 14500794 PMCID: PMC219059 DOI: 10.1104/pp.103.029249] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 07/08/2003] [Accepted: 07/11/2003] [Indexed: 05/17/2023]
Abstract
The biosynthesis of thylakoid lipids in eukaryotic photosynthetic organisms often involves enzymes in the endoplasmic reticulum (ER) and the chloroplast envelopes. Two pathways of thylakoid lipid biosynthesis, the ER and the plastid pathways, are present in parallel in many species, including Arabidopsis, but in other plants, e.g. grasses, only the ER pathway is active. The unicellular alga Chlamydomonas reinhardtii diverges from plants like Arabidopsis in a different way because its membranes do not contain phosphatidylcholine, and most thylakoid lipids are derived from the plastid pathway. Here, we describe an acylated derivative of sulfolipid, 2'-O-acyl-sulfoquinovosyldiacylglycerol (ASQD), which is present in C. reinhardtii. Although the fatty acids of sulfoquinovosyldiacylglycerol (SQDG) were mostly saturated, ASQD molecular species carried predominantly unsaturated fatty acids. Moreover, directly attached to the head group of ASQD was preferentially an 18-carbon fatty acid with four double bonds. High-throughput robotic screening led to the isolation of a plasmid disruption mutant of C. reinhardtii, designated Deltasqd1, which lacks ASQD as well as SQDG. In this mutant, the SQD1 ortholog was completely deleted and replaced by plasmid sequences. It is proposed that ASQD arises from the sugar nucleotide pathway of sulfolipid biosynthesis by acylation of the 2'-hydroxyl of the sulfoquinovosyl head group. At the physiological level, the mutant showed increased sensitivity to a diuron herbicide and reduced growth under phosphate limitation, suggesting a role for SQDG and/or ASQD in photosynthesis as conducted by C. reinhardtii, particularly under phosphate-limited conditions.
Collapse
Affiliation(s)
- Wayne R Riekhof
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
49
|
WASAKI J, YONETANI R, KURODA S, SHINANO T, YAZAKI J, FUJII F, SHIMBO K, YAMAMOTO K, SAKATA K, SASAKI T, KISHIMOTO N, KIKUCHI S, YAMAGISHI M, OSAKI M. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. PLANT, CELL & ENVIRONMENT 2003; 26:1515-1523. [PMID: 0 DOI: 10.1046/j.1365-3040.2003.01074.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
50
|
Deshmukh M, Turkarslan S, Astor D, Valkova-Valchanova M, Daldal F. The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants. J Bacteriol 2003; 185:3361-72. [PMID: 12754234 PMCID: PMC155384 DOI: 10.1128/jb.185.11.3361-3372.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic membrane protein CcdA and its homologues in other species, such as DsbD of Escherichia coli, are thought to supply the reducing equivalents required for the biogenesis of c-type cytochromes that occurs in the periplasm of gram-negative bacteria. CcdA-null mutants of the facultative phototroph Rhodobacter capsulatus are unable to grow under photosynthetic conditions (Ps(-)) and do not produce any active cytochrome c oxidase (Nadi(-)) due to a pleiotropic cytochrome c deficiency. However, under photosynthetic or respiratory growth conditions, these mutants revert frequently to yield Ps(+) Nadi(+) colonies that produce c-type cytochromes despite the absence of CcdA. Complementation of a CcdA-null mutant for the Ps(+) growth phenotype was attempted by using a genomic library constructed with chromosomal DNA from a revertant. No complementation was observed, but plasmids that rescued a CcdA-null mutant for photosynthetic growth by homologous recombination were recovered. Analysis of one such plasmid revealed that the rescue ability was mediated by open reading frame 3149, encoding the dithiol:disulfide oxidoreductase DsbA. DNA sequence data revealed that the dsbA allele on the rescuing plasmid contained a frameshift mutation expected to produce a truncated, nonfunctional DsbA. Indeed, a dsbA ccdA double mutant was shown to be Ps(+) Nadi(+), establishing that in R. capsulatus the inactivation of dsbA suppresses the c-type cytochrome deficiency due to the absence of ccdA. Next, the ability of the wild-type dsbA allele to suppress the Ps(+) growth phenotype of the dsbA ccdA double mutant was exploited to isolate dsbA-independent ccdA revertants. Sequence analysis revealed that these revertants carried mutations in dsbB and that their Ps(+) phenotypes could be suppressed by the wild-type allele of dsbB. As with dsbA, a dsbB ccdA double mutant was also Ps(+) Nadi(+) and produced c-type cytochromes. Therefore, the absence of either DsbA or DsbB restores c-type cytochrome biogenesis in the absence of CcdA. Finally, it was also found that the DsbA-null and DsbB-null single mutants of R. capsulatus are Ps(+) and produce c-type cytochromes, unlike their E. coli counterparts, but are impaired for growth under respiratory conditions. This finding demonstrates that in R. capsulatus the dithiol:disulfide oxidoreductases DsbA and DsbB are not essential for cytochrome c biogenesis even though they are important for respiration under certain conditions.
Collapse
Affiliation(s)
- Meenal Deshmukh
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|