1
|
Wang Y, Fu H, Shi XJ, Zhao GP, Lyu LD. Genome-wide screen reveals cellular functions that counteract rifampicin lethality in Escherichia coli. Microbiol Spectr 2024; 12:e0289523. [PMID: 38054714 PMCID: PMC10782999 DOI: 10.1128/spectrum.02895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rifamycins are a group of antibiotics with a wide antibacterial spectrum. Although the binding target of rifamycin has been well characterized, the mechanisms underlying the discrepant killing efficacy between gram-negative and gram-positive bacteria remain poorly understood. Using a high-throughput screen combined with targeted gene knockouts in the gram-negative model organism Escherichia coli, we established that rifampicin efficacy is strongly dependent on several cellular pathways, including iron acquisition, DNA repair, aerobic respiration, and carbon metabolism. In addition, we provide evidence that these pathways modulate rifampicin efficacy in a manner distinct from redox-related killing. Our findings provide insights into the mechanism of rifamycin efficacy and may aid in the development of new antimicrobial adjuvants.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jie Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
2
|
Goel N, Srivastav S, Patel A, Shirsath A, Panda TR, Patra M, Feist AM, Anand A. TCA cycle tailoring facilitates optimal growth of proton-pumping NADH dehydrogenase-dependent Escherichia coli. Microbiol Spectr 2023; 11:e0222523. [PMID: 37855642 PMCID: PMC10715208 DOI: 10.1128/spectrum.02225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Energy generation pathways are a potential avenue for the development of novel antibiotics. However, bacteria possess remarkable resilience due to the compensatory pathways, which presents a challenge in this direction. NADH, the primary reducing equivalent, can transfer electrons to two distinct types of NADH dehydrogenases. Type I NADH dehydrogenase is an enzyme complex comprising multiple subunits and can generate proton motive force (PMF). Type II NADH dehydrogenase does not pump protons but plays a crucial role in maintaining the turnover of NAD+. To study the adaptive rewiring of energy metabolism, we evolved an Escherichia coli mutant lacking type II NADH dehydrogenase. We discovered that by modifying the flux through the tricarboxylic acid (TCA) cycle, E. coli could mitigate the growth impairment observed in the absence of type II NADH dehydrogenase. This research provides valuable insights into the intricate mechanisms employed by bacteria to compensate for disruptions in energy metabolism.
Collapse
Affiliation(s)
- Nikita Goel
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Stuti Srivastav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Akshay Shirsath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Tushar Ranjan Panda
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Malay Patra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Yan J, Yang B, Xue X, Li J, Li Y, Li A, Ding P, Cao B. Transcriptome Analysis Reveals the Effect of PdhR in Plesiomonas shigelloides. Int J Mol Sci 2023; 24:14473. [PMID: 37833920 PMCID: PMC10572922 DOI: 10.3390/ijms241914473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. At present, the function of PdhR in Plesiomonas shigelloides is still poorly understood. In this study, RNA sequencing (RNA-Seq) of the wild-type strain and the ΔpdhR mutant strains was performed for comparison to identify the PdhR-controlled pathways, revealing that PdhR regulates ~7.38% of the P. shigelloides transcriptome. We found that the deletion of pdhR resulted in the downregulation of practically all polar and lateral flagella genes in P. shigelloides; meanwhile, motility assay and transmission electron microscopy (TEM) confirmed that the ΔpdhR mutant was non-motile and lacked flagella. Moreover, the results of RNA-seq and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that PdhR positively regulated the expression of the T3SS cluster, and the ΔpdhR mutant significantly reduced the ability of P. shigelloides to infect Caco-2 cells compared with the WT. Consistent with previous research, pyruvate-sensing PdhR directly binds to its promoter and inhibits pdhR-aceEF-lpd operon expression. In addition, we identified two additional downstream genes, metR and nuoA, that are directly negatively regulated by PdhR. Furthermore, we also demonstrated that ArcA was identified as being located upstream of pdhR and lpdA and directly negatively regulating their expression. Overall, we revealed the function and regulatory pathway of PdhR, which will allow for a more in-depth investigation into P. shigelloides pathogenicity as well as the complex regulatory network.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Jinghao Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- College of Pharmacy Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| |
Collapse
|
4
|
Kägi J, Sloan W, Schimpf J, Nasiri HR, Lashley D, Friedrich T. Exploring ND-011992, a quinazoline-type inhibitor targeting quinone reductases and quinol oxidases. Sci Rep 2023; 13:12226. [PMID: 37507428 PMCID: PMC10382516 DOI: 10.1038/s41598-023-39430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.
Collapse
Affiliation(s)
- Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willough Sloan
- Department of Chemistry, William & Mary, Williamsburg, VA, USA
| | - Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hamid R Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Dana Lashley
- Department of Chemistry, William & Mary, Williamsburg, VA, USA.
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Ciemniecki JA, Newman DK. NADH dehydrogenases are the predominant phenazine reductases in the electron transport chain of Pseudomonas aeruginosa. Mol Microbiol 2023; 119:560-573. [PMID: 36840394 PMCID: PMC11129870 DOI: 10.1111/mmi.15049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Phenazines are redox-active secondary metabolites produced by diverse bacteria including the opportunistic pathogen Pseudomonas aeruginosa. Extracellular electron transfer via phenazines enhances anaerobic survival by serving as an electron sink for glucose catabolism. However, the specific phenazine reductase(s) used to support this catabolism are unknown. Because electron transport chain components have been previously implicated in phenazine reduction, we sought to determine which of them possess phenazine reductase activity. We show that phenazine-1-carboxamide (PCN) and pyocyanin (PYO) are reduced at the highest rate by cells and are localized to the cell envelope while reduced. Using a coupled genetic and biochemical approach, we show that phenazine reductase activity in membrane fractions is attributable to the three NADH dehydrogenases present in P. aeruginosa and that their order of phenazine reductase activity is Nqr > Nuo > Ndh. In mutants possessing only one functional NADH dehydrogenase, whole cell reduction rates of PCN, but not PYO, recapitulate the pattern of biochemical results, implying that PYO reduction is predominantly occurring in the cytosol. Lastly, we show that ubiquinone rapidly and non-enzymatically oxidizes reduced phenazines, demonstrating that phenazines have the capability to serve in a redox loop between the NADH and ubiquinone pools, a finding that carries bioenergetic implications.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
6
|
Liu X, Wang D, Yin Z, Sun L, Pang S, Liu J, Li W, Cui S, Huang W, Du Y, Xie Z. Insights into Evolutionary, Genomic, and Biogeographic Characterizations of Chryseobacterium nepalense Represented by a Polyvinyl Alcohol-Degrading Bacterium, AC3. Microbiol Spectr 2022; 10:e0217922. [PMID: 36000867 PMCID: PMC9602593 DOI: 10.1128/spectrum.02179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022] Open
Abstract
Chryseobacterium spp. are Gram-negative rods found ubiquitously in the environment, with certain species being reported as having unusual degrading properties. Polyvinyl alcohol (PVA) is used widely in industry but causes serious global environmental pollution. Here, we report the complete genome sequence of a novel bacterium, AC3, that efficiently degrades PVA. As the representative genome of Chryseobacterium nepalense, key genomic characteristics (e.g., mobile genetic elements, horizontal genes, genome-scale metabolic network, secondary metabolite biosynthesis gene clusters, and carbohydrate-active enzymes) were comprehensively investigated to reveal the potential genetic features of this species. Core genome phylogenetic analysis in combination with average nucleotide identity, average amino acid identity, and in silico DNA-DNA hybridization values provided an accurate taxonomic position of C. nepalense in the genus Chryseobacterium. Comparative genomic analysis of AC3 with closely related species suggested evolutionary dynamics characterized by a species-specific genetic repertoire, dramatic rearrangements, and evolutionary constraints driven by selective pressure, which facilitated the speciation and adaptative evolution of C. nepalense. Biogeographic characterization indicated that this species is ubiquitously distributed not only in soil habitats but also in a variety of other source niches. Bioinformatic analysis revealed the potential genetic basis of PVA degradation in AC3, which included six putative genes associated with the synthesis of PVA dehydrogenase, cytochrome c, oxidized PVA hydrolase, and secondary alcohol dehydrogenase. Our study reports the first complete genome of C. nepalense with PVA-degrading properties, providing comprehensive insights into the genomic characteristics of this species and increasing our understanding of the microbial degradation of PVA. IMPORTANCE Although PVA is a biodegradable polymer, the widespread use of PVA in global industrialization has resulted in serious environmental problems. To date, knowledge of effective and applicable PVA-degrading bacteria is limited, and thus, the discovery of novel PVA biodegraders is pertinent. Here, we isolated a novel bacterial strain, AC3, which efficiently degraded PVA. The complete genome of AC3 was sequenced as the first genome sequence of the species C. nepalense. Comparative genomic analysis was performed to comprehensively investigate the phylogenetic relationships, genome-scale metabolic network, key genomic characteristics associated with genomic evolution, evolutionary dynamics between AC3 and its close relatives, and biogeographic characterization of C. nepalense, particularly regarding the potential genetic basis of PVA degradation. These findings could advance our understanding of the genomic characteristics of C. nepalense and PVA bioremediation.
Collapse
Affiliation(s)
- Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Li Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Shiqi Pang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Jianing Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Wei Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, People’s Republic of China
| | - Shiyu Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Weiwei Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Yuhui Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Cen X, Liu Y, Zhu F, Liu D, Chen Z. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Metab Eng 2022; 74:168-177. [DOI: 10.1016/j.ymben.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
8
|
Li Z, Nees M, Bettenbrock K, Rinas U. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess. Microb Cell Fact 2022; 21:67. [PMID: 35449049 PMCID: PMC9027384 DOI: 10.1186/s12934-022-01787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization). Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01787-4.
Collapse
Affiliation(s)
- Zhaopeng Li
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany.
| |
Collapse
|
9
|
Mengele AK, Weixler D, Amthor S, Eikmanns BJ, Seibold GM, Rau S. Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202114842. [PMID: 34932847 PMCID: PMC9306768 DOI: 10.1002/anie.202114842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/01/2022]
Abstract
During the light-dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), respectively. We mimic these basic processes by combining molecular ruthenium polypyridine-based photocatalysts and inverted vesicles derived from Escherichia coli. Upon irradiation with visible light, the interplay of photocatalytic nicotinamide reduction and enzymatic membrane-located respiration leads to the simultaneous formation of two biologically active cofactors, NADH (nicotinamide adenine dinucleotide) and ATP, respectively. This inorganic-biologic hybrid system thus emulates the cofactor delivering function of an active chloroplast.
Collapse
Affiliation(s)
- Alexander K. Mengele
- Institute of Inorganic Chemistry IMaterials and CatalysisUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Dominik Weixler
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sebastian Amthor
- Institute of Inorganic Chemistry IMaterials and CatalysisUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Gerd M. Seibold
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Section of Synthetic BiologyDepartment of Biotechnology and BioengineeringTechnical University of DenmarkSøltoftsplads2800Kongens LyngbyDenmark
| | - Sven Rau
- Institute of Inorganic Chemistry IMaterials and CatalysisUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
10
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
11
|
Mengele AK, Weixler D, Amthor S, Eikmanns BJ, Seibold GM, Rau S. Transforming
Escherichia coli
Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander K. Mengele
- Institute of Inorganic Chemistry I Materials and Catalysis Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Dominik Weixler
- Institute of Microbiology and Biotechnology Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sebastian Amthor
- Institute of Inorganic Chemistry I Materials and Catalysis Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Gerd M. Seibold
- Institute of Microbiology and Biotechnology Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Section of Synthetic Biology Department of Biotechnology and Bioengineering Technical University of Denmark Søltoftsplads 2800 Kongens Lyngby Denmark
| | - Sven Rau
- Institute of Inorganic Chemistry I Materials and Catalysis Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
12
|
Bang J, Ahn JH, Lee JA, Hwang CH, Kim GB, Lee J, Lee SY. Synthetic Formatotrophs for One-Carbon Biorefinery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100199. [PMID: 34194943 PMCID: PMC8224422 DOI: 10.1002/advs.202100199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Indexed: 06/13/2023]
Abstract
The use of CO2 as a carbon source in biorefinery is of great interest, but the low solubility of CO2 in water and the lack of efficient CO2 assimilation pathways are challenges to overcome. Formic acid (FA), which can be easily produced from CO2 and more conveniently stored and transported than CO2, is an attractive CO2-equivalent carbon source as it can be assimilated more efficiently than CO2 by microorganisms and also provides reducing power. Although there are native formatotrophs, they grow slowly and are difficult to metabolically engineer due to the lack of genetic manipulation tools. Thus, much effort is exerted to develop efficient FA assimilation pathways and synthetic microorganisms capable of growing solely on FA (and CO2). Several innovative strategies are suggested to develop synthetic formatotrophs through rational metabolic engineering involving new enzymes and reconstructed FA assimilation pathways, and/or adaptive laboratory evolution (ALE). In this paper, recent advances in development of synthetic formatotrophs are reviewed, focusing on biological FA and CO2 utilization pathways, enzymes involved and newly developed, and metabolic engineering and ALE strategies employed. Also, future challenges in cultivating formatotrophs to higher cell densities and producing chemicals from FA and CO2 are discussed.
Collapse
Affiliation(s)
- Junho Bang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jong An Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Chang Hun Hwang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107Republic of Korea
- C1 Gas Refinery R&D CenterSogang UniversitySeoul04107Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
- BioInformatics Research Center and BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| |
Collapse
|
13
|
Abstract
Bacteria power their energy metabolism using membrane-bound respiratory enzymes that capture chemical energy and transduce it by pumping protons or Na+ ions across their cell membranes. Recent breakthroughs in molecular bioenergetics have elucidated the architecture and function of many bacterial respiratory enzymes, although key mechanistic principles remain debated. In this Review, we present an overview of the structure, function and bioenergetic principles of modular bacterial respiratory chains and discuss their differences from the eukaryotic counterparts. We also discuss bacterial supercomplexes, which provide central energy transduction systems in several bacteria, including important pathogens, and which could open up possible avenues for treatment of disease.
Collapse
|
14
|
Park H, Patel A, Hunt KA, Henson MA, Carlson RP. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 2020; 6:59. [PMID: 33268782 PMCID: PMC7710750 DOI: 10.1038/s41522-020-00170-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023] Open
Abstract
Planktonic cultures, of a rationally designed consortium, demonstrated emergent properties that exceeded the sums of monoculture properties, including a >200% increase in cellobiose catabolism, a >100% increase in glycerol catabolism, a >800% increase in ethanol production, and a >120% increase in biomass productivity. The consortium was designed to have a primary and secondary-resource specialist that used crossfeeding with a positive feedback mechanism, division of labor, and nutrient and energy transfer via necromass catabolism. The primary resource specialist was Clostridium phytofermentans (a.k.a. Lachnoclostridium phytofermentans), a cellulolytic, obligate anaerobe. The secondary-resource specialist was Escherichia coli, a versatile, facultative anaerobe, which can ferment glycerol and byproducts of cellobiose catabolism. The consortium also demonstrated emergent properties of enhanced biomass accumulation when grown as biofilms, which created high cell density communities with gradients of species along the vertical axis. Consortium biofilms were robust to oxic perturbations with E. coli consuming O2, creating an anoxic environment for C. phytofermentans. Anoxic/oxic cycling further enhanced biomass productivity of the biofilm consortium, increasing biomass accumulation ~250% over the sum of the monoculture biofilms. Consortium emergent properties were credited to several synergistic mechanisms. E. coli consumed inhibitory byproducts from cellobiose catabolism, driving higher C. phytofermentans growth and higher cellulolytic enzyme production, which in turn provided more substrate for E. coli. E. coli necromass enhanced C. phytofermentans growth while C. phytofermentans necromass aided E. coli growth via the release of peptides and amino acids, respectively. In aggregate, temporal cycling of necromass constituents increased flux of cellulose-derived resources through the consortium. The study establishes a consortia-based, bioprocessing strategy built on naturally occurring interactions for improved conversion of cellulose-derived sugars into bioproducts.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Engineering and Technology, University of North Alabama, Florence, AL, USA
| | - Ayushi Patel
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Michael A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA. .,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
15
|
Lama S, Seol E, Park S. Development of Klebsiella pneumoniae J2B as microbial cell factory for the production of 1,3-propanediol from glucose. Metab Eng 2020; 62:116-125. [PMID: 32898717 DOI: 10.1016/j.ymben.2020.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
1,3-Propanediol (1,3-PDO) is an important platform chemical which has a wide application in food, cosmetics, pharmaceutical and textile industries. Its biological production using recombinant Escherichia coli with glucose as carbon source has been commercialized by DuPont, but E. coli cannot synthesize coenzyme B12 which is an essential and expensive cofactor of glycerol dehydratase, a core enzyme in 1,3-PDO biosynthesis. This study aims to develop a more economical microbial cell factory using Klebsiella pneumoniae J2B which can naturally synthesize coenzyme B12. To this end, the heterologous pathway for the production of glycerol from dihydroxyacetone-3-phosphate (DHAP), a glycolytic intermediate, was introduced to J2B and, afterwards, the strain was extensively modified for carbon and energy metabolisms including: (i) removal of carbon catabolite repression, (ii) blockage of glycerol export across the cell membrane, (iii) improvement of NADH regeneration/availability, (iv) modification of TCA cycle and electron transport chain, (v) overexpression of 1,3-PDO module enzyme, and (vi) overexpression of glucose transporter. A total of 33 genes were modified and/or overexpressed, and one resulting strain could produce 814 mM (62 g/L) of 1,3-PDO with the yield of 1.27 mol/mol glucose in fed-batch bioreactor culture with a limited supplementation of coenzyme B12 at 4 μM, which is ~10 fold less than that employed by DuPont. This study highlights the importance of balanced use of glucose in the production of carbon backbone of the target chemical (1,3-PDO) and regeneration of reducing power (NADH). This study also suggests that K. pneumoniae J2B is a promising host for the production of 1,3-PDO from glucose.
Collapse
Affiliation(s)
- Suman Lama
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, South Korea; School of Energy and Chemical Engineering, UNIST, Ulsan, South Korea
| | - Eunhee Seol
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, South Korea
| | - Sunghoon Park
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, South Korea; School of Energy and Chemical Engineering, UNIST, Ulsan, South Korea.
| |
Collapse
|
16
|
McKinlay JB, Cook GM, Hards K. Microbial energy management-A product of three broad tradeoffs. Adv Microb Physiol 2020; 77:139-185. [PMID: 34756210 DOI: 10.1016/bs.ampbs.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wherever thermodynamics allows, microbial life has evolved to transform and harness energy. Microbial life thus abounds in the most unexpected places, enabled by profound metabolic diversity. Within this diversity, energy is transformed primarily through variations on a few core mechanisms. Energy is further managed by the physiological processes of cell growth and maintenance that use energy. Some aspects of microbial physiology are streamlined for energetic efficiency while other aspects seem suboptimal or even wasteful. We propose that the energy that a microbe harnesses and devotes to growth and maintenance is a product of three broad tradeoffs: (i) economic, trading enzyme synthesis or operational cost for functional benefit, (ii) environmental, trading optimization for a single environment for adaptability to multiple environments, and (iii) thermodynamic, trading energetic yield for forward metabolic flux. Consideration of these tradeoffs allows one to reconcile features of microbial physiology that seem to opposingly promote either energetic efficiency or waste.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN, United States.
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Kalnenieks U, Balodite E, Rutkis R. Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of Zymomonas mobilis. Front Bioeng Biotechnol 2019; 7:327. [PMID: 31781557 PMCID: PMC6861446 DOI: 10.3389/fbioe.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and relevance for improvement of stress tolerance are analyzed.
Collapse
Affiliation(s)
- Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
18
|
Perry EK, Newman DK. The transcription factors ActR and SoxR differentially affect the phenazine tolerance of Agrobacterium tumefaciens. Mol Microbiol 2019; 112:199-218. [PMID: 31001852 PMCID: PMC6615960 DOI: 10.1111/mmi.14263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Bacteria in soils encounter redox-active compounds, such as phenazines, that can generate oxidative stress, but the mechanisms by which different species tolerate these compounds are not fully understood. Here, we identify two transcription factors, ActR and SoxR, that play contrasting yet complementary roles in the tolerance of the soil bacterium Agrobacterium tumefaciens to phenazines. We show that ActR promotes phenazine tolerance by proactively driving expression of a more energy-efficient terminal oxidase at the expense of a less efficient alternative, which may affect the rate at which phenazines abstract electrons from the electron transport chain (ETC) and thereby generate reactive oxygen species. SoxR, on the other hand, responds to phenazines by inducing expression of several efflux pumps and redox-related genes, including one of three copies of superoxide dismutase and five novel members of its regulon that could not be computationally predicted. Notably, loss of ActR is far more detrimental than loss of SoxR at low concentrations of phenazines, and also increases dependence on the otherwise functionally redundant SoxR-regulated superoxide dismutase. Our results thus raise the intriguing possibility that the composition of an organism's ETC may be the driving factor in determining sensitivity or tolerance to redox-active compounds.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
19
|
Abstract
NADH and NAD+ cofactors drive hundreds of biochemical reactions, and their ratio is a key metabolic marker of cellular state. Traditional assays to measure the NADH/NAD+ ratio is laborious, prone to inaccuracies, and not suitable for high-throughput screening. We report a genetically encoded ratiometric biosensor for NADH/NAD+ based on redox-responsive bacterial transcription factor Rex that overcomes these limitations. We engineered a Rex-regulated E. coli promoter with improved biosensor characteristics by tuning the affinity of Rex and the operator site. Since NADH is oxidized during aerobic respiration, we used the biosensor-reporter to investigate the effect of removing respiratory chain enzymes on NADH/NAD+ ratio during aerobiosis. We found that the NADH/NAD+ signal increased in five of the nine mutants by over 3-fold compared to wildtype, including an NADH dehydrogenase double mutant with 6-fold elevation. We also found that among several common carbon sources, E. coli grown on acetate exhibited higher NADH/NAD+ compared to E. coli grown on glucose. As a proof-of-concept for high-throughput redox screening, we were able to enrich high NADH mutants present at 1 in 10 000 among wildtype cells by biosensor-guided pooled screen. Thus, our Rex biosensor-reporter enables facile, noninvasive, high-throughput redox measurement to understand and engineer redox metabolism.
Collapse
|
20
|
Torres A, Kasturiarachi N, DuPont M, Cooper VS, Bomberger J, Zemke A. NADH Dehydrogenases in Pseudomonas aeruginosa Growth and Virulence. Front Microbiol 2019; 10:75. [PMID: 30804898 PMCID: PMC6370648 DOI: 10.3389/fmicb.2019.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen with a complex respiratory chain. The bacterium is predicted to express three NADH:ubiquinone oxidoreductases (NDH-1, NDH-2 and Nqr). We created deletions strains of the predicted NADH:ubiquinone oxidoreductases alone, and in combination to determine the respective roles of the NADH dehydrogenases in growth and virulence. NDH-1 and NDH-2 were largely redundant under aerobic conditions. Aerobic NADH dehydrogenase enzymatic activity assay was lost with deletion of both NDH-1 and NDH-2. Under anaerobic conditions, NDH-1 was required for robust growth, and overexpression of NDH-2 rescued the NDH-1 anaerobic growth defect in rich media. There was not compensatory upregulation of NDH-2 under anaerobic conditions in NDH-1 deletion strains. To test which genes were required for in vivo virulence, we used both an insect and plant disease model. In the Galleria mellonella model, neither deletion of NDH-1 nor NDH-2 led to a change in median lethal dose, although death occurred more slowly in the NDH-1 deletion infections. In a lettuce model of virulence, loss of NDH-1 caused a decrease in recovered viable bacteria and a decrease in visual tissue damage. The compound deletion of NDH-1/NDH-2 causes a severe growth defect, both under aerobic and anaerobic conditions, and was avirulent in a lettuce model. Together, these results demonstrate the redundancy of the P. aeruginosa respiratory chain at the NADH dehydrogenase level in aerobic growth and virulence.
Collapse
Affiliation(s)
- Angela Torres
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naomi Kasturiarachi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew DuPont
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Zemke
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
22
|
Hoschek A, Schmid A, Bühler B. In Situ O2Generation for Biocatalytic Oxyfunctionalization Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201801262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Hoschek
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| | - Andreas Schmid
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| | - Bruno Bühler
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| |
Collapse
|
23
|
Zhang L, Bao W, Wei R, Fu S, Gong H. Inactivating NADH:quinone oxidoreductases affects the growth and metabolism of Klebsiella pneumoniae. Biotechnol Appl Biochem 2018; 65:857-864. [PMID: 30063071 DOI: 10.1002/bab.1684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/22/2018] [Indexed: 11/10/2022]
Abstract
NADH:quinone oxidoreductases (NQOs) act as the electron entry sites in bacterial respiration and oxidize intracellular NADH that is essential for the synthesis of numerous molecules. Klebsiella pneumoniae contains three NQOs (NDH-1, NDH-2, and NQR). The effects of inactivating these NQOs, separately and together, on cell metabolism were investigated under different culture conditions. Defective growth was evident in NDH-1-NDH-2 double and NDH-1-NDH-2-NQR triple deficient mutants, which was probably due to damage to the respiratory chain. The results also showed that K. pneumoniae can flexibly use NQOs to maintain normal growth in single NQO-deficient mutants. And more interestingly, under aerobic conditions, inactivating NDH-1 resulted in a high intracellular NADH:NAD+ ratio, which was proven to be beneficial for 2,3-butanediol production. Compared with the parent strain, 2,3-butanediol production by the NDH-1-deficient mutant was increased by 46% and 62% in glycerol- and glucose-based media, respectively. Thus, our findings provide a practical strategy for metabolic engineering of respiratory chains to promote the biosynthesis of 2,3-butanediol in K. pneumoniae.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenjing Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Renquan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Enhancement of succinate yield by manipulating NADH/NAD + ratio and ATP generation. Appl Microbiol Biotechnol 2017; 101:3153-3161. [PMID: 28108762 DOI: 10.1007/s00253-017-8127-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD+ ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD+ ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD+ ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD+ ratio and ATP level is an efficient strategy for succinate production.
Collapse
|
25
|
Xu M, Shang H. Contribution of soil respiration to the global carbon equation. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:16-28. [PMID: 27615687 DOI: 10.1016/j.jplph.2016.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 05/23/2023]
Abstract
Soil respiration (Rs) is the second largest carbon flux next to GPP between the terrestrial ecosystem (the largest organic carbon pool) and the atmosphere at a global scale. Given their critical role in the global carbon cycle, Rs measurement and modeling issues have been well reviewed in previous studies. In this paper, we briefly review advances in soil organic carbon (SOC) decomposition processes and the factors affecting Rs. We examine the spatial and temporal distribution of Rs measurements available in the literature and found that most of the measurements were conducted in North America, Europe, and East Asia, with major gaps in Africa, East Europe, North Asia, Southeast Asia, and Australia, especially in dry ecosystems. We discuss the potential problems of measuring Rs on slope soils and propose using obliquely-cut soil collars to solve the existing problems. We synthesize previous estimates of global Rs flux and find that the estimates ranged from 50 PgC/yr to 98 PgC/yr and the error associated with each estimation was also high (4 PgC/yr to 33.2 PgC/yr). Using a newly integrated database of Rs measurements and the MODIS vegetation map, we estimate that the global annual Rs flux is 94.3 PgC/yr with an estimation error of 17.9 PgC/yr at a 95% confidence level. The uneven distribution of Rs measurements limits our ability to improve the accuracy of estimation. Based on the global estimation of Rs flux, we found that Rs is highly correlated with GPP and NPP at the biome level, highlighting the role of Rs in global carbon budgets.
Collapse
Affiliation(s)
- Ming Xu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | - Hua Shang
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
26
|
Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production. Biochem Soc Trans 2016; 43:1187-94. [PMID: 26614659 DOI: 10.1042/bst20150153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For producing ATP, tumour cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, the ATP synthesis flux from glycolysis is considerably higher than in the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto H. Warburg) and also applies to striated muscle cells, activated lymphocytes, microglia, endothelial cells and several other cell types. For similar phenomena in several yeasts and many bacteria, the terms Crabtree effect and overflow metabolism respectively, are used. The Warburg effect is paradoxical at first sight because the molar ATP yield of glycolysis is much lower than that of respiration. Although a straightforward explanation is that glycolysis allows a higher ATP production rate, the question arises why cells do not re-allocate protein to the high-yield pathway of respiration. Mathematical modelling can help explain this phenomenon. Here, we review several models at various scales proposed in the literature for explaining the Warburg effect. These models support the hypothesis that glycolysis allows for a higher proliferation rate due to increased ATP production and precursor supply rates.
Collapse
|
27
|
The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae. J Bacteriol 2016; 198:2307-17. [PMID: 27325677 DOI: 10.1128/jb.00342-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na(+)-NQR as the sole electrogenic NADH dehydrogenase.
Collapse
|
28
|
Miklóssy I, Bodor Z, Sinkler R, Orbán KC, Lányi S, Albert B. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. J Biomol Struct Dyn 2016; 35:1874-1889. [PMID: 27492654 DOI: 10.1080/07391102.2016.1198721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, several approaches have been published in order to develop a functional biosynthesis route for the non-natural compound 1,4-butanediol (BDO) in E. coli using glucose as a sole carbon source or starting from xylose. Among these studies, there was reported as high as 18 g/L product concentration achieved by industrial strains, however BDO production varies greatly in case of the reviewed studies. Our motivation was to build a simple heterologous pathway for this compound in E. coli and to design an appropriate cellular chassis based on a systemic biology approach, using constraint-based flux balance analysis and bi-level optimization for gene knock-out prediction. Thus, the present study reports, at the "proof-of concept" level, our findings related to model-driven development of a metabolically engineered E. coli strain lacking key genes for ethanol, lactate and formate production (ΔpflB, ΔldhA and ΔadhE), with a three-step biosynthetic pathway. We found this strain to produce a limited quantity of 1,4-BDO (.89 mg/L BDO under microaerobic conditions and .82 mg/L under anaerobic conditions). Using glycerol as carbon source, an approach, which to our knowledge has not been tackled before, our results suggest that further metabolic optimization is needed (gene-introductions or knock-outs, promoter fine-tuning) to address the redox potential imbalance problem and to achieve development of an industrially sustainable strain. Our experimental data on culture conditions, growth dynamics and fermentation parameters can consist a base for ongoing research on gene expression profiles and genetic stability of such metabolically engineered E. coli strains.
Collapse
Affiliation(s)
- Ildikó Miklóssy
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania.,b Faculty of Applied Chemistry and Materials Science , Politehnica University of Bucharest , Bucharest , Romania
| | - Zsolt Bodor
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| | - Réka Sinkler
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania.,b Faculty of Applied Chemistry and Materials Science , Politehnica University of Bucharest , Bucharest , Romania
| | - Kálmán Csongor Orbán
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| | - Szabolcs Lányi
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| | - Beáta Albert
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| |
Collapse
|
29
|
Selinski J, Hartmann A, Höfler S, Deckers-Hebestreit G, Scheibe R. Refined method to study the posttranslational regulation of alternative oxidases from Arabidopsis thaliana in vitro. PHYSIOLOGIA PLANTARUM 2016; 157:264-79. [PMID: 26798996 DOI: 10.1111/ppl.12418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 05/27/2023]
Abstract
In isolated membranes, posttranslational regulation of quinol oxidase activities can only be determined simultaneously for all oxidases - quinol oxidases as well as cytochrome c oxidases - because of their identical localization. In this study, a refined method to determine the specific activity of a single quinol oxidase is exemplarily described for the alternative oxidase (AOX) isoform AOX1A from Arabidopsis thaliana and its corresponding mutants, using the respiratory chain of an Escherichia coli cytochrome bo and bd-I oxidase double mutant as a source to provide electrons necessary for O2 reduction via quinol oxidases. A highly sensitive and reproducible experimental set-up with prolonged linear time intervals of up to 60 s is presented, which enables the determination of constant activity rates in E. coli membrane vesicles enriched in the quinol oxidase of interest by heterologous expression, using a Clark-type oxygen electrode to continuously follow O2 consumption. For the calculation of specific quinol oxidase activity, activity rates were correlated with quantitative signal intensity determinations of AOX1A present in a membrane-bound state by immunoblot analyses, simultaneously enabling normalization of specific activities between different AOX proteins. In summary, the method presented is a powerful tool to study specific activities of individual quinol oxidases, like the different AOX isoforms, and their corresponding mutants upon modification by addition of effectors/inhibitors, and thus to characterize their individual mode of posttranslational regulation in a membranous environment.
Collapse
Affiliation(s)
- Jennifer Selinski
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Andreas Hartmann
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Saskia Höfler
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Gabriele Deckers-Hebestreit
- Division of Microbiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| |
Collapse
|
30
|
Wareham LK, Begg R, Jesse HE, Van Beilen JWA, Ali S, Svistunenko D, McLean S, Hellingwerf KJ, Sanguinetti G, Poole RK. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance. Antioxid Redox Signal 2016; 24:1013-28. [PMID: 26907100 PMCID: PMC4921903 DOI: 10.1089/ars.2015.6501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. RESULTS We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA-the response regulator-is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. INNOVATION This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. CONCLUSION This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013-1028.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Ronald Begg
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Helen E Jesse
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Johan W A Van Beilen
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Dimitri Svistunenko
- 4 Biomedical EPR Facility, School of Biological Sciences, University of Essex , Colchester, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Guido Sanguinetti
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
31
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
32
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
33
|
Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types. Biochimie 2015; 118:185-94. [PMID: 26382968 DOI: 10.1016/j.biochi.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
In this review, we revisit the metabolic shift from respiration to glycolysis in lymphocytes upon activation, which is known as the Warburg effect in tumour cells. We compare the situation in lymphocytes with those in several other cell types, such as muscle cells, Kupffer cells, microglia cells, astrocytes, stem cells, tumour cells and various unicellular organisms (e.g. yeasts). We critically discuss and compare several explanations put forward in the literature for the observation that proliferating cells adopt this apparently less efficient pathway: hypoxia, poisoning of competitors by end products, higher ATP production rate, higher precursor supply, regulatory effects, and avoiding harmful effects (e.g. by reactive oxygen species). We conclude that in the case of lymphocytes, increased ATP production rate and precursor supply are the main advantages of upregulating glycolysis.
Collapse
|
34
|
Holyoake LV, Poole RK, Shepherd M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Adv Microb Physiol 2015. [PMID: 26210105 DOI: 10.1016/bs.ampbs.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection.
Collapse
|
35
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
36
|
Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. J Biotechnol 2014; 192 Pt A:170-6. [DOI: 10.1016/j.jbiotec.2014.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 11/15/2022]
|
37
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
38
|
He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 2014; 111:575-85. [PMID: 24122357 DOI: 10.1002/bit.25124] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 01/12/2023]
Abstract
We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.
Collapse
|
39
|
Taylor AA, Aron GM, Beall GW, Dharmasiri N, Zhang Y, McLean RJC. Carbon and clay nanoparticles induce minimal stress responses in gram negative bacteria and eukaryotic fish cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:961-968. [PMID: 23125163 DOI: 10.1002/tox.21824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
We investigated in vitro the potential mutagenic and toxic effects of two clay-based nanoparticles, Cloisite® Na(+) (Cloisite) and halloysite; and multi-walled carbon nanotubes (MWCNT), commonly used in the polymer composite industry. Using the Ames test, the three nanoparticles did not have a true mutagenic effect, although growth of Salmonella enterica var. Typhimurium (S.typhimurium) was diminished at higher nanoparticle concentrations. We investigated the impact of nanoparticles on Escherichia coli and S. typhimurium including oxyR and rpoS mutants, which are susceptible to oxidative stress. The oxyR mutants were inhibited in the presence of nanoparticles, when grown aerobically with light. Toxicity was not observed in the absence of light or during anaerobic growth. E. coli rpoS mutants exhibited some toxicity when cultured with Cloisite and MWCNT only when grown aerobically with light. There was no effect with other nanoparticles, or with S. typhimurium rpoS mutants. MWCNT exhibited a slight toxic effect against Epithelioma papulosum cyprini (EPC) cells only at the highest concentration tested. There was no discernable toxicity to EPC cells caused by the clay nanoparticles. We conclude that clay-based nanoparticles and MWCNT do not exert a mutagenic effect and do not have a general toxic effect across all bacterial species or between prokaryotic and eukaryotic cells. Modest toxicity was only observed in eukaryotic EPC cells against MWCNT at the highest concentration tested. Limited species-specific toxicity to clay based and MWCNT nanoparticles was seen in bacterial strains primarily due to culture conditions and mutations that exacerbate oxidative stress.
Collapse
Affiliation(s)
- Alicia A Taylor
- Department of Biology, Texas State University-San Marcos, 601 University Drive, San Marcos, Texas 78666, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hollinshead W, He L, Tang YJ. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol 2014; 5:344. [PMID: 25071754 PMCID: PMC4088188 DOI: 10.3389/fmicb.2014.00344] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Metabolic engineering has developed microbial cell factories that can convert renewable carbon sources into biofuels. Current molecular biology tools can efficiently alter enzyme levels to redirect carbon fluxes toward biofuel production, but low product yield and titer in large bioreactors prevent the fulfillment of cheap biofuels. There are three major roadblocks preventing economical biofuel production. First, carbon fluxes from the substrate dissipate into a complex metabolic network. Besides the desired product, microbial hosts direct carbon flux to synthesize biomass, overflow metabolites, and heterologous enzymes. Second, microbial hosts need to oxidize a large portion of the substrate to generate both ATP and NAD(P)H to power biofuel synthesis. High cell maintenance, triggered by the metabolic burdens from genetic modifications, can significantly affect the ATP supply. Thereby, fermentation of advanced biofuels (such as biodiesel and hydrocarbons) often requires aerobic respiration to resolve the ATP shortage. Third, mass transfer limitations in large bioreactors create heterogeneous growth conditions and micro-environmental fluctuations (such as suboptimal O2 level and pH) that induce metabolic stresses and genetic instability. To overcome these limitations, fermentation engineering should merge with systems metabolic engineering. Modern fermentation engineers need to adopt new metabolic flux analysis tools that integrate kinetics, hydrodynamics, and 13C-proteomics, to reveal the dynamic physiologies of the microbial host under large bioreactor conditions. Based on metabolic analyses, fermentation engineers may employ rational pathway modifications, synthetic biology circuits, and bioreactor control algorithms to optimize large-scale biofuel production.
Collapse
Affiliation(s)
- Whitney Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| | - Lian He
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| |
Collapse
|
41
|
Tellurite reduction by Escherichia coli NDH-II dehydrogenase results in superoxide production in membranes of toxicant-exposed cells. Biometals 2014; 27:237-46. [DOI: 10.1007/s10534-013-9701-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 02/05/2023]
|
42
|
Steinsiek S, Stagge S, Bettenbrock K. Analysis of Escherichia coli mutants with a linear respiratory chain. PLoS One 2014; 9:e87307. [PMID: 24475268 PMCID: PMC3903629 DOI: 10.1371/journal.pone.0087307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/23/2013] [Indexed: 12/23/2022] Open
Abstract
The respiratory chain of E. coli is branched to allow the cells' flexibility to deal with changing environmental conditions. It consists of the NADH:ubiquinone oxidoreductases NADH dehydrogenase I and II, as well as of three terminal oxidases. They differ with respect to energetic efficiency (proton translocation) and their affinity to the different quinone/quinol species and oxygen. In order to analyze the advantages of the branched electron transport chain over a linear one and to assess how usage of the different terminal oxidases determines growth behavior at varying oxygen concentrations, a set of isogenic mutant strains was created, which lack NADH dehydrogenase I as well as two of the terminal oxidases, resulting in strains with a linear respiratory chain. These strains were analyzed in glucose-limited chemostat experiments with defined oxygen supply, adjusting aerobic, anaerobic and different microaerobic conditions. In contrast to the wild-type strain MG1655, the mutant strains produced acetate even under aerobic conditions. Strain TBE032, lacking NADH dehydrogenase I and expressing cytochrome bd-II as sole terminal oxidase, showed the highest acetate formation rate under aerobic conditions. This supports the idea that cytochrome bd-II terminal oxidase is not able to catalyze the efficient oxidation of the quinol pool at higher oxygen conditions, but is functioning mainly under limiting oxygen conditions. Phosphorylation of ArcA, the regulator of the two-component system ArcBA, besides Fnr the main transcription factor for the response towards different oxygen concentrations, was studied. Its phosphorylation pattern was changed in the mutant strains. Dephosphorylation and therefore inactivation of ArcA started at lower aerobiosis levels than in the wild-type strain. Notably, not only the micro- and aerobic metabolism was affected by the mutations, but also the anaerobic metabolism, where the respiratory chain should not be important.
Collapse
Affiliation(s)
- Sonja Steinsiek
- Experimental Systems Biology, Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Stefan Stagge
- Experimental Systems Biology, Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Katja Bettenbrock
- Experimental Systems Biology, Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
43
|
Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLoS One 2013; 8:e84151. [PMID: 24376790 PMCID: PMC3871631 DOI: 10.1371/journal.pone.0084151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 11/19/2013] [Indexed: 01/12/2023] Open
Abstract
Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2) strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and (13)C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest.
Collapse
|
44
|
An improved genetically modified Escherichia coli biosensor for amperometric tetracycline measurement. Appl Microbiol Biotechnol 2013; 97:9081-6. [PMID: 23893325 DOI: 10.1007/s00253-013-5105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
The bacterial respiratory gene, nuoA, was previously used as a reporter gene in an amperometric, whole cell biosensor for tetracycline (Tet) detection. While the nuoA-based bioassay responded sensitively to Tet, the signal declined at high Tet concentrations, probably partly due to transgene over-expression. Also, at zero concentration of Tet, the assay registered a relatively high background signal when compared to the nuoA knockout Escherichia coli strain without the biosensor transgene construct. This was probably due to incomplete repression of nuoA expression. In order to reduce gene over-expression, the sensor cells were incubated with Tet at a relatively low temperature (15 °C). Also, a low-copy number plasmid pBR322 was used to carry the transgene, instead of the high-copy number plasmid pBluescript in order to reduce over-expression and to reduce background expression. Both assays improved the biosensor response. By using a low-copy number plasmid and tetracycline resistance, the sensor was less inhibited at higher Tet concentrations; but, this did not significantly increase the linear range of the sensor. The low temperature nuoA assay could detect Tet at a range of 0.001-1 μg ml(-1). In contrast, the low-copy number nuoA assay was able to detect Tet at a range of 0.0001-1 μg ml(-1). The detection limit of Tet determined by the low-copy number nuoA assay was 0.00023 μg ml(-1), which is one order of magnitude more sensitive than in the previous nuoA assay.
Collapse
|
45
|
Oxygen consumption rates of bacteria under nutrient-limited conditions. Appl Environ Microbiol 2013; 79:4921-31. [PMID: 23770901 DOI: 10.1128/aem.00756-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range).
Collapse
|
46
|
Borgos SEF, Bordel S, Sletta H, Ertesvåg H, Jakobsen Ø, Bruheim P, Ellingsen TE, Nielsen J, Valla S. Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling. BMC SYSTEMS BIOLOGY 2013; 7:19. [PMID: 23497367 PMCID: PMC3641028 DOI: 10.1186/1752-0509-7-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/06/2013] [Indexed: 11/26/2022]
Abstract
Background Alginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations. Results Alginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation. Conclusions The insights gained in this study should be very useful for a future efficient production of microbial alginates.
Collapse
Affiliation(s)
- Sven E F Borgos
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, N 7491, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Adler M, Erickstad M, Gutierrez E, Groisman A. Studies of bacterial aerotaxis in a microfluidic device. LAB ON A CHIP 2012; 12:4835-47. [PMID: 23010909 PMCID: PMC3520485 DOI: 10.1039/c2lc21006a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in the late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O(2)]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O(2)] across a long gradient channel, with characteristic [O(2)] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O(2)] gradient, and the distribution of cells across the gradient channel is analyzed near the channel outlet at a throughput of >10(5) cells per hour. Aerotaxis experiments are performed in [O(2)] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O(2)] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O(2)], but rather prefer the highest accessible [O(2)]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria.
Collapse
Affiliation(s)
- Micha Adler
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Michael Erickstad
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
- Corresponding author,
| |
Collapse
|
48
|
Tsai PS, Rao G, Bailey JE. Improvement of Escherichia coli microaerobic oxygen metabolism by Vitreoscilla hemoglobin: New insights from NAD(P)H fluorescence and culture redox potential. Biotechnol Bioeng 2012; 47:347-54. [PMID: 18623410 DOI: 10.1002/bit.260470309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
On-line NAD(P)H fluorescence and culture redox potential (CRP) measurements were utilized to investigate the role of Vitreoscilla hemoglobin (VHb) in perturbing oxygen metabolism of microaerobic Escherichia coli Batch cultures of a VHb-synthesizing E. coli strain and the iso-genic control under fully aerated conditions were subject to several high/low oxygen transitions, and the NAD(P)H fluorescence and CRP were monitored during these passages. The presence of VHb decreased the rate of net NAD(P)H generation by 2.4-fold under diminishing oxygen tension. In the absence of aeration, the strain producing VHb maintained a steady NAD(P)H level 1.8-fold less than that of the control, indicating that the presence of VHb keeps E. coli in a more oxidized state under oxygen-limited conditions. Estimated from CRP, the oxygen uptake rates near anoxia were 25% higher for cells with VHb than those without. These results suggest that VHb-expressing cells have a higher microaerobic electron transport chain turnover rate. To examine how NAD(P)H utilization of VHb-expressing cells responds to rapidly changing oxygen tension, which is common in large-scale fermentations, we pulsed air intermittently into a cell suspension and recorded the fluorescence response to the imposed dissolved oxygen (DO) fluctuation. Relative to the control, cells containing VHb had a sluggish fluorescence response to sudden changes of oxygen tension, suggesting that VHb buffers intracellular redox perturbations caused by extracellular DO fluctuations.(c) John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- P S Tsai
- Institute of Biotechnology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
49
|
Uncoupling of substrate-level phosphorylation in Escherichia coli during glucose-limited growth. Appl Environ Microbiol 2012; 78:6908-13. [PMID: 22843529 DOI: 10.1128/aem.01507-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The respiratory chain of Escherichia coli contains three different cytochrome oxidases. Whereas the cytochrome bo oxidase and the cytochrome bd-I oxidase are well characterized and have been shown to contribute to proton translocation, physiological data suggested a nonelectrogenic functioning of the cytochrome bd-II oxidase. Recently, however, this view was challenged by an in vitro biochemical analysis that showed that the activity of cytochrome bd-II oxidase does contribute to proton translocation with an H(+)/e(-) stoichiometry of 1. Here, we propose that this apparent discrepancy is due to the activities of two alternative catabolic pathways: the pyruvate oxidase pathway for acetate production and a pathway with methylglyoxal as an intermediate for the production of lactate. The ATP yields of these pathways are lower than those of the pathways that have so far always been assumed to catalyze the main catabolic flux under energy-limited growth conditions (i.e., pyruvate dehydrogenase and lactate dehydrogenase). Inclusion of these alternative pathways in the flux analysis of growing E. coli strains for the calculation of the catabolic ATP synthesis rate indicates an electrogenic function of the cytochrome bd-II oxidase, compatible with an H(+)/e(-) ratio of 1. This analysis shows for the first time the extent of bypassing of substrate-level phosphorylation in E. coli under energy-limited growth conditions.
Collapse
|
50
|
Song W, Pasco N, Gooneratne R, Weld RJ. Comparison of three genetically modified Escherichia coli biosensor strains for amperometric tetracycline measurement. Biosens Bioelectron 2012; 35:69-74. [DOI: 10.1016/j.bios.2012.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
|