1
|
Wightman T, Muszyński A, Kelly SJ, Sullivan JT, Smart CJ, Stougaard J, Ferguson S, Azadi P, Ronson CW. Rhizobial Secretion of Truncated Exopolysaccharides Severely Impairs the Mesorhizobium-Lotus Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:662-675. [PMID: 38904752 DOI: 10.1094/mpmi-03-24-0024-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Todd Wightman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, U.S.A
| | - Simon J Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlan J Smart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, U.S.A
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Kim J, Jeong JP, Kim Y, Jung S. Physicochemical and Rheological Properties of Succinoglycan Overproduced by Sinorhizobium meliloti 1021 Mutant. Polymers (Basel) 2024; 16:244. [PMID: 38257044 PMCID: PMC10819756 DOI: 10.3390/polym16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Commercial bacterial exopolysaccharide (EPS) applications have been gaining interest; therefore, strains that provide higher yields are required for industrial-scale processes. Succinoglycan (SG) is a type of bacterial anionic exopolysaccharide produced by Rhizobium, Agrobacterium, and other soil bacterial species. SG has been widely used as a pharmaceutical, cosmetic, and food additive based on its properties as a thickener, texture enhancer, emulsifier, stabilizer, and gelling agent. An SG-overproducing mutant strain (SMC1) was developed from Sinorhizobium meliloti 1021 through N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutation, and the physicochemical and rheological properties of SMC1-SG were analyzed. SMC1 produced (22.3 g/L) 3.65-fold more SG than did the wild type. Succinoglycan (SMC1-SG) overproduced by SMC1 was structurally characterized by FT-IR and 1H NMR spectroscopy. The molecular weights of SG and SMC1-SG were 4.20 × 105 and 4.80 × 105 Da, respectively, as determined by GPC. Based on DSC and TGA, SMC1-SG exhibited a higher endothermic peak (90.9 °C) than that of SG (77.2 °C). Storage modulus (G') and loss modulus (G″) measurements during heating and cooling showed that SMC1-SG had improved thermal behavior compared to that of SG, with intersections at 74.9 °C and 72.0 °C, respectively. The SMC1-SG's viscosity reduction pattern was maintained even at high temperatures (65 °C). Gelation by metal cations was observed in Fe3+ and Cr3+ solutions for both SG and SMC1-SG. Antibacterial activities of SG and SMC1-SG against Escherichia coli and Staphylococcus aureus were also observed. Therefore, like SG, SMC1-SG may be a potential biomaterial for pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Jaeyul Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.K.); (J.-p.J.); (Y.K.)
| | - Jae-pil Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.K.); (J.-p.J.); (Y.K.)
| | - Yohan Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.K.); (J.-p.J.); (Y.K.)
| | - Seunho Jung
- Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF. Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti. J Proteome Res 2023; 22:1682-1694. [PMID: 37017314 PMCID: PMC10834056 DOI: 10.1021/acs.jproteome.2c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.
Collapse
Affiliation(s)
- Francisco Javier Albicoro
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Carla Martini
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA. USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA. USA
| | - Antonio Lagares
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Gao M, Liu Z, Zhao Z, Wang Z, Hu X, Jiang Y, Yan J, Li Z, Zheng Z, Zhan X. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp. Int J Biol Macromol 2022; 205:193-202. [PMID: 35181324 DOI: 10.1016/j.ijbiomac.2022.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
Abstract
Curdlan is a neutral, water-insoluble, unbranched, linear β-(1,3)-glucan. This study explored the roles of exoR and exoX in curdlan biosynthesis in Agrobacterium sp. ATCC 31749. The microcapsule biosynthesis of ΔexoR strain was reduced, and the motility of this strain increased remarkably compared with the wild-type (WT) strain during the cell growth phase. The curdlan yields of ΔexoR and ΔexoX strains enhanced by 19% and 17%, and the glucose utilization increased by 12% and 11%, respectively, compared with the WT strain during batch fermentation. By contrast, the curdlan yields of exoR and exoX overexpression strains decreased by 28% and 33%, respectively. The gel strength produced by ΔexoR and exoX overexpression strains decreased compared with the WT strain. RT-qPCR analysis at the transcriptional level revealed that key genes in exopolysaccharide synthesis and central metabolic pathways were up-regulated in ΔexoX and ΔexoR strains during gel production. Metabolomics analysis of ΔexoR and ΔexoX mutants proved the rates of central metabolic and electron transport chain were accelerated.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhilei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhongsheng Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Jiajun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhiyong Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Pirhanov A, Bridges CM, Goodwin RA, Guo YS, Furrer J, Shor LM, Gage DJ, Cho YK. Optogenetics in Sinorhizobium meliloti Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure. ACS Synth Biol 2021; 10:345-356. [PMID: 33465305 DOI: 10.1021/acssynbio.0c00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium Sinorhizobium meliloti. By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in S. meliloti. The successful implementation of optically controlled gene expression in S. meliloti enables systematic investigation of how genotype and microenvironmental factors together shape phenotype in situ.
Collapse
Affiliation(s)
- Azady Pirhanov
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Charles M. Bridges
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Reed A. Goodwin
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi-Syuan Guo
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jessica Furrer
- Department of Computer Science, Physics, and Engineering, Benedict College, Columbia, South Carolina 29204, United States
| | - Leslie M. Shor
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Daniel J. Gage
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yong Ku Cho
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Sun X, Zhang J. Bacterial exopolysaccharides: Chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 2021; 173:481-490. [PMID: 33493567 DOI: 10.1016/j.ijbiomac.2021.01.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
In recent decades, the composition, structure, biosynthesis, and function of bacterial extracellular polysaccharides (EPS) have been extensively studied. EPS are synthesized through different biosynthetic pathways. The genes responsible for EPS synthesis are usually clustered on the genome or large plasmids of bacteria. Generally, different EPS synthesis gene clusters direct the synthesis of EPS with different chemical structures and biological activities. A better understanding of the gene functions involved in EPS biosynthesis is critical for the production of EPS with special biological activities. Genetic engineering methods are usually used to study EPS synthesis related genes. This review organizes the available information on EPS, including their structures, synthesis of related genes, and highlights the research progress of modifying EPS gene clusters through gene-editing methods.
Collapse
Affiliation(s)
- Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
7
|
Matsumoto Y, Miyake K, Ozawa K, Baba Y, Kusube T. Bicarbonate and unsaturated fatty acids enhance capsular polysaccharide synthesis gene expression in oral streptococci, Streptococcus anginosus. J Biosci Bioeng 2019; 128:511-517. [PMID: 31130336 DOI: 10.1016/j.jbiosc.2019.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/15/2022]
Abstract
We recently reported on the capsular polysaccharide (CP) synthesis (cps) genes of the oral streptococci, Streptococcus anginosus. In this study, we investigate the effects of carbon dioxide (CO2), bicarbonate (HCO3-) and unsaturated fatty acids (UFAs) on CP synthesis of S. anginosus. We found that CP production increased when bacteria were exposed to high concentrations of CO2. This increase was similarly observed in the presence of sodium bicarbonate (NaHCO3) under atmospheric condition. Since ectopic expression of carbonic anhydrase, which converts CO2 to HCO3-, eliminated the requirement for CO2 in CP production and growth of S. anginosus lacking this enzyme, it seemed that HCO3- is an essential factor for CP production. Furthermore, UFAs also stimulated the CP production. Promoter-reporter assay and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis confirmed that stimulation of CP production occurs at the transcription level. The results of the promoter assays suggest that the expression and stimulation of cps genes by HCO3- or UFAs require the cpsA gene, which is located in the first position of the cps operon. With respect to the relationship between HCO3-and UFAs, HCO3- may stimulate UFA synthesis pathway at transcription level. Therefore, it is possible that UFAs are definitive signals for the CP production in S. anginosus.
Collapse
Affiliation(s)
- Yuko Matsumoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Katsuhide Miyake
- Department of Environmental Science and Technology, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya, Aichi 468-8502, Japan.
| | - Kento Ozawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Yasunori Baba
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Takasei Kusube
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
8
|
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A. Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants. Genes (Basel) 2017; 8:E360. [PMID: 29194398 PMCID: PMC5748678 DOI: 10.3390/genes8120360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Rhizobia dwell and multiply in the soil and represent a unique group of bacteria able to enter into a symbiotic interaction with plants from the Fabaceae family and fix atmospheric nitrogen inside de novo created plant organs, called nodules. One of the key determinants of the successful interaction between these bacteria and plants are exopolysaccharides, which represent species-specific homo- and heteropolymers of different carbohydrate units frequently decorated by non-carbohydrate substituents. Exopolysaccharides are typically built from repeat units assembled by the Wzx/Wzy-dependent pathway, where individual subunits are synthesized in conjunction with the lipid anchor undecaprenylphosphate (und-PP), due to the activity of glycosyltransferases. Complete oligosaccharide repeat units are transferred to the periplasmic space by the activity of the Wzx flippase, and, while still being anchored in the membrane, they are joined by the polymerase Wzy. Here we have focused on the genetic control over the process of exopolysaccharides (EPS) biosynthesis in rhizobia, with emphasis put on the recent advancements in understanding the mode of action of the key proteins operating in the pathway. A role played by exopolysaccharide in Rhizobium-legume symbiosis, including recent data confirming the signaling function of EPS, is also discussed.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
9
|
Xu L, Cheng R, Li J, Wang Y, Zhu B, Ma S, Zhang W, Dong W, Wang S, Zhang J. Identification of substituent groups and related genes involved in salecan biosynthesis in Agrobacterium sp. ZX09. Appl Microbiol Biotechnol 2016; 101:585-598. [DOI: 10.1007/s00253-016-7814-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/07/2016] [Accepted: 08/15/2016] [Indexed: 01/02/2023]
|
10
|
Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight. mBio 2016; 7:mBio.00606-16. [PMID: 27329751 PMCID: PMC4916376 DOI: 10.1128/mbio.00606-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mutants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti exoH mutants that cannot succinylate succinoglycan are also unable to form infection threads, despite the fact that they make large quantities of succinoglycan. Succinoglycan produced by exoH mutants is refractory to cleavage by the glycanases encoded by exoK and exsH, and thus succinoglycan produced by exoH mutants is made only in the high-molecular-weight (HMW) form. One interpretation of the symbiotic defect of exoH mutants is that the low-molecular-weight (LMW) form of succinoglycan is required for infection thread formation. However, our data demonstrate that production of the HMW form of succinoglycan by S. meliloti 1021 is sufficient for invasion of the host M. truncatula and that the LMW form is not required. Here, we show that S. meliloti strains deficient in the exoK- and exsH-encoded glycanases invade M. truncatula and form a productive symbiosis, although they do this with somewhat less efficiency than the wild type. We have also characterized the polysaccharides produced by these double glycanase mutants and determined that they consist of only HMW succinoglycan and no detectable LMW succinoglycan. This demonstrates that LMW succinoglycan is not required for host invasion. These results suggest succinoglycan function is not dependent upon the presence of a small, readily diffusible form. Sinorhizobium meliloti is a bacterium that forms a beneficial symbiosis with legume host plants. S. meliloti and other rhizobia convert atmospheric nitrogen to ammonia, a nutrient source for the host plant. To establish the symbiosis, rhizobia must invade plant roots, supplying the proper signals to prevent a plant immune response during invasion. A polysaccharide, succinoglycan, produced by S. meliloti is required for successful invasion. Here, we show that the critical feature of succinoglycan that allows infection to proceed is the attachment of a “succinyl” chemical group and that the chain length of succinoglycan is much less important for its function. We also show that none of the short-chain versions of succinoglycan is produced in the absence of two chain-cleaving enzymes.
Collapse
|
11
|
Gillan DC. Metal resistance systems in cultivated bacteria: are they found in complex communities? Curr Opin Biotechnol 2016; 38:123-30. [DOI: 10.1016/j.copbio.2016.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
|
12
|
Dabral N, Jain-Gupta N, Seleem MN, Sriranganathan N, Vemulapalli R. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide. Front Cell Infect Microbiol 2015; 5:54. [PMID: 26157707 PMCID: PMC4478442 DOI: 10.3389/fcimb.2015.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/10/2015] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.
Collapse
Affiliation(s)
- Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| | - Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| |
Collapse
|
13
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
14
|
The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. J Bacteriol 2015; 197:1792-806. [PMID: 25777671 DOI: 10.1128/jb.02626-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, three NodD transcriptional regulators activate bacterial nodulation (nod) gene expression. NodD1 and NodD2 require plant compounds to activate nod genes. The NodD3 protein does not require exogenous compounds to activate nod gene expression; instead, another transcriptional regulator, SyrM, activates nodD3 expression. In addition, NodD3 can activate syrM expression. SyrM also activates expression of another gene, syrA, which when overexpressed causes a dramatic increase in exopolysaccharide production. In a previous study, we identified more than 200 genes with altered expression in a strain overexpressing nodD3. In this work, we define the transcriptomes of strains overexpressing syrM or syrA. The syrM, nodD3, and syrA overexpression transcriptomes share similar gene expression changes; analyses imply that nodD3 and syrA are the only targets directly activated by SyrM. We propose that most of the gene expression changes observed when nodD3 is overexpressed are due to NodD3 activation of syrM expression, which in turn stimulates SyrM activation of syrA expression. The subsequent increase in SyrA abundance results in broad changes in gene expression, most likely mediated by the ChvI-ExoS-ExoR regulatory circuit. IMPORTANCE Symbioses with bacteria are prevalent across the animal and plant kingdoms. Our system of study, the rhizobium-legume symbiosis (Sinorhizobium meliloti and Medicago spp.), involves specific host-microbe signaling, differentiation in both partners, and metabolic exchange of bacterial fixed nitrogen for host photosynthate. During this complex developmental process, both bacteria and plants undergo profound changes in gene expression. The S. meliloti SyrM-NodD3-SyrA and ChvI-ExoS-ExoR regulatory circuits affect gene expression and are important for optimal symbiosis. In this study, we defined the transcriptomes of S. meliloti overexpressing SyrM or SyrA. In addition to identifying new targets of the SyrM-NodD3-SyrA regulatory circuit, our work further suggests how it is linked to the ChvI-ExoS-ExoR regulatory circuit.
Collapse
|
15
|
PssP2 is a polysaccharide co-polymerase involved in exopolysaccharide chain-length determination in Rhizobium leguminosarum. PLoS One 2014; 9:e109106. [PMID: 25268738 PMCID: PMC4182512 DOI: 10.1371/journal.pone.0109106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.
Collapse
|
16
|
A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 2014; 98:7719-33. [DOI: 10.1007/s00253-014-5940-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
17
|
The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa. Appl Environ Microbiol 2013; 79:7150-9. [PMID: 24038694 DOI: 10.1128/aem.02225-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.
Collapse
|
18
|
Mendis HC, Queiroux C, Brewer TE, Davis OM, Washburn BK, Jones KM. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1089-1105. [PMID: 23656330 DOI: 10.1094/mpmi-03-13-0087-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The β-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.
Collapse
Affiliation(s)
- Hajeewaka C Mendis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yan S, Wang N, Chen Z, Wang Y, He N, Peng Y, Li Q, Deng X. Genes encoding the production of extracellular polysaccharide bioflocculant are clustered on a 30-kb DNA segment in Bacillus licheniformis. Funct Integr Genomics 2013; 13:425-34. [DOI: 10.1007/s10142-013-0333-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
20
|
Kelly SJ, Muszyński A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW. Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:319-29. [PMID: 23134480 DOI: 10.1094/mpmi-09-12-0227-r] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rhizobial surface polysaccharides are required for nodule formation on the roots of at least some legumes but the mechanisms by which they act are yet to be determined. As a first step to investigate the function of exopolysaccharide (EPS) in the formation of determinate nodules, we isolated Mesorhizobium loti mutants affected in various steps of EPS biosynthesis and characterized their symbiotic phenotypes on two Lotus spp. The wild-type M. loti R7A produced both high molecular weight EPS and lower molecular weight (LMW) polysaccharide fractions whereas most mutant strains produced only LMW fractions. Mutants affected in predicted early biosynthetic steps (e.g., exoB) formed nitrogen-fixing nodules on Lotus corniculatus and L. japonicus 'Gifu', whereas mutants affected in mid or late biosynthetic steps (e.g., exoU) induced uninfected nodule primordia and, occasionally, a few infected nodules following a lengthy delay. These mutants were disrupted at the stage of infection thread (IT) development. Symbiotically defective EPS and Nod factor mutants functionally complemented each other in co-inoculation experiments. The majority of full-length IT observed harbored only the EPS mutant strain and did not show bacterial release, whereas the nitrogen-fixing nodules contained both mutants. Examination of the symbiotic proficiency of the exoU mutant on various L. japonicus ecotypes revealed that both host and environmental factors were linked to the requirement for EPS. These results reveal a complex function for M. loti EPS in determinate nodule formation and suggest that EPS plays a signaling role at the stages of both IT initiation and bacterial release.
Collapse
Affiliation(s)
- Simon J Kelly
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Sinorhizobium meliloti ExoR regulates the production of succinoglycan and flagella through the ExoS/ChvI two-component regulatory system. ExoR has been proposed to inhibit the ExoS sensor through direct interaction in the periplasm. To understand how ExoR suppression of ExoS is relieved, which is required for the expression of ExoS/ChvI-regulated symbiosis genes, we characterized wild-type ExoR and ExoR95 mutant proteins. In addition to the previously identified precursor and mature forms of ExoR (designated ExoR(p) and ExoR(m), respectively), we detected a 20-kDa form of ExoR (designated ExoR(c20)) derived from the wild-type ExoR protein, but not from the ExoR95 mutant protein. ExoR(c20) was isolated directly from S. meliloti periplasm to identify its N-terminal amino acids and the site of the proteolysis, which is highly conserved among ExoR homologs. ExoR(c20) retains the C terminus of the wild-type ExoR. When expressed directly, ExoR(c20) did not complement the exoR95 mutation, suggesting that ExoR(c20) does not function directly in the ExoR-ExoS/ChvI regulatory pathway and that ExoR(m) is the functional form of ExoR. A single-amino-acid change (ExoRL81A) at the site of ExoR periplasmic proteolysis resulted in the reduction of the amount of ExoR(m) and the loss of the regulatory function of the ExoR protein. These findings suggest that ExoR(m) is a target of periplasmic proteolysis and that the amount of ExoR(m) could be reduced through effective proteolysis to relieve its suppression of ExoS.
Collapse
|
22
|
Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 2011; 12:7898-933. [PMID: 22174640 PMCID: PMC3233446 DOI: 10.3390/ijms12117898] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., Lublin 20-033, Poland; E-Mail: ; Tel.: +48-81-537-5974
| |
Collapse
|
23
|
Berleman JE, Vicente JJ, Davis AE, Jiang SY, Seo YE, Zusman DR. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 2011; 6:e23920. [PMID: 21886839 PMCID: PMC3158785 DOI: 10.1371/journal.pone.0023920] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 02/02/2023] Open
Abstract
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.
Collapse
Affiliation(s)
- James E. Berleman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Juan J. Vicente
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Annie E. Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sharon Y. Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Young-Eun Seo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David R. Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yurist-Doutsch S, Abu-Qarn M, Battaglia F, Morris HR, Hitchen PG, Dell A, Eichler J. AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol Microbiol 2008; 69:1234-45. [PMID: 18631242 DOI: 10.1111/j.1365-2958.2008.06352.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins in all three domains of life can experience N-glycosylation. The steps involved in the archaeal version of this post-translational modification remain largely unknown. Hence, as the next step in ongoing efforts to identify components of the N-glycosylation pathway of the halophilic archaeon Haloferax volcanii, the involvement of three additional gene products in the biosynthesis of the pentasaccharide decorating the S-layer glycoprotein was demonstrated. The genes encoding AglF, AglI and AglG are found immediately upstream of the gene encoding the archaeal oligosaccharide transferase, AglB. Evidence showing that AglF and AglI are involved in the addition of the hexuronic acid found at position three of the pentasaccharide is provided, while AglG is shown to contribute to the addition of the hexuronic acid found at position two. Given their proximities in the H. volcanii genome, the transcription profiles of aglF, aglI, aglG and aglB were considered. While only aglF and aglI share a common promoter, transcription of the four genes is co-ordinated, as revealed by determining transcript levels in H. volcanii cells raised in different growth conditions. Such changes in N-glycosylation gene transcription levels offer additional support for the adaptive role of this post-translational modification in H. volcanii.
Collapse
|
25
|
Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR-dependent regulation of two promoters. J Bacteriol 2008; 190:3456-66. [PMID: 18344362 DOI: 10.1128/jb.00062-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depending on the phosphate concentration encountered in the environment Sinorhizobium meliloti 2011 synthesizes two different exopolysaccharides (EPS). Galactoglucan (EPS II) is produced under phosphate starvation but also in the presence of extra copies of the transcriptional regulator WggR (ExpG) or as a consequence of a mutation in mucR. The galactoglucan biosynthesis gene cluster contains the operons wga (expA), wge (expE), wgd (expD), and wggR (expG). Two promoters, differentially controlled by WggR, PhoB, and MucR, were identified upstream of each of these operons. The proximal promoters of the wga, wge, and wgd transcription units were constitutively active when separated from the upstream regulatory sequences. Promoter activity studies and the positions of predicted PhoB and WggR binding sites suggested that the proximal promoters are cooperatively induced by PhoB and WggR. MucR was shown to strongly inhibit the distal promoters and bound to the DNA in the vicinity of the distal transcription start sites. An additional inhibitory effect on the distal promoter of the structural galactoglucan biosynthesis genes was identified as a new feature of WggR in a mucR mutant. A regulatory model of the fine-tuning of galactoglucan production is proposed.
Collapse
|
26
|
Coleman RJ, Patel YN, Harding NE. Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 2008; 35:263-74. [DOI: 10.1007/s10295-008-0303-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 12/20/2007] [Indexed: 12/01/2022]
|
27
|
Glenn SA, Gurich N, Feeney MA, González JE. The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. J Bacteriol 2007; 189:7077-88. [PMID: 17644606 PMCID: PMC2045190 DOI: 10.1128/jb.00906-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are produced in high- and low-molecular-weight (HMW and LMW, respectively) fractions; however, only the LMW forms of either succinoglycan or EPS II are active in nodule invasion. The production of LMW succinoglycan can be generated by direct synthesis or through the depolymerization of HMW products by the action of two specific endoglycanases, ExsH and ExoK. Here, we show that the ExpR/Sin quorum-sensing system in S. meliloti is involved in the regulation of genes responsible for succinoglycan biosynthesis as well as in the production of LMW succinoglycan. Therefore, quorum sensing, which has been shown to regulate the production of EPS II, also plays an important role in succinoglycan biosynthesis.
Collapse
Affiliation(s)
- Sarah A Glenn
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
28
|
Staehelin C, Forsberg LS, D'Haeze W, Gao MY, Carlson RW, Xie ZP, Pellock BJ, Jones KM, Walker GC, Streit WR, Broughton WJ. Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. J Bacteriol 2006; 188:6168-78. [PMID: 16923883 PMCID: PMC1595362 DOI: 10.1128/jb.00365-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with beta-1,3, beta-1,4, beta-1,6, alpha-1,3, and alpha-1,4 glycoside linkages. Here we examined the role of NGR234 genes in the synthesis of EPS. Deletions within the exoF, exoL, exoP, exoQ, and exoY genes suppressed accumulation of EPS in bacterial supernatants, a finding that was confirmed by chemical analyses. The data suggest that the repeating subunits of EPS are assembled by an ExoQ/ExoP/ExoF-dependent mechanism, which is related to the Wzy polymerization system of group 1 capsular polysaccharides in Escherichia coli. Mutation of exoK (NGROmegaexoK), which encodes a putative glycanase, resulted in the absence of low-molecular-weight forms of EPS. Analysis of the extracellular carbohydrates revealed that NGROmegaexoK is unable to accumulate exo-oligosaccharides (EOSs), which are O-acetylated nonasaccharide subunits of EPS having the formula Gal(Glc)5(GlcA)2PvGal. When used as inoculants, both the exo-deficient mutants and NGROmegaexoK were unable to form nitrogen-fixing nodules on some hosts (e.g., Albizia lebbeck and Leucaena leucocephala), but they were able to form nitrogen-fixing nodules on other hosts (e.g., Vigna unguiculata). EOSs of the parent strain were biologically active at very low levels (yield in culture supernatants, approximately 50 microg per liter). Thus, NGR234 produces symbiotically active EOSs by enzymatic degradation of EPS, using the extracellular endo-beta-1,4-glycanase encoded by exoK (glycoside hydrolase family 16). We propose that the derived EOSs (and not EPS) are bacterial components that play a crucial role in nodule formation in various legumes.
Collapse
Affiliation(s)
- Christian Staehelin
- State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-Sen (Zhongshan) University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang XS, Cheng HP. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl Environ Microbiol 2006; 72:2738-48. [PMID: 16597978 PMCID: PMC1449070 DOI: 10.1128/aem.72.4.2738-2748.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic beta-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Boulevard, West Bronx, NY 10468
| | | |
Collapse
|
30
|
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 2006; 5:7. [PMID: 16483356 PMCID: PMC1403797 DOI: 10.1186/1475-2859-5-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/16/2006] [Indexed: 11/10/2022] Open
Abstract
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Collapse
Affiliation(s)
- Anna Skorupska
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Małgorzata Marczak
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Jarosław Król
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| |
Collapse
|
31
|
Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, Kaplan HB, Zusman DR, Shi W. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 2005; 55:206-20. [PMID: 15612929 DOI: 10.1111/j.1365-2958.2004.04369.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.
Collapse
Affiliation(s)
- Ann Lu
- University of California-Los Angeles, Molecular Biology Institute and School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tlapak-Simmons VL, Baron CA, Gotschall R, Haque D, Canfield WM, Weigel PH. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J Biol Chem 2005; 280:13012-8. [PMID: 15668242 PMCID: PMC1592226 DOI: 10.1074/jbc.m409788200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies reached different conclusions about whether class I hyaluronan synthases (HASs) elongate hyaluronic acid (HA) by addition to the reducing or the nonreducing end. Here we used two strategies to determine the direction of HA synthesis by purified class I HASs from Streptococcus equisimilis and Streptococcus pyogenes. In the first strategy we used each of the two UDP-sugar substrates separately to pulse label either the beginning or the end of HA chains. We then quantified the relative rates of radioactive HA degradation by treatment with beta-glycosidases that act at the nonreducing end. The results with both purified HASs demonstrated that HA elongation occurred at the reducing end. In the second strategy, we used purified S. equisimilis HAS, UDP-glucuronic acid, and UDP[beta-32P]-Glc-NAc to radiolabel nascent HA chains. Under conditions of limiting substrate, the 32P-labeled products were separated from the substrates by paper chromatography and identified as HA-[32P]UDP saccharides based on their degradation by snake venom phosphodiesterase or hyaluronidase and by their binding to a specific HA-binding protein. The 32P radioactivity was chased (released) by incubation with unlabeled UDP-sugars, showing that the HA-UDP linkages turn over during HA biosynthesis. In contrast, HA-[32P]UDP products made by the purified class II Pasteurella multocida HAS were not released by adding unlabeled UDP-sugars, consistent with growth at the nonreducing end for this enzyme. The results demonstrate that the streptococcal class I HAS enzymes polymerize HA chains at the reducing end.
Collapse
Affiliation(s)
- Valarie L Tlapak-Simmons
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Andreishcheva EN, Kunkel JP, Gemmill TR, Trimble RB. Five Genes Involved in Biosynthesis of the Pyruvylated Galβ1,3-Epitope in Schizosaccharomyces pombe N-Linked Glycans. J Biol Chem 2004; 279:35644-55. [PMID: 15173185 DOI: 10.1074/jbc.m403574200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-linked galactomannans of Schizosaccharomyces pombe have pyruvylated Galbeta1,3-(PvGal) caps on a portion of the Galalpha1,2-residues in their outer chains (Gemmill, T. R., and Trimble, R. B. (1998) Glycobiology 8, 1087-1095). PvGal biosynthesis was investigated by ethyl methanesulfonate mutagenesis of S. pombe, followed by the isolation of cells devoid of negatively charged N-glycans by Q-Sepharose exclusion and failure to bind human serum amyloid P component, which acts as a lectin for terminal PvGal residues. Mutant glycans were characterized by lectin binding, saccharide composition, exoglycosidase sensitivity, and NMR spectroscopy. Restoration of the cell surface negative charge by complementation with an S. pombe genomic library led to the identification of five genes involved in PvGal biosynthesis, which we designated pvg1-pvg5. Pvg1p may be a pyruvyltransferase, since NMR of pvg1(-) mutant N-glycans revealed the absence of only the pyruvyl moiety. Pvg2p-Pvg5p are crucial for attachment of the Galbeta1,3-residue that becomes pyruvylated. Pvg3p is predicted to be a member of the beta1,3-galactosyltransferase family, and Pvg3p-green fluorescent protein labeling was consistent with Golgi localization. Predicted Pvg1p and Pvg3p functions imply that Galbeta1,3-is added to the galactomannans and is then pyruvylated in situ, rather than by an en bloc addition of PvGalbeta1,3-caps to the outer chain. Pvg4p-green fluorescent protein targeted to the nucleus, and its sequence contains a MADS-box DNA-binding and dimerization domain; however, it does not appear to solely control transcription of the other identified genes. Pvg2p and/or Pvg5p may contribute to an enzyme complex. Whereas a functional role for the PvGal epitope in S. pombe remains unclear, it is nonessential for either cell growth or mating under laboratory conditions.
Collapse
|
34
|
Whitfield C, Paiment A. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 2004; 338:2491-502. [PMID: 14670711 DOI: 10.1016/j.carres.2003.08.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular and capsular polysaccharides (EPSs and CPSs) are produced by a wide range of bacteria, including important pathogens of humans, livestock, and plants. These polymers are major surface antigens and serve a variety of roles in virulence, depending on the biology of the producing organism. In addition to their importance in disease, some EPSs also have industrial applications as gelling and emulsifying agents. An understanding of the processes involved in the synthesis and regulation of CPSs and EPSs therefore potentially contributes to an understanding of the disease state, surface expression of protective antigens, and modulation of polymer structure to give defined physical properties. Escherichia coli has provided important model systems for EPS and CPS biosynthesis. Here we describe current knowledge concerning assembly of the Group 1 CPSs of E. coli and the conservation of similar mechanisms in other bacteria.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
35
|
Cheng HP, Yao SY. The key Sinorhizobium meliloti succinoglycan biosynthesis gene exoY is expressed from two promoters. FEMS Microbiol Lett 2004; 231:131-6. [PMID: 14769477 PMCID: PMC3144747 DOI: 10.1016/s0378-1097(03)00952-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2003] [Revised: 11/19/2003] [Accepted: 12/10/2003] [Indexed: 11/16/2022] Open
Abstract
Bacterial exopolysaccharide, succinoglycan, plays an important role in eliciting infection thread formation, which is a key step in the establishment of Sinorhizobium meliloti-alfalfa (Medicago sativa) nitrogen fixing symbiosis. To understand the regulatory mechanisms that control production of succinoglycan, the expression of the key succinoglycan biosynthesis gene, exoY, was analyzed by constructing a set of nested deletions of the exoY promoter region. Two exoY promoters were identified based on the promoter activities and confirmed by direct detection of the transcripts. The expression from both promoters was induced in the exoR95 and exoS96 mutant backgrounds suggesting that both promoters are regulated by the ExoR protein and the ExoS/ChvI two-component signal transduction system. The identification of the exoY promoters provides additional avenue for further analysis of the role of succinoglycan in S. meliloti-alfalfa symbiosis.
Collapse
Affiliation(s)
- Hai-Ping Cheng
- Biological Sciences Department, Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | | |
Collapse
|
36
|
Marketon MM, Glenn SA, Eberhard A, González JE. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 2003; 185:325-31. [PMID: 12486070 PMCID: PMC141839 DOI: 10.1128/jb.185.1.325-331.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a soil bacterium capable of invading and establishing a symbiotic relationship with alfalfa plants. This invasion process requires the synthesis, by S. meliloti, of at least one of the two symbiotically important exopolysaccharides, succinoglycan and EPS II. We have previously shown that the sinRI locus of S. meliloti encodes a quorum-sensing system that plays a role in the symbiotic process. Here we show that the sinRI locus exerts one level of control through regulation of EPS II synthesis. Disruption of the autoinducer synthase gene, sinI, abolished EPS II production as well as the expression of several genes in the exp operon that are responsible for EPS II synthesis. This phenotype was complemented by the addition of acyl homoserine lactone (AHL) extracts from the wild-type strain but not from a sinI mutant, indicating that the sinRI-specified AHLs are required for exp gene expression. This was further confirmed by the observation that synthetic palmitoleyl homoserine lactone (C(16:1)-HL), one of the previously identified sinRI-specified AHLs, specifically restored exp gene expression. Most importantly, the absence of symbiotically active EPS II in a sinI mutant was confirmed in plant nodulation assays, emphasizing the role of quorum sensing in symbiosis.
Collapse
Affiliation(s)
- Melanie M Marketon
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
37
|
Vizcaíno N, Cloeckaert A, Zygmunt MS, Fernández-Lago L. Characterization of a Brucella species 25-kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccharide. Infect Immun 2001; 69:6738-48. [PMID: 11598046 PMCID: PMC100051 DOI: 10.1128/iai.69.11.6738-6748.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study we completed the nucleotide sequence of a Brucella melitensis 16M DNA fragment deleted from B. abortus that accounts for 25,064 bp and show that the other Brucella spp. contain the entire 25-kb DNA fragment. Two short direct repeats of four nucleotides, detected in the B. melitensis 16M DNA flanking both sides of the fragment deleted from B. abortus, might have been involved in the deletion formation by a strand slippage mechanism during replication. In addition to omp31, coding for an immunogenic protein located in the Brucella outer membrane, 22 hypothetical genes were identified. Most of the proteins that would be encoded by these genes show significant homology with proteins involved in the biosynthesis of polysaccharides from other bacteria, suggesting that they might be involved in the synthesis of a Brucella polysaccharide that would be a heteropolymer synthesized by a Wzy-dependent pathway. This polysaccharide would not be synthesized in B. abortus and would be a polysaccharide not identified until present in the genus Brucella, since all of the known polysaccharides are synthesized in all smooth Brucella species. Discovery of a novel polysaccharide not synthesized in B. abortus might be interesting for a better understanding of the pathogenicity and host preference differences observed between the Brucella species. However, the possibility that the genes detected in the DNA fragment deleted in B. abortus no longer lead to the synthesis of a polysaccharide must not be excluded. They might be a remnant of the common ancestor of the alpha-2 subdivision of the class Proteobacteria, with some of its members synthesizing extracellular polysaccharides and, as Brucella spp., living in association with eukaryotic cells.
Collapse
Affiliation(s)
- N Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007 Salamanca, Spain.
| | | | | | | |
Collapse
|
38
|
Niemeyer D, Becker A. The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J Bacteriol 2001; 183:5163-70. [PMID: 11489870 PMCID: PMC95393 DOI: 10.1128/jb.183.17.5163-5170.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is thought that in the gram-negative soil bacterium Sinorhizobium meliloti the protein ExoP is involved in biosynthesis of the acidic exopolysaccharide succinoglycan (EPS I). The amounts and compositions of EPS I produced by mutants expressing ExoP proteins characterized by specific amino acid substitutions in the C-terminal cytoplasmic domain were analyzed. The cytoplasmic domain of the ExoP protein was shown to have ATPase activity. Mutations in the highly conserved Walker A ATP-binding motif prevented ATPase activity of the ExoP protein. Phenotypically, these mutations resulted in much lower levels of succinoglycan which consisted only of monomers of the octasaccharide repeating unit. The ExoP protein has similarities to proteins with autophosphorylating protein tyrosine kinase activity. We found that ExoP was phosphorylated on tyrosine and that site-directed mutagenesis of specific tyrosine residues in the cytoplasmic domain of ExoP resulted in an altered ratio of low-molecular-weight succinoglycan to high-molecular-weight succinoglycan.
Collapse
Affiliation(s)
- D Niemeyer
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany
| | | |
Collapse
|
39
|
Gao M, D'Haeze W, De Rycke R, Wolucka B, Holsters M. Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:857-66. [PMID: 11437259 DOI: 10.1094/mpmi.2001.14.7.857] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A nonpolar mutation was made in the oac2 gene of Azorhizobium caulinodans. oac2 is an ortholog of the Salmonella typhimurium rfbD gene that encodes a dTDP-L-rhamnose synthase. The knockout of oac2 changed the lipopolysaccharide (LPS) pattern and affected the extracellular polysaccharide production but had no effect on bacterial hydrophobicity. Upon hot phenol extraction, the wild-type LPS partitioned in the phenol phase. The LPS fraction of ORS571-oac2 partitioned in the water phase and had a reduced rhamnose content and truncated LPS molecules on the basis of faster migration in detergent gel electrophoresis. Strain ORS571-oac2 induced ineffective nodule-like structures on Sesbania rostrata. There was no clear demarcation between central and peripheral tissues, and neither leghemoglobin nor bacteroids were present. Light and electron microscopy revealed that the mutant bacteria were retained in enlarged, thick-walled infection threads. Infection centers emitted a blue autofluorescence under UV light. The data indicate that rhamnose synthesis is important for the production of surface carbohydrates that are required to sustain the compatible interaction between A. caulinodans and S. rostrata.
Collapse
Affiliation(s)
- M Gao
- Department of Plantengenetica, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
40
|
Garinot-Schneider C, Lellouch AC, Geremia RA. Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase ExoM. J Biol Chem 2000; 275:31407-13. [PMID: 10908566 DOI: 10.1074/jbc.m004524200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ExoM is a beta(1-4)-glucosyltransferase involved in the assembly of the repeat unit of the exopolysaccharide succinoglycan from Sinorhizobium meliloti. By comparing the sequence of ExoM to those of other members of the Pfam Glyco Domain 2 family, most notably SpsA (Bacillus subtilis) for whom the three-dimensional structure has been resolved, three potentially important aspartic acid residues of ExoM were identified. Single substitutions of each of the Asp amino acids at positions 44, 96, and 187 with Ala resulted in the loss of mutant recombinant protein activity in vitro as well as the loss of succinoglycan production in an in vivo rescue assay. Mutants harboring Glu instead of Asp-44 or Asp-96 possessed no in vitro activity but could restore succinoglycan production in vivo. However, replacement of Asp-187 with Glu completely inactivated ExoM as judged by both the in vitro and in vivo assays. These results indicate that Asp-44, Asp-96, and Asp-187 are essential for the activity of ExoM. Furthermore, these data are consistent with the functions proposed for each of the analogous aspartic acids of SpsA based on the SpsA-UDP structure, namely, that Asp-44 and Asp-96 are involved in UDP substrate binding and that Asp-187 is the catalytic base in the glycosyltransferase reaction.
Collapse
Affiliation(s)
- C Garinot-Schneider
- Centre de Recherches sur les Macromolécules Végétales, CNRS, Affiliated with the Joseph Fourier University, BP 53X, Grenoble 38041, Cedex 9, France
| | | | | |
Collapse
|
41
|
Abstract
This article compiles the papers dealing with the biochemistry of chitin synthase (CS) published during the last decade, provides up-to-date information on the state of knowledge and understanding of chitin synthesis in vitro, and points out some firmly entrenched ideas and tenets of CS biochemistry that have become of age without hardly ever having been critically re-evaluated. The subject is dealt with under the headings "Components of the CS reaction" (educt, cation requirement and intermediates; product), "Regulation of CS" (cooperativity and allostery; non-allosteric activation or priming of CS; latency), "Concerted action of CS and enzymes of chitinolysis", "Inhibition of CS", "Multiplicity of CSs", and "Structure of CS" (the putative UDPGlcNAc-binding domain of CS; identification of CS polypeptides; glycoconjugation). The prospects are outlined of obtaining a refined three-dimensional (3D) model of the catalytic site of CS for biotechnological applications.
Collapse
Affiliation(s)
- R A Merz
- Department of Plant Biology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
42
|
Guerreiro N, Ksenzenko VN, Djordjevic MA, Ivashina TV, Rolfe BG. Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. J Bacteriol 2000; 182:4521-32. [PMID: 10913086 PMCID: PMC94624 DOI: 10.1128/jb.182.16.4521-4532.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Accepted: 05/18/2000] [Indexed: 11/20/2022] Open
Abstract
The protein expression profiles of Rhizobium leguminosarum strains in response to specific genetic perturbations in exopolysaccharide (EPS) biosynthesis genes were examined using two-dimensional gel electrophoresis. Lesions in either pssA, pssD, or pssE of R. leguminosarum bv. viciae VF39 or in pssA of R. leguminosarum bv. trifolii ANU794 not only abolished the capacity of these strains to synthesize EPS but also had a pleiotropic effect on protein synthesis levels. A minimum of 22 protein differences were observed for the two pssA mutant strains. The differences identified in the pssD and pssE mutants of strain VF39 were a distinct subset of the same protein synthesis changes that occurred in the pssA mutant. The pssD and pssE mutant strains shared identical alterations in the proteins synthesized, suggesting that they share a common function in the biosynthesis of EPS. In contrast, a pssC mutant that produces 38% of the EPS level of the parental strain showed no differences in its protein synthesis patterns, suggesting that the absence of EPS itself was contributing to the changes in protein synthesis and that there may be a complex interconnection of the EPS biosynthetic pathway with other metabolic pathways. Genetic complementation of pssA can restore wild-type protein synthesis levels, indicating that many of the observed differences in protein synthesis are also a specific response to a dysfunctional PssA. The relevance of these proteins, which are grouped as members of the pssA mutant stimulon, remains unclear, as the majority lacked a homologue in the current sequence databases and therefore possibly represent a novel functional network(s). These findings have illustrated the potential of proteomics to reveal unexpected higher-order processes of protein function and regulation that arise from mutation. In addition, it is evident that enzymatic pathways and regulatory networks are more interconnected and more sensitive to structural changes in the cell than is often appreciated. In these cases, linking the observed phenotype directly to the mutated gene can be misleading, as the phenotype could be attributable to downstream effects of the mutation.
Collapse
Affiliation(s)
- N Guerreiro
- Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra City 2601, Australia
| | | | | | | | | |
Collapse
|
43
|
Mendrygal KE, González JE. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 2000; 182:599-606. [PMID: 10633091 PMCID: PMC94320 DOI: 10.1128/jb.182.3.599-606.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for the production of two functional exopolysaccharides is not clear. Earlier reports suggested that low-phosphate conditions stimulate the production of EPS II in Rm1021. We found that phosphate concentrations determine which exopolysaccharide is produced by S. meliloti. The low-phosphate conditions normally found in the soil (1 to 10 microM) stimulate EPS II production, while the high-phosphate conditions inside the nodule (20 to 100 mM) block EPS II synthesis and induce the production of succinoglycan. Interestingly, the EPS II produced by S. meliloti in low-phosphate conditions does not allow the invasion of alfalfa nodules. We propose that this invasion phenotype is due to the lack of the active molecular weight fraction of EPS II required for nodule invasion. An analysis of the function of PhoB in this differential exopolysaccharide production is presented.
Collapse
Affiliation(s)
- K E Mendrygal
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | |
Collapse
|
44
|
Martín M, Lloret J, Sánchez-Contreras M, Bonilla I, Rivilla R. MucR is necessary for galactoglucan production in Sinorhizobium meliloti EFB1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:129-135. [PMID: 10656595 DOI: 10.1094/mpmi.2000.13.1.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sinorhizobium meliloti can produce two types of acidic exopolysaccharides, succinoglycan and galactoglucan, that are interchangeable for infection of alfalfa nodules. Strain SU47 and derivatives produce only succinoglycan, unless it grows under phosphate limitation or carries a mutation in either of two regulatory loci, mucR or expR. It has been proposed that MucR acts as a transcriptional repressor that blocks the expression of the exp genes responsible for galactoglucan production. Strain EFB1 simultaneously produces both exopolysaccharides. Heterologous expression of lacZ transcriptional fusions of the expE promoters has shown that genetic background is more important that promoter sequence for exp gene expression, since expE promoters from both strains are expressed at high level in EFB1 and not in SU47. We have found that mucR is present in mucoid and nonmucoid strains, and in EFB1 differs from SU47 in only one conservative amino acid change. MucR proteins from both strains are interchangeable. An mucR mutant of EFB1 cannot produce galactoglucan and does not express mucS.
Collapse
Affiliation(s)
- M Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Abstract
Glycosyltransferases catalyze the synthesis of glycoconjugates by transferring a properly activated sugar residue to an appropriate acceptor molecule or aglycone for chain initiation and elongation. The acceptor can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. A catalytic reaction is believed to involve the recognition of both the donor and acceptor by suitable domains, as well as the catalytic site of the enzyme. To elucidate the structural requirements for substrate recognition and catalytic reactions of glycosyltransferases, we have searched the databases for homologous sequences, identified conserved amino acid residues, and proposed potential domain motifs for these enzymes. Depending on the configuration of the anomeric functional group of the glycosyl donor molecule and of the resulting glycoconjugate, all known glycosyltransferases can be divided into two major types: retaining glycosyltransferases, which transfer sugar residue with the retention of anomeric configuration, and inverting glycosyltransferases, which transfer sugar residue with the inversion of anomeric configuration. One conserved domain of the inverting glycosyltransferases identified in the database is responsible for the recognition of a pyrimidine nucleotide, which is either the UDP or the TDP portion of a donor sugar-nucleotide molecule. This domain is termed "Nucleotide Recognition Domain 1 beta," or NRD1 beta, since the type of nucleotide is the only common structure among the sugar donors and acceptors. NRD1 beta is present in 140 glycosyltransferases. The central portion of the NRD1 beta domain is very similar to the domain that is present in one family of retaining glycosyltransferases. This family is termed NRD1 alpha to designate the similarity and stereochemistry of sugar transfer, and it consists of 77 glycosyltransferases identified thus far. In the central portion there is a homologous region for these two families and this region probably has a catalytic function. A third conserved domain is found exclusively in membrane-bound glycosyltransferases and is termed NRD2; this domain is present in 98 glycosyltransferases. All three identified NRDs are present in archaebacterial, eubacterial, viral, and eukaryotic glycosyltransferases. The present article presents the alignment of conserved NRD domains and also presents a brief overview of the analyzed glycosyltransferases which comprise about 65% of all known sugar-nucleotide dependent (Leloir-type) and putative glycosyltransferases in different databases. A potential mechanism for the catalytic reaction is also proposed. This proposed mechanism should facilitate the design of experiments to elucidate the regulatory mechanisms of glycosylation reactions. Amino acid sequence information within the conserved domain may be utilized to design degenerate primers for identifying DNA encoding new glycosyltransferases.
Collapse
Affiliation(s)
- D Kapitonov
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0614, USA
| | | |
Collapse
|
46
|
Yamamoto S, Miyake K, Koike Y, Watanabe M, Machida Y, Ohta M, Iijima S. Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia. J Bacteriol 1999; 181:5176-84. [PMID: 10464185 PMCID: PMC94020 DOI: 10.1128/jb.181.17.5176-5184.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type-specific capsular polysaccharide (CP) of a group B streptococcus, Streptococcus agalactiae type Ia, is a high-molecular-weight polymer consisting of the pentasaccharide repeating unit 4)-[alpha-D-NeupNAc-(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1- ->3 )]-beta-D-Galp-(1-->4)-beta-D-Glcp-(1. Here, cloning, sequencing, and transcription of the type Ia-specific capsular polysaccharide synthesis (cps) genes and functional analysis of these gene products are described. A 26-kb DNA fragment containing 18 complete open reading frames (ORFs) was cloned. These ORFs were designated cpsIaA to cpsIaL, neu (neuraminic acid synthesis gene) A to D, orf1 and ung (uracil DNA glycosylase). The cps gene products of S. agalactiae type Ia were homologous to proteins involved in CP synthesis of S. agalactiae type III and S. pneumoniae serotype 14. Unlike the cps gene cluster of S. pneumoniae serotype 14, transcription of this operon may start from cpsIaA, cpsIaE, and orf1 because putative promoter sequences were found in front of these genes. Northern hybridization, reverse transcription-PCR, and primer extension analyses supported this hypothesis. DNA sequence analysis showed that there were two transcriptional terminators in the 3' end of this operon (downstream of orf1 and ung). The functions of CpsIaE, CpsIaG, CpsIaI, and CpsIaJ were examined by glycosyltransferase assay by using the gene products expressed in Escherichia coli JM109 harboring plasmids containing various S. agalactiae type Ia cps gene fragments. Enzyme assays suggested that the gene products of cpsIaE, cpsIaG, cpsIaI, and cpsIaJ are putative glucosyltransferase, beta-1, 4-galactosyltransferase, beta-1,3-N-acetylglucosaminyltransferase, and beta-1,4-galactosyltransferase, respectively.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Vizcaíno N, Cloeckaert A, Zygmunt MS, Fernández-Lago L. Molecular characterization of a Brucella species large DNA fragment deleted in Brucella abortus strains: evidence for a locus involved in the synthesis of a polysaccharide. Infect Immun 1999; 67:2700-12. [PMID: 10338472 PMCID: PMC96573 DOI: 10.1128/iai.67.6.2700-2712.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Brucella melitensis 16M DNA fragment of 17,119 bp, which contains a large region deleted in B. abortus strains and DNA flanking one side of the deletion, has been characterized. In addition to the previously identified omp31 gene, 14 hypothetical genes have been identified in the B. melitensis fragment, most of them showing homology to genes involved in the synthesis of a polysaccharide. Considering that 10 of the 15 genes are missing in B. abortus and that all the polysaccharides described in the Brucella genus (lipopolysaccharide, native hapten, and polysaccharide B) have been detected in all the species, it seems likely that the genes described here might be part of a cluster for the synthesis of a novel Brucella polysaccharide. Several polysaccharides have been identified as important virulence factors, and the discovery of a novel polysaccharide in the brucellae which is probably not synthesized in B. abortus might be interesting for a better understanding of the pathogenicity and host preference differences observed between the Brucella species. However, the possibility that the genes described in this paper no longer encode the synthesis of a polysaccharide cannot be excluded. Brucellae belong to the alpha-2 subdivision of the class Proteobacteria, which includes other microorganisms living in association with eucaryotic cells, some of them synthesizing extracellular polysaccharides involved in the interaction with the host cell. The genes described in this paper might be a remnant of the common ancestor of the alpha-2 subdivision of the class Proteobacteria, and the brucellae might have lost such extracellular polysaccharide during evolution if it was not necessary for survival or for establishment of the infectious process. Nevertheless, further studies are necessary to identify the entire DNA fragment missing in B. abortus strains and to elucidate the mechanism responsible for such deletion, since only 9,948 bp of the deletion was present in the sequenced B. melitensis DNA fragment.
Collapse
Affiliation(s)
- N Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
48
|
Lellouch AC, Geremia RA. Expression and study of recombinant ExoM, a beta1-4 glucosyltransferase involved in succinoglycan biosynthesis in Sinorhizobium meliloti. J Bacteriol 1999; 181:1141-8. [PMID: 9973339 PMCID: PMC93490 DOI: 10.1128/jb.181.4.1141-1148.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report on the overexpression and in vitro characterization of a recombinant form of ExoM, a putative beta1-4 glucosyltransferase involved in the assembly of the octasaccharide repeating subunit of succinoglycan from Sinorhizobium meliloti. The open reading frame exoM was isolated by PCR and subcloned into the expression vector pET29b, allowing inducible expression under the control of the T7 promoter. Escherichia coli BL21(DE3)/pLysS containing exoM expressed a novel 38-kDa protein corresponding to ExoM in N-terminal fusion with the S-tag peptide. Cell fractionation studies showed that the protein is expressed in E. coli as a membrane-bound protein in agreement with the presence of a predicted C-terminal transmembrane region. E. coli membrane preparations containing ExoM were shown to be capable of transferring glucose from UDP-glucose to glycolipid extracts from an S. meliloti mutant strain which accumulates the ExoM substrate (Glcbeta1-4Glcbeta1-3Gal-pyrophosphate-polyprenol). Thin-layer chromatography of the glycosidic portion of the ExoM product showed that the oligosaccharide formed comigrates with an authentic standard. The oligosaccharide produced by the recombinant ExoM, but not the starting substrate, was sensitive to cleavage with a specific cellobiohydrolase, consistent with the formation of a beta1-4 glucosidic linkage. No evidence for the transfer of multiple glucose residues to the glycolipid substrate was observed. It was also found that ExoM does not transfer glucose to an acceptor substrate that has been hydrolyzed from the polyprenol anchor. Furthermore, neither glucose, cellobiose, nor the trisaccharide Glcbeta1-4Glcbeta1-3Glc inhibited the transferase activity, suggesting that some feature of the lipid anchor is necessary for activity.
Collapse
Affiliation(s)
- A C Lellouch
- Centre de Recherches sur les Macromolécules Végétales, CNRS, and Joseph Fourier University, F38041 Grenoble, France.
| | | |
Collapse
|
49
|
González JE, Semino CE, Wang LX, Castellano-Torres LE, Walker GC. Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc Natl Acad Sci U S A 1998; 95:13477-82. [PMID: 9811825 PMCID: PMC24844 DOI: 10.1073/pnas.95.23.13477] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/1997] [Accepted: 09/14/1998] [Indexed: 11/18/2022] Open
Abstract
Succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, is composed of polymerized octasaccharide subunits, each of which consists of one galactose and seven glucoses with succinyl, acetyl, and pyruvyl modifications. Production of specific low molecular weight forms of R. meliloti exported and surface polysaccharides, including succinoglycan, appears to be important for nodule invasion. In a previous study of the roles of the various exo gene products in succinoglycan biosynthesis, exoP, exoQ, and exoT mutants were found to synthesize undecaprenol-linked fully modified succinoglycan octasaccharide subunits, suggesting possible roles for their gene products in polymerization or transport. Using improved techniques for analyzing succinoglycan biosynthesis by these mutants, we have obtained evidence indicating that R. meliloti has genetically separable systems for the synthesis of high molecular weight succinoglycan and the synthesis of a specific class of low molecular weight oligosaccharides consisting of dimers and trimers of the octasaccharide subunit. Models to account for our unexpected findings are discussed. Possible roles for the ExoP, ExoQ, and ExoT proteins are compared and contrasted with roles that have been suggested on the basis of homologies to key proteins involved in the biosynthesis of O-antigens and of certain exported or capsular cell surface polysaccharides.
Collapse
Affiliation(s)
- J E González
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
50
|
Heinrichs DE, Yethon JA, Amor PA, Whitfield C. The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of Escherichia coli. The R1 core-specific beta-glucosyltransferase provides a novel attachment site for O-polysaccharides. J Biol Chem 1998; 273:29497-505. [PMID: 9792656 DOI: 10.1074/jbc.273.45.29497] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major core oligosaccharide biosynthesis operons from prototype Escherichia coli strains displaying R1 and R4 lipopolysaccharide core types were polymerase chain reaction-amplified and analyzed. Comparison of deduced products of the open reading frames between the two regions indicate that all but two share total similarities of 94% or greater. Core oligosaccharide structures resulting from nonpolar insertion mutations in each gene of the core OS biosynthesis operon in the R1 strain allowed assignment of all of the glycosyltransferase enzymes required for outer core assembly. The difference between the R1 and R4 core oligosaccharides results from the specificity of the WaaV protein (a beta1, 3-glucosyltransferase) in R1 and WaaX (a beta1, 4-galactosyltransferase) in R4. Complementation of the waaV mutant of the R1 prototype strain with the waaX gene of the R4 strain converted the core oligosaccharide from an R1- to an R4-type lipopolysaccharide core molecule. Aside from generating core oligosaccharide specificity, the unique beta-linked glucopyranosyl residue of the R1 core plays a crucial role in organization of the lipopolysaccharide. This residue provides a novel attachment site for lipid A-core-linked polysaccharides and distinguishes the R1-type LPS from existing models for enterobacterial lipopolysaccharides.
Collapse
Affiliation(s)
- D E Heinrichs
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|