1
|
Uzma M, Nisar A, Iqbal A, Hasnain S, Mahmoud MH, Rahim MA, Gull T, Castro-Muñoz R, Zongo E. Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture. PLANT SIGNALING & BEHAVIOR 2025; 20:2452331. [PMID: 39813100 PMCID: PMC11740683 DOI: 10.1080/15592324.2025.2452331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics. A total of 199 rhizobacteria were isolated and screened for IAA production. The strain M28 produced maximum IAA 378.44 ± 2.5 µg ml-1, M9 formed only 34.72 ± 0.15 µg ml-1. About 19% of IAA producers were isolated from Multan, 18% Lahore, 15% from soils of Faisalabad and Sheikhupura, while 7% from Gujrat. The 21 isolates were drought tolerant to -0.14Mpa, 14 of those were PSB and 15 were N fixers. In PGP traits, maximum zinc solubility was expressed by M4 as 2 ± 0.5 cm of zone. The strain M22 produced amount of HCN, 40.12 ± 0.052 ppm. All isolates showed diverse behavior in biocompatibility, motility patterns and hydrophobicity. Selected drought tolerant strains were genetically identified by ribotyping. Multitrait PGPR could be effective biofertilizers rather than with single trait. The strain M28 having highest production of IAA, was gelatinase, methyl red positive and was also capable of nitrogen fixation. Moreover, it had maximum swimming (8.9 mm) and swarming (8.7 mm) activities after 24 h, indicating its best PGP traits for future use.
Collapse
Affiliation(s)
- Malika Uzma
- Department of Medical Lab Technology, Times Institute, Multan, Pakistan
| | - Atif Nisar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, Matital campus, The Women University Multan, Multan, Pakistan
| | - Shahida Hasnain
- Institute of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Abdul Rahim
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health Sciences, Times Institute, Multan, Pakistan
| | - Tehseen Gull
- Department of Chemistry, Times Institute, Multan, Pakistan
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Eliasse Zongo
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
2
|
Du X, Li P, Fan C, Tian J, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yuan M, Yu X, Tsuda K, Li B. Holliday junction resolvase RuvC targets biofilm eDNA and confers plant resistance to vascular pathogens. NATURE PLANTS 2024; 10:1710-1723. [PMID: 39384943 DOI: 10.1038/s41477-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
A biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanisms of phytobacterial biofilm are still obscure. Here we found that the protein Ralstonia solanacearum resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by controlling systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm development and specifically targets Holliday junction (HJ)-like structures to disrupt the biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ to prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast-localized HJ resolvase monokaryotic chloroplast 1 (MOC1), which shares structural similarity with bacterial RuvC, shows a strong inhibitory effect on bacterial biofilm formation. Relocalization of SlMOC1 to apoplast in tomato roots leads to increased resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacterial vascular disease.
Collapse
Affiliation(s)
- Xinya Du
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Tian
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Yamchi A, Rahimi M, Akbari R, Ghobadi C, Aryapour H. Effects of Bacillus in Pectobacterium quorum quenching: A survey of two different acyl-homoserine lactonases. Folia Microbiol (Praha) 2024; 69:913-926. [PMID: 38305961 DOI: 10.1007/s12223-024-01139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Numerous functions in pathogenic Pectobacterium are regulated by quorum sensing (QS). Two different aiiA genes isolated from Bacillus sp. A24(aiiAA24) and Bacillus sp. DMS133(aiiADMS133) were used. Both genes encode acyl-homoserine lactonase (AiiA), which disrupts QS in Pectobacterium. To investigate the effect of different AiiAs on the inhibition of Pectobacterium carotovorum pathogenicity, two aiiA genes from different Bacillus strains were cloned and the resulting plasmids pME6863 (aiiAA24) and pME7080 (aiiADMS133) were transformed into P. carotovorum EMPCC cells. The effects of different lactonases on virulence features such as enzymatic activity, twitching and swimming motilities, and production of pellicle and biofilm formation were investigated. In EMPCC/pME6863, twitching and swimming motilities, and pellicle production were significantly reduced compared with EMPCC/pME7080. Quantitative real-time PCR (qRT-PCR) was used to measure virulence gene expression in transformed cells compared with expression levels in wild-type EMPCC. The expression of peh and hrpL genes was greatly reduced in EMPCC/pME6863 compared with EMPCC/pME7080. The sequence alignment and molecular dynamic modeling of two different AiiAA24 and AiiADMS133 proteins suggested that the replacement of proline 210 from AiiAA24 to serine in AiiADMS133 caused the reduction of enzyme activity in AiiADMS133.
Collapse
Affiliation(s)
- Ahad Yamchi
- Department of Plant Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Maryam Rahimi
- Department of Horticulture, University of Zabol, Zabol, Iran
| | - Ramin Akbari
- Department of Agricultural Biotechnology, Isfahan University of Technology, Isfahan, Iran
| | - Cyrus Ghobadi
- Department of Horticulture Sciences, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| |
Collapse
|
4
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Li D, Li Y, Wang J, Yang W, Cui K, Su R, Li L, Ren X, Li X, Wang Y. In-depth analysis of the treatment effect and synergistic mechanism of TanReQing injection on clinical multi-drug resistant Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0272623. [PMID: 38415603 PMCID: PMC10986576 DOI: 10.1128/spectrum.02726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/17/2023] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance is a recognized and concerning public health issue. Gram-negative bacilli, such as Pseudomonas aeruginosa (P. aeruginosa), are notorious for their rapid development of drug resistance, leading to treatment failures. TanReQing injection (TRQ) was chosen to explore its pharmacological mechanisms against clinical multidrug-resistant P. aeruginosa (MDR-PA), given its antibacterial and anti-inflammatory properties. We revealed the expression of proteins and genes in P. aeruginosa after co-culture with TRQ. This study developed an assessment method to evaluate clinical resistance of P. aeruginosa using MALDI-TOF MS identification and Biotyper database searching techniques. Additionally, it combined MIC determination to investigate changes in MDR-PA treated by TRQ. TRQ effectively reduced the MICs of ceftazidime and cefoperazone and enhanced the confidence scores of MDR-PA as identified by mass spectrometry. Using this evaluation method, the fingerprints of standard P. aeruginosa and MDR-PA were compared, and the characteristic peptide sequence (Seq-PA No. 1) associated with flagellum was found. The phenotypic experiments were conducted to confirm the effect of TRQ on the motility and adhesion of P. aeruginosa. A combination of co-immunoprecipitation and proteome analysis was employed, and 16 proteins were significantly differentially expressed and identified as potential candidates for investigating the mechanism of inhibiting resistance in P. aeruginosa treated by TRQ. The candidates were verified by quantitative real-time PCR analysis, and TRQ may affect these core proteins (MexA, MexB, OprM, OprF, OTCase, IDH, and ASL) that influence resistance of P. aeruginosa. The combination of multiple methods helps elucidate the synergistic mechanism of TRQ in overcoming resistance of P. aeruginosa.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen closely associated with various life-threatening acute and chronic infections. The presence of antimicrobial resistance and multidrug resistance in P. aeruginosa infections significantly complicates antibiotic treatment. The expression of β-lactamase, efflux systems such as MexAB-OprM, and outer membrane permeability are considered to have the greatest impact on the sensitivity of P. aeruginosa. The study used a method to assess the clinical resistance of P. aeruginosa using matrix-assisted laser desorption ionization time of flight mass spectrometry identification and Biotyper database search techniques. TanReQing injection (TRQ) effectively reduced the MICs of ceftazidime and cefoperazone in multidrug-resistant P. aeruginosa (MDR-PA) and improved the confidence scores for co-cultured MDR-PA. The study found a characteristic peptide sequence for distinguishing whether P. aeruginosa is resistant. Through co-immunoprecipitation and proteome analysis, we explored the mechanism of TRQ overcoming resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Dongying Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yueyi Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weifeng Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Renjing Su
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Ren
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Shahzad S, Krug SA, Mouriño S, Huang W, Kane MA, Wilks A. Pseudomonas aeruginosa heme metabolites biliverdin IXβ and IXδ are integral to lifestyle adaptations associated with chronic infection. mBio 2024; 15:e0276323. [PMID: 38319089 PMCID: PMC10936436 DOI: 10.1128/mbio.02763-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen requiring iron for its survival and virulence within the host. The ability to switch to heme as an iron source and away from siderophore uptake provides an advantage in chronic infection. We have recently shown the extracellular heme metabolites biliverdin IXβ (BVIXβ) and BVIXδ positively regulate the heme-dependent cell surface signaling cascade. We further investigated the role of BVIXβ and BVIXδ in cell signaling utilizing allelic strains lacking a functional heme oxygenase (hemOin) or one reengineered to produce BVIXα (hemOα). Compared to PAO1, both strains show a heme-dependent growth defect, decreased swarming and twitching, and less robust biofilm formation. Interestingly, the motility and biofilm defects were partially rescued on addition of exogenous BVIXβ and BVIXδ. Utilizing liquid chromatography-tandem mass spectrometry, we performed a comparative proteomics and metabolomics analysis of PAO1 versus the allelic strains in shaking and static conditions. In shaking conditions, the hemO allelic strains showed a significant increase in proteins involved in quorum sensing, phenazine production, and chemotaxis. Metabolite profiling further revealed increased levels of Pseudomonas quinolone signal and phenazine metabolites. In static conditions, we observed a significant repression of chemosensory pathways and type IV pili biogenesis proteins as well as several phosphodiesterases associated with biofilm dispersal. We propose BVIX metabolites function as signaling and chemotactic molecules integrating heme utilization as an iron source into the adaptation of P. aeruginosa from a planktonic to sessile lifestyle. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa causes long-term chronic infection in the airways of cystic fibrosis patients. The ability to scavenge iron and to establish chronic infection within this environment coincides with a switch to utilize heme as the primary iron source. Herein, we show the heme metabolites biliverdin beta and delta are themselves important signaling molecules integrating the switch in iron acquisition systems with cooperative behaviors such as motility and biofilm formation that are essential for long-term chronic infection. These significant findings will enhance the development of viable multi-targeted therapeutics effective against both heme utilization and cooperative behaviors essential for survival and persistence within the host.
Collapse
Affiliation(s)
- Saba Shahzad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Samuel A. Krug
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
8
|
The Xanthophyll Carotenoid Lutein Reduces the Invasive Potential of Pseudomonas aeruginosa and Increases Its Susceptibility to Tobramycin. Int J Mol Sci 2022; 23:ijms23137199. [PMID: 35806201 PMCID: PMC9266958 DOI: 10.3390/ijms23137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the xanthophyll carotenoid lutein has been qualified as a potential quorum sensing (QS) and biofilm inhibitor against Pseudomonas aeruginosa. To address the potential of this xanthophyll compound as a relevant antivirulence agent, we investigated in depth its impact on the invasion capabilities and aggressiveness of P. aeruginosa PAO1, which rely on the bacterial ability to build and maintain protective barriers, use different types of motilities and release myriad virulence factors, leading to host cell and tissue damages. Our data, obtained on the PAO1 strain, indicate that all-trans lutein (Lut; 22 µM) disrupts biofilm formation and disorganizes established biofilm structure without affecting bacterial viability, while improving the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Furthermore, this xanthophyll affects PAO1 twitching and swarming motilities while reducing the production of the extracellular virulence factors pyocyanin, elastase and rhamnolipids as well as the expression of the QS-regulated lasB and rhlA genes without inhibiting the QS-independent aceA gene. Interestingly, the expression of the QS regulators rhlR/I and lasR/I is significantly reduced as well as that of the global virulence factor regulator vfr, which is suggested to be a major target of Lut. Finally, an oxidative metabolite of Lut, 3′-dehydrolutein, induces a similar inhibition phenotype. Taken together, lutein-type compounds represent potential agents to control the invasive ability and antibiotic resistance of P. aeruginosa.
Collapse
|
9
|
Wang D, Cui F, Ren L, Tan X, Lv X, Li Q, Li J, Li T. Complete Genome Analysis Reveals the Quorum Sensing-Related Spoilage Potential of Pseudomonas fluorescens PF08, a Specific Spoilage Organism of Turbot ( Scophthalmus maximus). Front Microbiol 2022; 13:856802. [PMID: 35516425 PMCID: PMC9062736 DOI: 10.3389/fmicb.2022.856802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas fluorescens is a common specific spoilage organism (SSO) of aquatic products. The spoilage ability of SSO can be regulated by the quorum sensing (QS) system. However, the QS system in P. fluorescens and their relationship with the spoilage potential have not been systematically analyzed. In the present study, the complete genome of P. fluorescens PF08 isolated from spoilage turbot was sequenced. The identification of key genes that involved in the QS, enzyme synthesis, sulfur, and amino acid metabolism explained the spoilage potential of P. fluorescens PF08. Results of quantitative real-time PCR revealed the key role of the P. fluorescens PF08 QS system in regulating the transcription of spoilage-related genes and its sensitivity to environmental stress. These findings provide insight into the spoilage features of P. fluorescens PF08 from a genomic perspective. The knowledge may be valuable in the development of new strategies for the targeted inhibition of aquatic product spoilage based on QS interference.
Collapse
Affiliation(s)
- Dangfeng Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiqian Tan
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xinran Lv
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
10
|
Patel H, Gajjar D. Cell adhesion and twitching motility influence strong biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2022; 38:235-249. [PMID: 35345952 DOI: 10.1080/08927014.2022.2054703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In the present study, biofilm formation was quantified in UTI isolates of Pseudomonas aeruginosa (n = 22) using the crystal violet assay and was categorized into; strong (n = 16), weak (n = 4), and moderate (n = 2) biofilm producers. Further experiments were done using strong (n = 4) and weak (n = 4) biofilm producers. Biofilm formation was greater in Luria broth followed by natural urine and artificial urine on silicone and silicone-coated latex. Cell adhesion and twitching motility were greater in strong biofilm producers. The presence of thick biofilm with an increased number of dead and total number of cells of strong biofilm producers was observed using CLSM. The concentrations of exopolymeric substances (eDNA, protein, and pel polysaccharide) were high in strong biofilm producers. FEG-SEM visualization of biofilm produced by strong biofilm producers showed more cells encased in thick biofilm matrix than weak ones. Overall results provide evidence for increased cell adhesion and twitching motility in strong biofilm producers.
Collapse
Affiliation(s)
- Hiral Patel
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Devarshi Gajjar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
11
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
MosaChristas K, Kowsalya E, Karthick R, Jaquline CRI. Antibacterial, antibiofilm and anti-quorum sensing activities of Muntingia calabura L. leaf extract against Pseudomonas aeruginosa. Lett Appl Microbiol 2021; 75:588-597. [PMID: 34725846 DOI: 10.1111/lam.13595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to evaluate the phytochemicals, antioxidant, antibacterial and anti-quorum sensing (QS) properties of methanol extract of Muntingia calabura L. leaves against biofilm-forming strain Pseudomonas aeruginosa. The antioxidant potential of M. calabura methanol leaf extract was evaluated using a radical scavenging assay. Since the findings were so promising, the study aims to screen the phytochemical profiles using qualitative and quantitative approaches and to expand the investigation to anti-QS activity. The antibacterial activity was assessed by determining the minimum inhibitory concentration against pathogenic Gram-negative and Gram-positive biofilm-forming bacterial strains using an agar well diffusion plate method. Muntingia calabura methanol leaf extract was most potent against P. aeruginosa. The QS controlled virulence factors in P. aeruginosa is significantly inhibited by M. calabura leaf extract. The microscopy images revealed a major reduction in P. aeruginosa biofilm formation. Interestingly, M. calabura leaf extract was not toxic to Vero cell line. These findings make M. calabura a strong candidate for new antimicrobial and anti-QS herbal agents.
Collapse
Affiliation(s)
- K MosaChristas
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous), Affiliated to University of Madras, Nungambakkam, Chennai, Tamil Nadu, India
| | - E Kowsalya
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous), Affiliated to University of Madras, Nungambakkam, Chennai, Tamil Nadu, India
| | - R Karthick
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous), Affiliated to University of Madras, Nungambakkam, Chennai, Tamil Nadu, India
| | - C R I Jaquline
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous), Affiliated to University of Madras, Nungambakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Antar A, Lee MA, Yoo Y, Cho MH, Lee SW. PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae. Pathogens 2020; 9:pathogens9110956. [PMID: 33212951 PMCID: PMC7698356 DOI: 10.3390/pathogens9110956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), a causal agent of bacterial leaf blight of rice, possesses two-component regulatory systems (TCSs) as an intracellular signaling pathway. In this study, we observed changes in virulence, biofilm formation, motility, chemotaxis, and tolerance against oxidative stress of a knockout mutant strain for the PXO_RS20535 gene, encoding an orphan response regulator (RR). The mutant strain lost virulence, produced significantly less biofilm, and showed remarkably reduced motility in swimming, swarming, and twitching. Furthermore, the mutant strain lost glucose-guided movement and showed clear diminution of growth and survival in the presence of H2O2. These results indicate that the RR protein encoded in the PXO_RS20535 gene (or a TCS mediated by the protein) is closely involved in regulation of biofilm formation, all types of motility, chemotaxis, and tolerance against reactive oxygen species (ROS) in Xoo. Moreover we found that the expression of most genes required for a type six secretion system (T6SS) was decreased in the mutant, suggesting that lack of the RR gene most likely leads to defect of T6SS in Xoo.
Collapse
Affiliation(s)
- Abdulwahab Antar
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Mi-Ae Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Youngchul Yoo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Man-Ho Cho
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
| | - Sang-Won Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
- Correspondence:
| |
Collapse
|
14
|
Nolan LM, McCaughey LC, Merjane J, Turnbull L, Whitchurch CB. ChpC controls twitching motility-mediated expansion of Pseudomonas aeruginosa biofilms in response to serum albumin, mucin and oligopeptides. MICROBIOLOGY (READING, ENGLAND) 2020; 166:669-678. [PMID: 32478653 PMCID: PMC7657506 DOI: 10.1099/mic.0.000911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Pseudomonas aeruginosa Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of P. aeruginosa to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in P. aeruginosa.
Collapse
Affiliation(s)
- Laura M. Nolan
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Laura C. McCaughey
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jessica Merjane
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Cynthia B. Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- Microbes in the Food Chain Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ and School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| |
Collapse
|
15
|
Overexpression of the Small RNA PA0805.1 in Pseudomonas aeruginosa Modulates the Expression of a Large Set of Genes and Proteins, Resulting in Altered Motility, Cytotoxicity, and Tobramycin Resistance. mSystems 2020; 5:5/3/e00204-20. [PMID: 32430407 PMCID: PMC7253367 DOI: 10.1128/msystems.00204-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P. aeruginosa is an opportunistic pathogen of humans. With roughly 10% of its genes encoding transcriptional regulators, and hundreds of small noncoding RNAs (sRNAs) interspersed throughout the genome, P. aeruginosa is able to fine-tune its response to adapt and survive in the host and resist antimicrobial agents. Understanding mechanisms of genetic regulation is therefore crucial to combat pathogenesis. The previously uncharacterized sRNA PA0805.1 was overexpressed in P. aeruginosa strain PAO1, resulting in decreased motility, increased adherence, cytotoxicity, and tobramycin resistance. In contrast, a ΔPA0805.1 deletion mutant had increased susceptibility to tobramycin under swarming conditions. Omic approaches uncovered 1,121 transcriptomic and 258 proteomic changes in the overexpression strain compared with the empty-vector strain, which included 106 regulatory factors. Downstream of these regulators were upregulated adherence factors, multidrug efflux systems, and virulence factors in both transcriptomics and proteomics. This study provides insights into the role of the sRNA PA0805.1 in modulating bacterial adaptations. Pseudomonas aeruginosa is a motile species that initiates swarming motility in response to specific environmental cues, i.e., a semisolid surface with amino acids as a nitrogen source (relevant to the human lung). Swarming is an intricately regulated process, but to date posttranscriptional regulation has not been extensively investigated. Small noncoding RNAs (sRNAs) are hypothesized to play posttranscriptional regulatory roles, largely through suppression of translation, and we previously demonstrated 20 sRNA species that were dysregulated under swarming conditions. One of these, sRNA PA0805.1 (which was 5-fold upregulated under swarming conditions), when cloned, transformed into wild-type (WT) PAO1, and overexpressed, led to broad phenotypic changes, including reduced swarming, swimming, and twitching motilities, as well as increased adherence, cytotoxicity, and tobramycin resistance. A ΔPA0805.1 deletion mutant was more susceptible to tobramycin than the WT under swarming conditions. The strain overexpressing PA0805.1 was compared to the empty-vector strain by transcriptome sequencing (RNA-Seq) and proteomics under swarming conditions to determine sRNA targets. Broad transcriptional and proteomic profiles showed 1,121 differentially expressed genes and 258 proteins with significantly different abundance. Importantly, these included 106 transcriptional regulators, two-component regulatory systems, and sigma and anti-sigma factors. Downstream of these regulators were found downregulated type IV pilus genes, many upregulated adherence and virulence factors, and two multidrug efflux systems, mexXY and mexGHI-opmD. Therefore, the sRNA PA0805.1 appears to be a global regulator that influences diverse bacterial lifestyles, most likely through a regulatory cascade. IMPORTANCEP. aeruginosa is an opportunistic pathogen of humans. With roughly 10% of its genes encoding transcriptional regulators, and hundreds of small noncoding RNAs (sRNAs) interspersed throughout the genome, P. aeruginosa is able to fine-tune its response to adapt and survive in the host and resist antimicrobial agents. Understanding mechanisms of genetic regulation is therefore crucial to combat pathogenesis. The previously uncharacterized sRNA PA0805.1 was overexpressed in P. aeruginosa strain PAO1, resulting in decreased motility, increased adherence, cytotoxicity, and tobramycin resistance. In contrast, a ΔPA0805.1 deletion mutant had increased susceptibility to tobramycin under swarming conditions. Omic approaches uncovered 1,121 transcriptomic and 258 proteomic changes in the overexpression strain compared with the empty-vector strain, which included 106 regulatory factors. Downstream of these regulators were upregulated adherence factors, multidrug efflux systems, and virulence factors in both transcriptomics and proteomics. This study provides insights into the role of the sRNA PA0805.1 in modulating bacterial adaptations.
Collapse
|
16
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
17
|
Rubio-Gómez JM, Santiago CM, Udaondo Z, Garitaonaindia MT, Krell T, Ramos JL, Daddaoua A. Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Front Microbiol 2020; 11:202. [PMID: 32153524 PMCID: PMC7044273 DOI: 10.3389/fmicb.2020.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous gram-negative opportunistic human pathogen which is not considered part of the human commensal gut microbiota. However, depletion of the intestinal microbiota (Dysbiosis) following antibiotic treatment facilitates the colonization of the intestinal tract by Multidrug-Resistant P. aeruginosa. One possible strategy is based on the use of functional foods with prebiotic activity. The bifidogenic effect of the prebiotic inulin and its hydrolyzed form (fructooligosaccharide: FOS) is well established since they promote the growth of specific beneficial (probiotic) gut bacteria such as bifidobacteria. Previous studies of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 have shown that inulin and to a greater extent FOS reduce growth and biofilm formation, which was found to be due to a decrease in motility and exotoxin secretion. However, the transcriptional basis for these phenotypic alterations remains unclear. To address this question we conducted RNA-sequence analysis. Changes in the transcript level induced by inulin and FOS were similar, but a set of transcript levels were increased in response to inulin and reduced in the presence of FOS. In the presence of inulin or FOS, 260 and 217 transcript levels, respectively, were altered compared to the control to which no polysaccharide was added. Importantly, changes in transcript levels of 57 and 83 genes were found to be specific for either inulin or FOS, respectively, indicating that both compounds trigger different changes. Gene pathway analyses of differentially expressed genes (DEG) revealed a specific FOS-mediated reduction in transcript levels of genes that participate in several canonical pathways involved in metabolism and growth, motility, biofilm formation, β-lactamase resistance, and in the modulation of type III and VI secretion systems; results that have been partially verified by real time quantitative PCR measurements. Moreover, we have identified a genomic island formed by a cluster of 15 genes, encoding uncharacterized proteins, which were repressed in the presence of FOS. The analysis of isogenic mutants has shown that genes of this genomic island encode proteins involved in growth, biofilm formation and motility. These results indicate that FOS selectively modulates bacterial pathogenicity by interfering with different signaling pathways.
Collapse
Affiliation(s)
- José Manuel Rubio-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Molina Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga, Málaga, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mireia Tena Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
18
|
Qi YH, Huang L, Liu GF, Leng M, Lu GT. PilG and PilH antagonistically control flagellum-dependent and pili-dependent motility in the phytopathogen Xanthomonas campestris pv. campestris. BMC Microbiol 2020; 20:37. [PMID: 32070276 PMCID: PMC7029496 DOI: 10.1186/s12866-020-1712-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background The virulence of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) involves the coordinate expression of many virulence factors, including surface appendages flagellum and type IV pili, which are required for pathogenesis and the colonization of host tissues. Despite many insights gained on the structure and functions played by flagellum and pili in motility, biofilm formation, surface attachment and interactions with bacteriophages, we know little about how these appendages are regulated in Xcc. Results Here we present evidence demonstrating the role of two single domain response regulators PilG and PilH in the antagonistic control of flagellum-dependent (swimming) and pili-dependent (swarming) motility. Using informative mutagenesis, we reveal PilG positively regulates swimming motility while and negatively regulating swarming motility. Conversely, PilH negatively regulates swimming behaviour while and positively regulating swarming motility. By transcriptome analyses (RNA-seq and RT-PCR) we confirm these observations as PilG is shown to upregulate many genes involved chemotaxis and flagellar biosynthesis but these similar genes were downregulated by PilH. Co-immunoprecipitation, bacterial two-hybrid and pull-down analyses showed that PilH and PilG were able to interact with district subsets of proteins that potentially account for their regulatory impact. Additionally, we present evidence, using mutagenesis that PilG and PilH are involved in other cellular processes, including chemotaxis and virulence. Conclusions Taken together, we demonstrate that for the conditions tested PilG and PilH have inverse regulatory effects on flagellum-dependent and pili-dependent motility in Xcc and that this regulatory impact depends on these proteins influences on genes/proteins involved in flagellar biosynthesis and pilus assembly.
Collapse
Affiliation(s)
- Yan-Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Li Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guo-Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ming Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guang-Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
19
|
Nolan LM, Whitchurch CB, Barquist L, Katrib M, Boinett CJ, Mayho M, Goulding D, Charles IG, Filloux A, Parkhill J, Cain AK. A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Microb Genom 2018; 4. [PMID: 30383525 PMCID: PMC6321873 DOI: 10.1099/mgen.0.000229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an extremely successful pathogen able to cause both acute and chronic infections in a range of hosts, utilizing a diverse arsenal of cell-associated and secreted virulence factors. A major cell-associated virulence factor, the Type IV pilus (T4P), is required for epithelial cell adherence and mediates a form of surface translocation termed twitching motility, which is necessary to establish a mature biofilm and actively expand these biofilms. P. aeruginosa twitching motility-mediated biofilm expansion is a coordinated, multicellular behaviour, allowing cells to rapidly colonize surfaces, including implanted medical devices. Although at least 44 proteins are known to be involved in the biogenesis, assembly and regulation of the T4P, with additional regulatory components and pathways implicated, it is unclear how these components and pathways interact to control these processes. In the current study, we used a global genomics-based random-mutagenesis technique, transposon directed insertion-site sequencing (TraDIS), coupled with a physical segregation approach, to identify all genes implicated in twitching motility-mediated biofilm expansion in P. aeruginosa. Our approach allowed identification of both known and novel genes, providing new insight into the complex molecular network that regulates this process in P. aeruginosa. Additionally, our data suggest that the flagellum-associated gene products have a differential effect on twitching motility, based on whether components are intra- or extracellular. Overall the success of our TraDIS approach supports the use of this global genomic technique for investigating virulence genes in bacterial pathogens.
Collapse
Affiliation(s)
- Laura M Nolan
- 1MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cynthia B Whitchurch
- 2The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lars Barquist
- 3Institute for Molecular Infection Biology, University of Würzburg, Würzburg D-97080, Germany.,4Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Marilyn Katrib
- 2The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Christine J Boinett
- 5Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,†Present address: Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Matthew Mayho
- 5Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- 5Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian G Charles
- 6Quadram Institute of Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK
| | - Alain Filloux
- 1MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Julian Parkhill
- 5Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Amy K Cain
- 5Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,‡Present address: Chemical and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
20
|
Jain R, Sliusarenko O, Kazmierczak BI. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLoS Pathog 2017; 13:e1006594. [PMID: 28854278 PMCID: PMC5595344 DOI: 10.1371/journal.ppat.1006594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/12/2017] [Accepted: 08/21/2017] [Indexed: 01/31/2023] Open
Abstract
Type IVa pili (T4P) are bacterial surface structures that enable motility, adhesion, biofilm formation and virulence. T4P are assembled by nanomachines that span the bacterial cell envelope. Cycles of T4P assembly and retraction, powered by the ATPases PilB and PilT, allow bacteria to attach to and pull themselves along surfaces, so-called “twitching motility”. These opposing ATPase activities must be coordinated and T4P assembly limited to one pole for bacteria to show directional movement. How this occurs is still incompletely understood. Herein, we show that the c-di-GMP binding protein FimX, which is required for T4P assembly in Pseudomonas aeruginosa, localizes to the leading pole of twitching bacteria. Polar FimX localization requires both the presence of T4P assembly machine proteins and the assembly ATPase PilB. PilB itself loses its polar localization pattern when FimX is absent. We use two different approaches to confirm that FimX and PilB interact in vivo and in vitro, and further show that point mutant alleles of FimX that do not bind c-di-GMP also do not interact with PilB. Lastly, we demonstrate that FimX positively regulates T4P assembly and twitching motility by promoting the activity of the PilB ATPase, and not by stabilizing assembled pili or by preventing PilT-mediated retraction. Mutated alleles of FimX that no longer bind c-di-GMP do not allow rapid T4P assembly in these assays. We propose that by virtue of its high-affinity for c-di-GMP, FimX can promote T4P assembly when intracellular levels of this cyclic nucleotide are low. As P. aeruginosa PilB is not itself a high-affinity c-di-GMP receptor, unlike many other assembly ATPases, FimX may play a key role in coupling T4P mediated motility and adhesion to levels of this second messenger. Type IV pili (T4P) are assembled on the surfaces of many bacterial pathogens and commensals through the action of specialized assembly machines whose components and structures are the subject of intense study. Repeated cycles of T4P assembly, attachment and retraction allow bacteria to move or “twitch” along surfaces, efficiently colonize and intoxicate host tissues, and elaborate multicellular structures such as biofilms. Assembly and retraction are powered by specific ATPases, PilB and PilT respectively, but the manner in which their activity is coordinated is still poorly understood. In this work, we provide evidence that a high-affinity c-di-GMP binding protein of Pseudomonas aeruginosa, FimX, interacts with the ATPase PilB and promotes PilB-dependent assembly of T4P. Live cell imaging of twitching bacteria shows that FimX localizes to the leading pole of motile P. aeruginosa and that its recruitment requires both components of the T4P assembly machine and the PilB ATPase. Our work highlights a novel regulatory strategy employed by P. aeruginosa to control assembly of this broadly conserved virulence factor.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Oleksii Sliusarenko
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cyclic AMP-Independent Control of Twitching Motility in Pseudomonas aeruginosa. J Bacteriol 2017; 199:JB.00188-17. [PMID: 28583947 DOI: 10.1128/jb.00188-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
FimV is a Pseudomonas aeruginosa inner membrane hub protein that modulates levels of the second messenger, cyclic AMP (cAMP), through the activation of adenylate cyclase CyaB. Although type IVa pilus (T4aP)-dependent twitching motility is modulated by cAMP levels, mutants lacking FimV are twitching impaired, even when exogenous cAMP is provided. Here we further define FimV's cAMP-dependent and -independent regulation of twitching. We confirmed that the response regulator of the T4aP-associated Chp chemotaxis system, PilG, requires both FimV and the CyaB regulator, FimL, to activate CyaB. However, in cAMP-replete backgrounds-lacking the cAMP phosphodiesterase CpdA or the CheY-like protein PilH or expressing constitutively active CyaB-pilG and fimV mutants failed to twitch. Both cytoplasmic and periplasmic domains of FimV were important for its cAMP-dependent and -independent roles, while its septal peptidoglycan-targeting LysM motif was required only for twitching motility. Polar localization of the sensor kinase PilS, a key regulator of transcription of the major pilin, was FimV dependent. However, unlike its homologues in other species that localize flagellar system components, FimV was not required for swimming motility. These data provide further evidence to support FimV's role as a key hub protein that coordinates the polar localization and function of multiple structural and regulatory proteins involved in P. aeruginosa twitching motility.IMPORTANCEPseudomonas aeruginosa is a serious opportunistic pathogen. Type IVa pili (T4aP) are important for its virulence, because they mediate dissemination and invasion via twitching motility and are involved in surface sensing, which modulates pathogenicity via changes in cAMP levels. Here we show that the hub protein FimV and the response regulator of the Chp system, PilG, regulate twitching independently of their roles in the modulation of cAMP synthesis. These functions do not require the putative scaffold protein FimL, proposed to link PilG with FimV. PilG may regulate asymmetric functioning of the T4aP system to allow for directional movement, while FimV appears to localize both structural and regulatory elements-including the PilSR two-component system-to cell poles for optimal function.
Collapse
|
22
|
Rasamiravaka T, Ngezahayo J, Pottier L, Ribeiro SO, Souard F, Hari L, Stévigny C, Jaziri ME, Duez P. Terpenoids from Platostoma rotundifolium (Briq.) A. J. Paton Alter the Expression of Quorum Sensing-Related Virulence Factors and the Formation of Biofilm in Pseudomonas aeruginosa PAO1. Int J Mol Sci 2017; 18:ijms18061270. [PMID: 28613253 PMCID: PMC5486092 DOI: 10.3390/ijms18061270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
Platostoma rotundifolium (Briq.) A. J. Paton aerial parts are widely used in Burundi traditional medicine to treat infectious diseases. In order to investigate their probable antibacterial activities, crude extracts from P. rotundifolium were assessed for their bactericidal and anti-virulence properties against an opportunistic bacterial model, Pseudomonas aeruginosa PAO1. Whereas none of the tested extracts exert bacteriostatic and/or bactericidal proprieties, the ethyl acetate and dichloromethane extracts exhibit anti-virulence properties against Pseudomonas aeruginosa PAO1 characterized by an alteration in quorum sensing gene expression and biofilm formation without affecting bacterial viability. Bioguided fractionation of the ethyl acetate extract led to the isolation of major anti-virulence compounds that were identified from nuclear magnetic resonance and high-resolution molecular spectroscopy spectra as cassipourol, β-sitosterol and α-amyrin. Globally, cassipourol and β-sitosterol inhibit quorum sensing-regulated and -regulatory genes expression in las and rhl systems without affecting the global regulators gacA and vfr, whereas α-amyrin had no effect on the expression of these genes. These terpenoids disrupt the formation of biofilms at concentrations down to 12.5, 50 and 50 µM for cassipourol, β-sitosterol and α-amyrin, respectively. Moreover, these terpenoids reduce the production of total exopolysaccharides and promote flagella-dependent motilities (swimming and swarming). The isolated terpenoids exert a wide range of inhibition processes, suggesting a complex mechanism of action targeting P. aeruginosa virulence mechanisms which support the wide anti-infectious use of this plant species in traditional Burundian medicine.
Collapse
Affiliation(s)
- Tsiry Rasamiravaka
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
- Laboratoire de Biotechnologie et Microbiologie, Département de Biochimie Fondamentale et Appliquée, Faculté des Sciences, Université d'Antananarivo (UA), BP 906, Antananarivo 101, Madagascar.
| | - Jérémie Ngezahayo
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Centre de Recherche Universitaire en Pharmacopée et Médecine Traditionnelle (CRUPHAMET), Faculté des Sciences, Université du Burundi, BP 2700 Bujumbura, Burundi.
| | - Laurent Pottier
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Sofia Oliveira Ribeiro
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Florence Souard
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, 38000 Grenoble, France.
- Département de Pharmacochimie Moléculaire, Centre National de Recherche Scientifique, 38000 Grenoble, France.
| | - Léonard Hari
- Centre de Recherche Universitaire en Pharmacopée et Médecine Traditionnelle (CRUPHAMET), Faculté des Sciences, Université du Burundi, BP 2700 Bujumbura, Burundi.
| | - Caroline Stévigny
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| | - Pierre Duez
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Bâtiment VI, Chemin du Champ de Mars 25, 7000 Mons, Belgium.
| |
Collapse
|
23
|
Naidoo N, Pillay M. Bacterial pili, with emphasis on Mycobacterium tuberculosis curli pili: potential biomarkers for point-of care tests and therapeutics. Biomarkers 2016; 22:93-105. [PMID: 27797276 DOI: 10.1080/1354750x.2016.1252960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Novel biomarkers are essential for developing rapid diagnostics and therapeutic interventions Objective: This review aimed to highlight biomarker characterisation and assessment of unique bacterial pili. METHODS A PubMed search for bacterial pili, diagnostics, vaccine and therapeutics was performed, with emphasis on the well characterised pili. RESULTS In total, 46 papers were identified and reviewed. CONCLUSION Extensive analyses of pili enabled by advanced nanotechnology and whole genome sequencing provide evidence that they are strong biomarker candidates. Mycobacterium tuberculosis curli pili are emphasised as important epitopes for the development of much needed point-of-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Natasha Naidoo
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| | - Manormoney Pillay
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| |
Collapse
|
24
|
Rotcheewaphan S, Belisle JT, Webb KJ, Kim HJ, Spencer JS, Borlee BR. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c. MICROBIOLOGY (READING, ENGLAND) 2016; 162:1651-1661. [PMID: 27450520 PMCID: PMC5772806 DOI: 10.1099/mic.0.000339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
The second messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host-pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography-mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae.
Collapse
Affiliation(s)
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristofor J. Webb
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hee-Jin Kim
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
25
|
Zhou X, Qian G, Chen Y, Du L, Liu F, Yuen GY. PilG is Involved in the Regulation of Twitching Motility and Antifungal Antibiotic Biosynthesis in the Biological Control Agent Lysobacter enzymogenes. PHYTOPATHOLOGY 2015; 105:1318-1324. [PMID: 26360465 DOI: 10.1094/phyto-12-14-0361-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lysobacter enzymogenes strain C3 is a gliding bacterium which produces the antifungal secondary metabolite heat-stable antifungal factor (HSAF) and type IV pilus (T4P) as important mechanisms in biological control activity against fungal pathogens. To date, the regulators that control HSAF biosynthesis and T4P-dependent twitching motility in L. enzymogenes are poorly explored. In the present study, we addressed the role of pilG in the regulation of these two traits in L. enzymogenes. PilG of L. enzymogenes was found to be a response regulator, commonly known as a component of a two-component transduction system. Mutation of pilG in strain C3 abolished its ability to display spreading colony phenotype and cell movement at the colony margin, which is indicative of twitching motility; hence, PilG positively regulates twitching motility in L. enzymogenes. Mutation of pilG also enhanced HSAF production and the transcription of its key biosynthetic gene hsaf pks/nrps, suggesting that PilG plays a negative regulatory role in HSAF biosynthesis. This finding represents the first demonstration of the regulator PilG having a role in secondary metabolite biosynthesis in bacteria. Collectively, our results suggest that key ecological functions (HSAF production and twitching motility) in L. enzymogenes strain C3 are regulated in opposite directions by the same regulatory protein, PilG.
Collapse
Affiliation(s)
- Xue Zhou
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Guoliang Qian
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Yuan Chen
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Liangcheng Du
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Fengquan Liu
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Gary Y Yuen
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
26
|
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume. PLoS One 2015; 10:e0132791. [PMID: 26186595 PMCID: PMC4505864 DOI: 10.1371/journal.pone.0132791] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022] Open
Abstract
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.
Collapse
|
27
|
Leighton TL, Buensuceso RNC, Howell PL, Burrows LL. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environ Microbiol 2015; 17:4148-63. [PMID: 25808785 DOI: 10.1111/1462-2920.12849] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/27/2022]
Abstract
Type IV pili (T4P) are bacterial virulence factors involved in a wide variety of functions including deoxyribonucleic acid uptake, surface attachment, biofilm formation and twitching motility. While T4P are common surface appendages, the systems that assemble them and the regulation of their function differ between species. Pseudomonas aeruginosa, Neisseria spp. and Myxococcus xanthus are common model systems used to study T4P biology. This review focuses on recent advances in P. aeruginosa T4P structural biology, and the regulatory pathways controlling T4P biogenesis and function.
Collapse
Affiliation(s)
- Tiffany L Leighton
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Ryan N C Buensuceso
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - P Lynne Howell
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Lin P, Li Y, Dong K, Li Q. The Antibacterial Effects of an Antimicrobial Peptide Human β-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Curr Microbiol 2015; 71:170-6. [PMID: 25862466 DOI: 10.1007/s00284-015-0814-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 01/27/2023]
Abstract
Pseudomonas aeruginosa is one of the most opportunistic bacterial pathogens in human communities. Being a potential antibacterial agent, antimicrobial peptide human β-defensin 3-carbohydrate-binding domain (hBD3-CBD) was evaluated in this study by in vitro bactericidal test, special gene expressions, hBD3-CBD effects on biofilm formation assays, swimming, twitching, and swarming activities of P. aeruginosa PA14, and hBD3-CBD effects on the antibiotic 50 % minimal inhibitory concentration (MIC50) and 90 % minimal inhibitory concentration (MIC90) against clinical P. aeruginosa isolates. The MIC against P. aeruginosa PA14 was 32 μg/ml; hBD3-CBD showed significant bactericidal activities when the concentration reached 8 μg/ml, and when the concentration reached 2 μg/ml, hBD3-CBD successfully repressed the biofilm productions in P. aeruginosa PA14. hBD3-CBD could inhibit the in vitro swimming, twitching, and swarming activities of P. aeruginosa PA14. When 5 μg/ml hBD3-CBD was combined with antibiotics, it decreased the MIC50 and MIC90 of tetracycline, rifampicin, and streptomycin against clinical P. aeruginosa isolates. As new antibacterial agents, hBD3-CBD and other AMPs might be used together with antibiotics to deal with infections in the future, especially the skin and soft tissue infections of drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | | | | |
Collapse
|
29
|
Nolan LM, Cavaliere R, Turnbull L, Whitchurch CB. Extracellular ATP inhibits twitching motility-mediated biofilm expansion by Pseudomonas aeruginosa. BMC Microbiol 2015; 15:55. [PMID: 25879216 PMCID: PMC4355966 DOI: 10.1186/s12866-015-0392-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen that exploits damaged epithelia to cause infection. Type IV pili (tfp) are polarly located filamentous structures which are the major adhesins for attachment of P. aeruginosa to epithelial cells. The extension and retraction of tfp powers a mode of surface translocation termed twitching motility that is involved in biofilm development and also mediates the active expansion of biofilms across surfaces. Extracellular adenosine triphosphate (eATP) is a key “danger” signalling molecule that is released by damaged epithelial cells to alert the immune system to the potential presence of pathogens. As P. aeruginosa has a propensity for infecting damaged epithelial tissues we have explored the influence of eATP on tfp biogenesis and twitching motility-mediated biofilm expansion by P. aeruginosa. Results In this study we have found that eATP inhibits P. aeruginosa twitching motility-mediated expansion of interstitial biofilms at levels that are not inhibitory to growth. We have determined that eATP does not inhibit expression of the tfp major subunit, PilA, but reduces the levels of surface assembled tfp. We have also determined that the active twitching zone of expanding P. aeruginosa interstitial biofilms contain large quantities of eATP which may serve as a signalling molecule to co-ordinate cell movements in the expanding biofilm. The inhibition of twitching motility-mediated interstitial biofilm expansion requires eATP hydrolysis and does not appear to be mediated by the Chp chemosensory system. Conclusions Endogenous eATP produced by P. aeruginosa serves as a signalling molecule to co-ordinate complex multicellular behaviours of this pathogen. Given the propensity for P. aeruginosa to infect damaged epithelial tissues, our observations suggest that eATP released by damaged cells may provide a cue to reduce twitching motility of P. aeruginosa in order to establish infection at the site of damage. Furthermore, eATP produced by P. aeruginosa biofilms and by damaged epithelial cells may play a role in P. aeruginosa pathogenesis by inducing inflammatory damage and fibrosis. Our findings have significant implications in the development and pathogenesis of P. aeruginosa biofilm infections. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0392-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura M Nolan
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Rosalia Cavaliere
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Cynthia B Whitchurch
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
30
|
Abstract
Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.
Collapse
Affiliation(s)
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Tino Krell
- Department of Environmental Protection, CSIC, Estacion Experimental del Zaidin, Granada, Spain
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
31
|
Defining gene-phenotype relationships in Acinetobacter baumannii through one-step chromosomal gene inactivation. mBio 2014; 5:e01313-14. [PMID: 25096877 PMCID: PMC4128354 DOI: 10.1128/mbio.01313-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rates of infection with hospital-acquired Acinetobacter baumannii have exploded over the past decade due to our inability to limit persistence and effectively treat disease. A. baumannii quickly acquires antibiotic resistance, and its genome encodes mechanisms to tolerate biocides and desiccation, which enhance its persistence in hospital settings. With depleted antibiotic options, new methods to treat A. baumannii infections are desperately needed. A comprehensive understanding detailing A. baumannii cellular factors that contribute to its resiliency at genetic and mechanistic levels is vital to the development of new treatment options. Tools to rapidly dissect the A. baumannii genome will facilitate this goal by quickly advancing our understanding of A. baumannii gene-phenotype relationships. We describe here a recombination-mediated genetic engineering (recombineering) system for targeted genome editing of A. baumannii. We have demonstrated that this system can perform directed mutagenesis on wide-ranging genes and operons and is functional in various strains of A. baumannii, indicating its broad application. We utilized this system to investigate key gene-phenotype relationships in A. baumannii biology important to infection and persistence in hospitals, including oxidative stress protection, biocide resistance mechanisms, and biofilm formation. In addition, we have demonstrated that both the formation and movement of type IV pili play an important role in A. baumannii biofilm. Acinetobacter baumannii is the causative agent of hospital-acquired infections, including pneumonia and serious blood and wound infections. A. baumannii is an emerging pathogen and has become a threat to public health because it quickly develops antibiotic resistance, making treatment difficult or impossible. While the threat of A. baumannii is well recognized, our understanding of even its most basic biology lags behind. Analysis of A. baumannii cellular functions to identify potential targets for drug development has stalled due in part to laborious genetic techniques. Here we have pioneered a novel recombineering system that facilitates efficient genome editing in A. baumannii by single PCR products. This technology allows for rapid genome editing to quickly ascertain gene-phenotype relationships. To demonstrate the power of recombineering in dissecting A. baumannii biology, we use this system to establish key gene-phenotype relationships important to infection and persistence in hospitals, including oxidative stress protection, biocide resistance, and biofilm formation.
Collapse
|
32
|
Li Y, Qu HP, Liu JL, Wan HY. Correlation between group behavior and quorum sensing in Pseudomonas aeruginosa isolated from patients with hospital-acquired pneumonia. J Thorac Dis 2014; 6:810-7. [PMID: 24977007 DOI: 10.3978/j.issn.2072-1439.2014.03.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND This study investigated the correlation between the expression of the Las and Rhl quorum-sensing (QS) systems and the communal behavior (motility, biofilm formation, and pyocyanin production) of Pseudomonas aeruginosa (P. aeruginosa) isolated from patients with hospital-acquired pneumonia. METHODS We analyzed 138 P. aeruginosa isolates from 48 patients (30 men and 18 women; age 68.18±15.08 years). P. aeruginosa clinical isolates were assessed for Las and Rhl gene expression and bacterial motility, biofilm formation, and pyocyanin production. RESULTS P. aeruginosa swimming, twitching, and swarming motility positively correlated with the expression of LasI, LasR, and RhlI (P<0.05) but not with that of RhlR (P>0.05). At all analyzed time points, a significant positive correlation was found between biofilm formation and the expression of LasI, LasR (P<0.01), and RhlI (P<0.05 for day 1, P<0.01 for days 7 and 14), whereas RhlR expression positively correlated with biofilm formation only on day 14 (P<0.05). On days 1 and 7, positive correlation was observed between pyocyanin production and the levels of LasI and RhlI (P<0.05). In bacterial clearance cases, the expression of QS-related genes and the group behavior of the pathogen did not correlate (P>0.05). However, in cases of persistent P. aeruginosa infection, the changes in LasI and LasR gene expression were positively correlated with those in bacterial motility (P<0.05), and the changes in LasI, LasR, RhlI, and RhlR expression showed a significant positive association with those in biofilm formation (P<0.01). CONCLUSIONS In patients with hospital-acquired pneumonia, the expression of the Las and Rhl QS genes was associated with bacterial motility, biofilm formation, and pyocyanin production, suggesting an involvement of the QS genes in the clearance of pathogenic P. aeruginosa in patients.
Collapse
Affiliation(s)
- Yong Li
- 1 Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China ; 2 Department of Critical Care Medicine, 3 Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hong-Ping Qu
- 1 Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China ; 2 Department of Critical Care Medicine, 3 Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jia-Lin Liu
- 1 Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China ; 2 Department of Critical Care Medicine, 3 Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Huan-Ying Wan
- 1 Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China ; 2 Department of Critical Care Medicine, 3 Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
33
|
Abstract
Twitching motility is a mode of solid surface translocation that occurs under humid conditions on semisolid or solid surfaces, is dependent on the presence of retractile type IV pili and is independent of the presence of a flagellum. Surface translocation via twitching motility is powered by the extension and retraction of type IV pili and can manifest as a complex multicellular collective behavior that mediates the active expansion of colonies cultured on the surface of solidified nutrient media, and of interstitial colonies that are cultured at the interface between solidified nutrient media and an abiotic material such as the base of a petri dish or a glass coverslip. Here we describe two methods for assaying twitching motility mediated interstitial colony expansion in P. aeruginosa. The first method, the "Macroscopic Twitching Assay," can be used to determine if a strain is capable of twitching motility mediated interstitial colony expansion and can also be used to quantitatively assess the influence of mutation or environmental signals on this process. The second method, the "Microscopic Twitching Assay," can be used for detailed interrogation of the movements of individual cells or small groups of bacteria during twitching motility mediated colony expansion.
Collapse
Affiliation(s)
- Lynne Turnbull
- The ithree insitute, University of Technology Sydney, 123, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
34
|
Tribelli PM, Hay AG, López NI. The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One 2013; 8:e76685. [PMID: 24146909 PMCID: PMC3797731 DOI: 10.1371/journal.pone.0076685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas extremaustralis is a versatile Antarctic bacterium, able to grow under microaerobic and anaerobic conditions and is related to several non-pathogenic Pseudomonads. Here we report on the role of the global anaerobic regulator Anr, in the early steps of P. extremaustralis biofilm development. We found that the anr mutant was reduced in its ability to attach, to form aggregates and to display twitching motility but presented higher swimming motility than the wild type. In addition, microscopy revealed that the wild type biofilm contained more biomass and was thicker, but were less rough than that of the anr mutant. In silico analysis of the P. extremaustralis genome for Anr-like binding sites led to the identification of two biofilm-related genes as potential targets of this regulator. When measured using Quantitative Real Time PCR, we found that the anr mutant expressed lower levels of pilG, which encodes a component of Type IV pili and has been previously implicated in cellular adhesion. Levels of morA, involved in signal transduction and flagella development, were also lower in the mutant. Our data suggest that under low oxygen conditions, such as those encountered in biofilms, Anr differentially regulates aggregation and motility thus affecting the first stages of biofilm formation.
Collapse
Affiliation(s)
- Paula M. Tribelli
- IQUIBICEN-CONICET and Dpto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Nancy I. López
- IQUIBICEN-CONICET and Dpto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
35
|
Djonović S, Urbach JM, Drenkard E, Bush J, Feinbaum R, Ausubel JL, Traficante D, Risech M, Kocks C, Fischbach MA, Priebe GP, Ausubel FM. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 2013; 9:e1003217. [PMID: 23505373 PMCID: PMC3591346 DOI: 10.1371/journal.ppat.1003217] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/13/2013] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to replicate in the intercellular environment of a leaf.
Collapse
Affiliation(s)
- Slavica Djonović
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan M. Urbach
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eliana Drenkard
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jenifer Bush
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rhonda Feinbaum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan L. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David Traficante
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Martina Risech
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Christine Kocks
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Gregory P. Priebe
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, Andriantsimahavandy A, Rasamindrakotroka A, Duez P, El Jaziri M, Vandeputte OM. Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2013; 159:924-938. [PMID: 23449917 DOI: 10.1099/mic.0.064378-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Various species of the plant genus Dalbergia are traditionally used as medicine for sundry ailments and some of them have been shown recently to quench the virulence of Gram-positive and Gram-negative bacteria. Cell-to-cell communication mechanisms, quorum sensing (QS) in particular, are key regulators of virulence in many pathogenic bacteria. Screening n-hexane extracts of leaves, roots and bark of endemic Malagasy Dalbergia species for their capacity to antagonize QS mechanisms in Pseudomonas aeruginosa PAO1 showed that many reduced the expression of the QS-regulated genes lasB and rhlA. However, only the extract of Dalbergia trichocarpa bark (DTB) showed a significant reduction of QS gene expression without any effect on the aceA gene encoding a QS-independent isocitrate lyase. Further characterization of DTB impact on QS revealed that the QS systems las and rhl are inhibited and that swarming, twitching, biofilm formation and the production of pyocyanin, elastase and proteases are also hampered in the presence of the DTB extract. Importantly, compared with the known QS inhibitor naringenin, the DTB extract showed a stronger negative effect on twitching, biofilm formation and tobramycin resistance. Preliminary structural characterization of these potent biofilm disrupters suggests that they belong to the phytosterols. The strong inhibition of motility and biofilm formation suggests that the DTB extract contains agents disrupting biofilm architecture, which is an important observation in the context of the design of new drugs targeting biofilm-encapsulated pathogens.
Collapse
Affiliation(s)
- Tsiry Rasamiravaka
- Laboratoire de Formation et de Recherche en Biologie Médicale, Université d'Antananarivo, B.P. 566 Antananarivo 101, Madagascar.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Anaïs Jedrzejowski
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Martin Kiendrebeogo
- Laboratoire de Biochimie et de Chimie Appliquées, Université de Ouagadougou, 09 BP 848 Ouagadougou 09, Burkina Faso.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Sanda Rajaonson
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, B.P. 906 Antananarivo 101, Madagascar.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Denis Randriamampionona
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, B.P. 906 Antananarivo 101, Madagascar.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Christian Rabemanantsoa
- Laboratoire de Biodiversité et de Biotechnologie, Institut Malgache de Recherches Appliquées (IMRA), B.P. 3833 Avarabohitra Itaosy, Antananarivo 102, Madagascar
| | - Abel Andriantsimahavandy
- Laboratoire de Formation et de Recherche en Biologie Médicale, Université d'Antananarivo, B.P. 566 Antananarivo 101, Madagascar
| | - Andry Rasamindrakotroka
- Laboratoire de Formation et de Recherche en Biologie Médicale, Université d'Antananarivo, B.P. 566 Antananarivo 101, Madagascar
| | - Pierre Duez
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Olivier M Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| |
Collapse
|
37
|
Laanto E, Bamford JKH, Laakso J, Sundberg LR. Phage-driven loss of virulence in a fish pathogenic bacterium. PLoS One 2012; 7:e53157. [PMID: 23308090 PMCID: PMC3534065 DOI: 10.1371/journal.pone.0053157] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/26/2012] [Indexed: 01/17/2023] Open
Abstract
Parasites provide a selective pressure during the evolution of their hosts, and mediate a range of effects on ecological communities. Due to their short generation time, host-parasite interactions may also drive the virulence of opportunistic bacteria. This is especially relevant in systems where high densities of hosts and parasites on different trophic levels (e.g. vertebrate hosts, their bacterial pathogens, and virus parasitizing bacteria) co-exist. In farmed salmonid fingerlings, Flavobacterium columnare is an emerging pathogen, and phage that infect F. columnare have been isolated. However, the impact of these phage on their host bacterium is not well understood. To study this, four strains of F. columnare were exposed to three isolates of lytic phage and the development of phage resistance and changes in colony morphology were monitored. Using zebrafish (Danio rerio) as a model system, the ancestral rhizoid morphotypes were associated with a 25-100% mortality rate, whereas phage-resistant rough morphotypes that lost their virulence and gliding motility (which are key characteristics of the ancestral types), did not affect zebrafish survival. Both morphotypes maintained their colony morphologies over ten serial passages in liquid culture, except for the low-virulence strain, Os06, which changed morphology with each passage. To our knowledge, this is the first report of the effects of phage-host interactions in a commercially important fish pathogen where phage resistance directly correlates with a decline in bacterial virulence. These results suggest that phage can cause phenotypic changes in F. columnare outside the fish host, and antagonistic interactions between bacterial pathogens and their parasitic phage can favor low bacterial virulence under natural conditions. Furthermore, these results suggest that phage-based therapies can provide a disease management strategy for columnaris disease in aquaculture.
Collapse
Affiliation(s)
- Elina Laanto
- Centre of Excellence in Biological Interactions, Universities of Jyväskylä and Helsinki, Finland
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jaana K. H. Bamford
- Centre of Excellence in Biological Interactions, Universities of Jyväskylä and Helsinki, Finland
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jouni Laakso
- Centre of Excellence in Biological Interactions, Universities of Jyväskylä and Helsinki, Finland
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Lotta-Riina Sundberg
- Centre of Excellence in Biological Interactions, Universities of Jyväskylä and Helsinki, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
38
|
Nolan LM, Beatson SA, Croft L, Jones PM, George AM, Mattick JS, Turnbull L, Whitchurch CB. Extragenic suppressor mutations that restore twitching motility to fimL mutants of Pseudomonas aeruginosa are associated with elevated intracellular cyclic AMP levels. Microbiologyopen 2012; 1:490-501. [PMID: 23233287 PMCID: PMC3535393 DOI: 10.1002/mbo3.49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/21/2012] [Accepted: 11/01/2012] [Indexed: 01/19/2023] Open
Abstract
Cyclic AMP (cAMP) is a signaling molecule that is involved in the regulation of multiple virulence systems of the opportunistic pathogen Pseudomonas aeruginosa. The intracellular concentration of cAMP in P. aeruginosa cells is tightly controlled at the levels of cAMP synthesis and degradation through regulation of the activity and/or expression of the adenylate cyclases CyaA and CyaB or the cAMP phosphodiesterase CpdA. Interestingly, mutants of fimL, which usually demonstrate defective twitching motility, frequently revert to a wild-type twitching-motility phenotype presumably via the acquisition of an extragenic suppressor mutation(s). In this study, we have characterized five independent fimL twitching-motility revertants and have determined that all have increased intracellular cAMP levels compared with the parent fimL mutant. Whole-genome sequencing revealed that only one of these fimL revertants has acquired a loss-of-function mutation in cpdA that accounts for the elevated levels of intracellular cAMP. As mutation of cpdA did not account for the restoration of twitching motility observed in the other four fimL revertants, these observations suggest that there is at least another, as yet unidentified, site of extragenic suppressor mutation that can cause phenotypic reversion in fimL mutants and modulation of intracellular cAMP levels of P. aeruginosa.
Collapse
Affiliation(s)
- Laura M Nolan
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| |
Collapse
|
40
|
The urinary antibiotic 5-nitro-8-hydroxyquinoline (Nitroxoline) reduces the formation and induces the dispersal of Pseudomonas aeruginosa biofilms by chelation of iron and zinc. Antimicrob Agents Chemother 2012; 56:6021-5. [PMID: 22926564 DOI: 10.1128/aac.01484-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since cations have been reported as essential regulators of biofilm, we investigated the potential of the broad-spectrum antimicrobial and cation-chelator nitroxoline as an antibiofilm agent. Biofilm mass synthesis was reduced by up to 80% at sub-MIC nitroxoline concentrations in Pseudomonas aeruginosa, and structures formed were reticulate rather than compact. In preformed biofilms, viable cell counts were reduced by 4 logs at therapeutic concentrations. Complexation of iron and zinc was demonstrated to underlie nitroxoline's potent antibiofilm activity.
Collapse
|
41
|
Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A, Carvunis AR, Ausubel FM. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog 2012; 8:e1002813. [PMID: 22911607 PMCID: PMC3406104 DOI: 10.1371/journal.ppat.1002813] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.
Collapse
Affiliation(s)
- Rhonda L Feinbaum
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl Environ Microbiol 2012; 78:6900-7. [PMID: 22820333 DOI: 10.1128/aem.01790-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alga-bacterium interactions are crucial for aggregate formation and carbon cycling in aquatic systems. To understand the initiation of these interactions, we investigated bacterial chemotaxis within a bilateral model system. Marinobacter adhaerens HP15 has been demonstrated to attach to the diatom Thalassiosira weissflogii and induce transparent exopolymeric particle and aggregate formation. M. adhaerens possesses one polar flagellum and is highly motile. Bacterial cells were attracted to diatom cells, as demonstrated by addition of diatom cell homogenate or diatom culture supernatant to soft agar, suggesting that chemotaxis might be important for the interaction of M. adhaerens with diatoms. Three distinct chemotaxis-associated gene clusters were identified in the genome sequence of M. adhaerens, with the clusters showing significant sequence similarities to those of Pseudomonas aeruginosa PAO1. Mutations in the genes cheA, cheB, chpA, and chpB, which encode histidine kinases and methylesterases and which are putatively involved in either flagellum-associated chemotaxis or pilus-mediated twitching motility, were generated and mutants with the mutations were phenotypically analyzed. ΔcheA and ΔcheB mutants were found to be swimming deficient, and all four mutants were impaired in biofilm formation on abiotic surfaces. Comparison of the HP15 wild type and its chemotaxis mutants in cocultures with the diatom revealed that the fraction of bacteria attaching to the diatom decreased significantly for mutants in comparison to that for the wild type. Our results highlight the importance of M. adhaerens chemotaxis in initiation of its interaction with the diatom. In-depth knowledge of these basic processes in interspecies interactions is pivotal to obtain a systematic understanding of organic matter flux and nutrient cycling in marine ecosystems.
Collapse
|
43
|
Buschart A, Sachs S, Chen X, Herglotz J, Krause A, Reinhold-Hurek B. Flagella mediate endophytic competence rather than act as MAMPS in rice-Azoarcus sp. strain BH72 interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:191-9. [PMID: 22235904 DOI: 10.1094/mpmi-05-11-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azoarcus sp. strain BH72 is an endophytic betaproteobacterium able to colonize rice roots without induction of visible disease symptoms. BH72 possesses one polar flagellum. The genome harbors three copies of putative fliC genes, generally encoding the major structural protein flagellin. It is not clear whether, in endophytic interactions, flagella mediate endophytic competence or act as MAMPs (microbe-associated molecular patterns) inducing plant defense responses. Therefore, possible functions of the three FliC proteins were investigated. Only fliC3 was found to be highly expressed in pure culture and in association with rice roots and to be required for bacterial motility, suggesting that it encodes the major flagellin. Endophytic colonization of rice roots was significantly reduced in the in-frame deletion mutant, while the establishment of microcolonies on the root surface was not affected. Moreover, an elicitation of defense responses related to FliC3 was not observed. In conclusion, our data support the hypothesis that FliC3 does not play a major role as a MAMP but is required for endophytic colonization in the Azoarcus-rice interaction, most likely for spreading inside the plant.
Collapse
Affiliation(s)
- Anna Buschart
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Burdman S, Bahar O, Parker JK, De La Fuente L. Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria. Genes (Basel) 2011; 2:706-35. [PMID: 24710288 PMCID: PMC3927602 DOI: 10.3390/genes2040706] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.
Collapse
Affiliation(s)
- Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofir Bahar
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
45
|
Cursino L, Galvani CD, Athinuwat D, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1198-1206. [PMID: 21692637 DOI: 10.1094/mpmi-10-10-0252] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Palnt-Microbe Biology, Cornell University -- New York State Agricultural Experimental Station, Geneva, NY 14456, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect Immun 2011; 79:4094-104. [PMID: 21788391 DOI: 10.1128/iai.00193-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The stringent response is a regulatory system that allows bacteria to sense and adapt to nutrient-poor environments. The central mediator of the stringent response is the molecule guanosine 3',5'-bispyrophosphate (ppGpp), which is synthesized by the enzymes RelA and SpoT and which is also degraded by SpoT. Our laboratory previously demonstrated that a relA mutant of Pseudomonas aeruginosa, the principal cause of lung infections in cystic fibrosis patients, was attenuated in virulence in a Drosophila melanogaster feeding model of infection. In this study, we examined the role of spoT in P. aeruginosa virulence. We generated an insertion mutation in spoT within the previously constructed relA mutant, thereby producing a ppGpp-devoid strain. The relA spoT double mutant was unable to establish a chronic infection in D. melanogaster and was also avirulent in the rat lung agar bead model of infection, a model in which the relA mutant is fully virulent. Synthesis of the virulence determinants pyocyanin, elastase, protease, and siderophores was impaired in the relA spoT double mutant. This mutant was also defective in swarming and twitching, but not in swimming motility. The relA spoT mutant and, to a lesser extent, the relA mutant were less able to withstand stresses such as heat shock and oxidative stress than the wild-type strain PAO1, which may partially account for the inability of the relA spoT mutant to successfully colonize the rat lung. Our results indicate that the stringent response, and SpoT in particular, is a crucial regulator of virulence processes in P. aeruginosa.
Collapse
|
47
|
Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production. Arch Microbiol 2010; 193:227-34. [PMID: 21184216 DOI: 10.1007/s00203-010-0665-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/18/2010] [Accepted: 11/30/2010] [Indexed: 01/29/2023]
Abstract
Unsaturated fatty acids (UFAs) play a pivotal role in maintaining a functional cellular membrane in response to changes in environmental factors. Unlike in other gram-negative bacteria, in Pseudomonas aeruginosa, UFA synthesis is governed by 2 pathways: (1) the anaerobic FabAB-mediated pathway and (2) the aerobic inducible DesA/DesB desaturase pathway. Although fatty acids are functional constituents of several known virulence factors, the roles of Pseudomonas aeruginosa fatty acid synthesis enzymes in virulence factor production and pathogenesis have not yet been examined. Previous studies have shown that the mycobacterial DesA1 and DesA3 proteins are required for full virulence. Therefore, we assessed the effect, if any, of mutations affecting the various UFA synthesis enzymes on virulence factor production. Testing of individual mutations or combinations of mutations revealed that desB mutants were severely deficient in the production of proteolytic enzymes, pyocyanin, and rhamnolipid. In addition, the desB mutants showed impaired swarming and twitching motilities and reduced virulence in the Caenorhabditis elegans infection model. Taken together, these results demonstrate that DesB is not only a fatty acid desaturase but also a factor required for full virulence in Pseudomonas aeruginosa. DesB may thus constitute a novel drug target.
Collapse
|
48
|
Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol Microbiol 2010; 76:889-904. [PMID: 20345659 PMCID: PMC2906755 DOI: 10.1111/j.1365-2958.2010.07135.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signalling molecule adenosine 3', 5'-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems.
Collapse
Affiliation(s)
- Nanette B. Fulcher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
| | - Phillip M. Holliday
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Erich Klem
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
| | - Martin J. Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Matthew C. Wolfgang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
49
|
Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. J Bacteriol 2009; 192:994-1010. [PMID: 20008072 DOI: 10.1128/jb.01390-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of many virulence factors, including type IV pili, which are required for colonization of host tissues and for twitching motility. Type IV pilus function is controlled in part by the Chp chemosensory system, which includes a histidine kinase, ChpA, and two CheY-like response regulators, PilG and PilH. How the Chp components interface with the type IV pilus motor proteins PilB, PilT, and PilU is unknown. We present genetic evidence confirming the role of ChpA, PilG, and PilB in the regulation of pilus extension and the role of PilH and PilT in regulating pilus retraction. Using informative double and triple mutants, we show that (i) ChpA, PilG, and PilB function upstream of PilH, PilT, and PilU; (ii) that PilH enhances PilT function; and (iii) that PilT and PilB retain some activity in the absence of signaling input from components of the Chp system. By site-directed mutagenesis, we demonstrate that the histidine kinase domain of ChpA and the phosphoacceptor sites of both PilG and PilH are required for type IV pilus function, suggesting that they form a phosphorelay system important in the regulation of pilus extension and retraction. Finally, we present evidence suggesting that pilA transcription is regulated by intracellular PilA levels. We show that PilA is a negative regulator of pilA transcription in P. aeruginosa and that the Chp system functionally regulates pilA transcription by controlling PilA import and export.
Collapse
|
50
|
Kato J, Kim HE, Takiguchi N, Kuroda A, Ohtake H. Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng 2008; 106:1-7. [PMID: 18691523 DOI: 10.1263/jbb.106.1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/14/2008] [Indexed: 11/17/2022]
Abstract
Motile bacteria sense changes in the concentration of chemicals in environments and respond in a behavioral manner. This behavioral response is called chemotaxis. Bacterial chemotaxis can be viewed as an important prelude to metabolism, prey-predator relationships, symbiosis, infections, and other ecological interactions in biological communities. Genome analysis reveals that a large number of environmental motile bacteria possess a number of genes involved in chemosensing and chemotatic signal transduction. Pseudomonas aeruginosa has a very complex chemosensory system with more than 20 chemotaxis (che) genes in five distinct clusters and 26 chemoreceptor (methyl-accepting chemotaxis protein [mcp]) genes. Among the 26 MCPs of P. aeruginosa, nine have been identified as MCPs for amino acids, inorganic phosphate, oxygen, ethylene, and volatile chlorinated aliphatic hydrocarbons, whereas 3 MCPs were demonstrated to be involved in biofilm formation and biosynthesis of type IV pilus. Six che genes are essential for chemotactic responses, while genes in Pil-Chp cluster and Wsp cluster are involved in type IV pilus synthesis and twitching motility and biofilm formation, respectively. P. aeruginosa, with its complex chemotaxis system, is a better model microorganism for investigating ecological aspects of chemotaxis in environmental bacteria than Escherichia coli and Salmonella enterica serovar Typhimurium, which possess a relatively simpler chemotaxis system.
Collapse
Affiliation(s)
- Junichi Kato
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| | | | | | | | | |
Collapse
|