1
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
2
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Biochemistry 2022; 61:1404-1414. [PMID: 35687722 DOI: 10.1021/acs.biochem.2c00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Karl L Ocius
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Carolina Santamaria
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
4
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
5
|
Aries ML, Cloninger MJ. NMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways Using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram-Positive Bacteria. Int J Mol Sci 2021; 22:ijms222413606. [PMID: 34948402 PMCID: PMC8715671 DOI: 10.3390/ijms222413606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Collapse
|
6
|
Singh R, Slade JA, Brockett M, Mendez D, Liechti GW, Maurelli AT. Competing Substrates for the Bifunctional Diaminopimelic Acid Epimerase/Glutamate Racemase Modulate Peptidoglycan Synthesis in Chlamydia trachomatis. Infect Immun 2020; 89:IAI.00401-20. [PMID: 33106295 PMCID: PMC7927921 DOI: 10.1128/iai.00401-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapF Ct function in vivo in C. trachomatis We reasoned that, because DapF Ct utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapF Ct DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapF Ct is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.
Collapse
Affiliation(s)
- Raghuveer Singh
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Jessica A Slade
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Mary Brockett
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniel Mendez
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Jung KH, Kim YG, Kim CM, Ha HJ, Lee CS, Lee JH, Park HH. Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Lett 2020; 595:275-283. [PMID: 33230844 DOI: 10.1002/1873-3468.14007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
MurE ligase catalyzes the attachment of meso-diaminopimelic acid to the UDP-MurNAc-l -Ala-d -Glu using ATP and producing UDP-MurNAc-l -Ala-d -Glu-meso-A2 pm during bacterial cell wall biosynthesis. Owing to the critical role of this enzyme, MurE is considered an attractive target for antibacterial drugs. Despite extensive studies on MurE ligase, the structural dynamics of its conformational changes are still elusive. In this study, we present the substrate-free structure of MurE from Acinetobacter baumannii, which is an antibiotic-resistant superbacterium that has threatened global public health. The structure revealed that MurE has a wide-open conformation and undergoes wide-open, intermediately closed, and fully closed dynamic conformational transition. Unveiling structural dynamics of MurE will help to understand the working mechanism of this ligase and to design next-generation antibiotics targeting MurE.
Collapse
Affiliation(s)
- Kyoung Ho Jung
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Korea
| | - Chang Min Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ji Ha
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Hyun Ho Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
8
|
Reedoy KS, Loots DT, Beukes D, Reenen MV, Pillay B, Pillay M. Mycobacterium tuberculosis curli pili (MTP) is associated with significant host metabolic pathways in an A549 epithelial cell infection model and contributes to the pathogenicity of Mycobacterium tuberculosis. Metabolomics 2020; 16:116. [PMID: 33084984 DOI: 10.1007/s11306-020-01736-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A clear understanding of the metabolome of Mycobacterium tuberculosis and its target host cell during infection is fundamental for the development of novel diagnostic tools, effective drugs and vaccines required to combat tuberculosis. The surface-located Mycobacterium tuberculosis curli pili (MTP) adhesin forms initial contact with the host cell and is therefore important for the establishment of infection. OBJECTIVE The aim of this investigation was to determine the role of MTP in modulating pathogen and host metabolic pathways in A549 epithelial cells infected with MTP proficient and deficient strains of M. tuberculosis. METHODS Uninfected A549 epithelial cells, and those infected with M. tuberculosis V9124 wild-type strain, Δmtp and the mtp-complemented strains, were subjected to metabolite extraction, two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS) and bioinformatic analyses. Univariate and multivariate statistical tests were used to identify metabolites that were significantly differentially produced in the WT-infected and ∆mtp-infected A549 epithelial cell models, comparatively. RESULTS A total of 46 metabolites occurred in significantly lower relative concentrations in the Δmtp-infected cells, indicating a reduction in nucleic acid synthesis, amino acid metabolism, glutathione metabolism, oxidative stress, lipid metabolism and peptidoglycan, compared to those cells infected with the WT strain. CONCLUSION The absence of MTP was associated with significant changes to the host metabolome, suggesting that this adhesin is an important contributor to the pathogenicity of M. tuberculosis, and supports previous findings of its potential as a suitable drug, vaccine and diagnostic target.
Collapse
Affiliation(s)
- K S Reedoy
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa
| | - D T Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - D Beukes
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - M van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - B Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - M Pillay
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
9
|
Aries ML, Cloninger MJ. NMR metabolomic analysis of bacterial resistance pathways using multivalent quaternary ammonium functionalized macromolecules. Metabolomics 2020; 16:82. [PMID: 32705355 PMCID: PMC9389846 DOI: 10.1007/s11306-020-01702-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Multivalent antimicrobial dendrimers are an exciting new system that is being developed to address the growing problem of drug resistant bacteria. Nuclear Magnetic Resonance (NMR) metabolomics is a quantitative and reproducible method for the determination of bacterial response to environmental stressors and for visualization of perturbations to biochemical pathways. OBJECTIVES NMR metabolomics is used to elucidate metabolite differences between wild type and antimicrobially mutated Escherichia coli (E. coli) samples. METHODS Proton (1H) NMR hydrophilic metabolite analysis was conducted on samples of E. coli after 33 growth cycles of a minimum inhibitory challenge to E. coli by poly(amidoamine) dendrimers functionalized with mannose and with C16-DABCO quaternary ammonium endgroups and compared to the metabolic profile of wild type E. coli. RESULTS The wild type and mutated E. coli samples were separated into distinct sample sets by hierarchical clustering, principal component analysis (PCA) and sparse partial least squares discriminate analysis (sPLS-DA). Metabolite components of membrane fortification and energy related pathways had a significant p value and fold change between the wild type and mutated E. coli. Amino acids commonly associated with membrane fortification from cationic antimicrobials, such as lysine, were found to have a higher concentration in the mutated E. coli than in the wild type E. coli. N-acetylglucosamine, a major component of peptidoglycan synthesis, was found to have a 25-fold higher concentration in the mid log phase of the mutated E. coli than in the mid log phase of the wild type. CONCLUSION The metabolic profile suggests that E. coli change their peptidoglycan composition in order to garner protection from the highly positively charged and multivalent C16-DABCO and mannose functionalized dendrimer.
Collapse
Affiliation(s)
- Michelle L Aries
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
10
|
Mengin-Lecreulx D, Lemaitre B. Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidoglycan (murein) is a major essential and specific constituent of the bacterial cell wall. Its main function is to protect cells against the internal osmotic pressure and to maintain the characteristic cell shape. It also serves as a platform for the anchoring of specific proteins and other cell wall components. This giant macromolecule is composed of long glycan chains cross-linked by short peptides. Any alteration of the disaccharide—peptide basic unit results in a global change of peptidoglycan structure and properties. Such global variations are encountered in nature as conserved variations along phyletic lines but have sometimes been acquired as a result of mutations or as a mechanism of resistance against cell-wall targeted antibiotics. During bacterial cell growth and division, the peptidoglycan mesh is constantly broken down by a set of highly specific hydrolases in a maturation process allowing insertion of newly synthesized units in the pre-existing polymerized material. Depending on the bacterial species considered, degradation fragments are either released in the growth medium or efficiently re-utilized for synthesis of new murein in a sequence of events termed the recycling pathway. Peptidoglycan is one of the main pathogen-associated molecular patterns recognized by the host innate immune system. Variations of the structure and metabolism of this cell wall component have been exploited by host defense mechanisms for detection/identification of invading bacterial species. Modification of the peptidoglycan structure could also represent a mechanism allowing bacteria to escape these host defense systems.
Collapse
Affiliation(s)
- Dominique Mengin-Lecreulx
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS, Université Paris-Sud, Paris, France, -psud.fr
| | - Bruno Lemaitre
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Abstract
The complex cell envelope is a hallmark of mycobacteria and is anchored by the peptidoglycan layer, which is similar to that of Escherichia coli and a number of other bacteria but with modifications to the monomeric units and other structural complexities that are likely related to a role for the peptidoglycan in stabilizing the mycolyl-arabinogalactan-peptidoglycan complex (MAPc). In this article, we will review the genetics of several aspects of peptidoglycan biosynthesis in mycobacteria, including the production of monomeric precursors in the cytoplasm, assembly of the monomers into the mature wall, cell wall turnover, and cell division. Finally, we will touch upon the resistance of mycobacteria to β-lactam antibiotics, an important class of drugs that, until recently, have not been extensively exploited as potential antimycobacterial agents. We will also note areas of research where there are still unanswered questions.
Collapse
|
12
|
Death by Cystine: an Adverse Emergent Property from a Beneficial Series of Reactions. J Bacteriol 2015; 197:3626-8. [PMID: 26369582 DOI: 10.1128/jb.00546-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this issue of the Journal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629-3644, 2015, http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restricted Escherichia coli grown with sublethal H2O2 when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.
Collapse
|
13
|
Denoël T, Zervosen A, Lemaire C, Joris B, Hervé M, Blanot D, Zaragoza G, Luxen A. Enantioselective synthesis of α-benzylated lanthionines and related tripeptides for biological incorporation into E. coli peptidoglycan. Org Biomol Chem 2015; 12:9853-63. [PMID: 25355616 DOI: 10.1039/c4ob01476f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis of modified tripeptides (S)-Ala-γ-(R)-Glu-X, where X = (R,S) or (R,R) diastereomers of α-benzyl or α-(4-azidobenzyl)lanthionine, was carried out. The chemical strategy involved the enantioselective alkylation of a 4-MeO-phenyloxazoline. The reductive opening of the alkylated oxazolines, followed by cyclization and oxidation, led to four PMB-protected sulfamidates. Subsequent PMB removal, Boc protection and regioselective opening with cysteine methyl ester led to protected lanthionines. These compounds were further converted in a one pot process to the corresponding protected tripeptides. After ester and Boc deprotection, the four tripeptides were evaluated as potential analogues of the natural tripeptide (S)-Ala-γ-(R)-Glu-meso-A2pm. These compounds were evaluated for introduction, by means of the biosynthetic recycling pathway, into the peptidoglycan of Escherichia coli. A successful in vitro biosynthesis of UDP-MurNAc-tripeptides from the tripeptides containing α-benzyl lanthionine was achieved using purified murein peptide ligase (Mpl). Bioincorporation into E. coli W7 did not occur under different tested conditions probably due to the bulky benzyl group at the Cα carbon of the C-terminal amino acid.
Collapse
Affiliation(s)
- Thibaut Denoël
- Centre de Recherches du Cyclotron, Université de Liège, Allée du 6 Août 8, Bât B30, B-4000 Sart-Tilman, Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Denoël T, Zervosen A, Gerards T, Lemaire C, Joris B, Blanot D, Luxen A. Stereoselective synthesis of lanthionine derivatives in aqueous solution and their incorporation into the peptidoglycan of Escherichia coli. Bioorg Med Chem 2014; 22:4621-8. [DOI: 10.1016/j.bmc.2014.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 02/05/2023]
|
15
|
Rueff AS, Chastanet A, Domínguez-Escobar J, Yao Z, Yates J, Prejean MV, Delumeau O, Noirot P, Wedlich-Söldner R, Filipe SR, Carballido-López R. An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis. Mol Microbiol 2013; 91:348-62. [PMID: 24261876 DOI: 10.1111/mmi.12467] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 12/23/2022]
Abstract
MreB proteins play a major role during morphogenesis of rod-shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane-associated MreB polymers have been shown to be associated to elongation-specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intracellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso-diaminopimelate (m-DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intracellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane-associated cell wall synthesizing machineries.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78352, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
17
|
Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein Cell 2010; 1:1011-22. [PMID: 21153518 DOI: 10.1007/s13238-010-0132-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022] Open
Abstract
The emergence of total drug-resistant tuberculosis (TDRTB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new anti-mycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 N-terminal residues, the other mutated residues are essential for catalysis. Variations in K(m) values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis.
Collapse
|
18
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
19
|
Patin D, Boniface A, Kovač A, Hervé M, Dementin S, Barreteau H, Mengin-Lecreulx D, Blanot D. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus. Biochimie 2010; 92:1793-800. [PMID: 20659527 DOI: 10.1016/j.biochi.2010.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Delphine Patin
- Univ Paris-Sud, Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics 2010; 11:449. [PMID: 20649993 PMCID: PMC3091646 DOI: 10.1186/1471-2164-11-449] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/22/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. RESULTS A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. CONCLUSIONS The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the evolutionary transition from a free-living ancestor to a host-dependent lifestyle, with a massive proliferation of mobile genetic elements mainly of phage origin although with minor impact in the process of gene inactivation that is taking place in this bacterial genome. The metabolic analysis of the whole endosymbiotic consortia of tsetse flies have revealed a possible phenomenon of metabolic complementation between primary and secondary endosymbionts that can contribute to explain the co-existence of both bacterial endosymbionts in the context of the tsetse host.
Collapse
Affiliation(s)
- Eugeni Belda
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Barcelona, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles, Universitat de València, Spain
| | | | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Barcelona, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles, Universitat de València, Spain
| |
Collapse
|
21
|
Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S. ATP-dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis (Edinb) 2009; 90:16-24. [PMID: 19945347 DOI: 10.1016/j.tube.2009.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/10/2009] [Accepted: 10/26/2009] [Indexed: 01/30/2023]
Abstract
New therapies are required against Mycobacterium tuberculosis and its cell wall peptidoglycan biosynthesis is a potential therapeutic target. UDP-MurNAc-tripeptide ligase (MurE) is a member of the ATP-dependent ligase family, which incorporate amino acids including meso-diaminopimelic acid (m-DAP) into peptidoglycan during synthesis in a species-specific manner. In the present study, we have cloned, over-expressed, and characterised MurE from M. tuberculosis (Mtb-MurE). The crystal structure has been determined at 3.0A resolution in the presence of the substrate UDP-MurNAc-l-Ala-d-Glu (UAG). The activity of the enzyme was measured through estimating inorganic phosphate released in a non-radioactive high-throughput colourimetric assay. UDP-MurNAc-l-Ala-d-Glu-m-DAP (UMT) formation coupled to inorganic phosphate release was confirmed by HPLC and mass spectrometric analyses. Kinetic constants were determined for a range of natural substrates using optimised conditions. From our findings, it is evident that Mtb-MurE is highly specific in adding m-DAP to UDP-MurNAc-dipeptide and ATP-hydrolysis is an absolute requirement for its activity.
Collapse
Affiliation(s)
- Chandrakala Basavannacharya
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
22
|
Functional and biochemical analysis of the Chlamydia trachomatis ligase MurE. J Bacteriol 2009; 191:7430-5. [PMID: 19820100 DOI: 10.1128/jb.01029-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are unusual obligately intracellular bacteria that do not synthesize detectable peptidoglycan. However, they possess genes that appear to encode products with peptidoglycan biosynthetic activity. Bioinformatic analysis predicts that chlamydial MurE possesses UDP-MurNAc-L-Ala-D-Glu:meso-diaminopimelic acid (UDP-MurNAc-L-Ala-D-Glu:meso-A(2)pm) ligase activity. Nevertheless, there are no experimental data to confirm this hypothesis. In this paper we demonstrate that the murE gene from Chlamydia trachomatis is capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-L-Ala-D-Glu:meso-A(2)pm ligase activity. Recombinant MurE from C. trachomatis (MurE(Ct)) was overproduced in and purified from E. coli in order to investigate its kinetic parameters in vitro. By use of UDP-MurNAc-L-Ala-D-Glu as the nucleotide substrate, MurE(Ct) demonstrated ATP-dependent meso-A(2)pm ligase activity with pH and magnesium ion optima of 8.6 and 30 mM, respectively. Other amino acids (meso-lanthionine, the ll and dd isomers of A(2)pm, D-lysine) were also recognized by MurE(Ct.) However, the activities for these amino acid substrates were weaker than that for meso-A(2)pm. The specificity of MurE(Ct) for three possible C. trachomatis peptidoglycan nucleotide substrates was also determined in order to deduce which amino acid might be present at the first position of the UDP-MurNAc-pentapeptide. Relative k(cat)/K(m) ratios for UDP-MurNAc-L-Ala-D-Glu, UDP-MurNAc-L-Ser-D-Glu, and UDP-MurNAc-Gly-D-Glu were 100, 115, and 27, respectively. Our results are consistent with the synthesis in chlamydiae of a UDP-MurNAc-pentapeptide in which the third amino acid is meso-A(2)pm. However, due to the lack of specificity of MurE(Ct) for nucleotide substrates in vitro, it is not obvious which amino acid is present at the first position of the pentapeptide.
Collapse
|
23
|
Abstract
The enzyme kinetics of the amide ligase MurE, a cell wall biosynthesis enzyme, from Pseudomonas aeruginosa were determined using the synthesized nucleotide substrate UDP-MurNAc-Ala-Glu (uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamate). When coupled to a competitive bio-panning technique using a M13 phage display library encoding approximately 2.7 x 10(9) random peptide permutations and the specific substrates meso-A2pm (meso-diaminopimelic acid) and ATP, a peptide inhibitor of MurE was identified. The MurEp1 dodecamer selected and synthesized inhibited MurE ATPase activity with an IC(50) value of 500 microM. The inhibition was shown to be time-dependent and was reversed by the addition of meso-A2pm or UDP-MurNAc-Ala-Glu during the pre-incubation step. Kinetic analysis defined MurEp1 as a mixed inhibitor against both substrates with K(i) values of 160 and 80 microM respectively. MurEp1 was found to interfere in meso-A2pm and UDP-MurNAc-Ala-Glu binding necessary for amide bond formation. Modelling of Ps. aeruginosa MurE and docking of MurEp1 on the Ps. aeruginosa MurE surface indicated that MurEp1 binds at the juxtaposition of both meso-A2pm- and UDP-MurNAc-Ala-Glu-binding sites in the closed conformational state of the enzyme. Identification of the MurEp1 residues involved in MurE binding and inhibition will allow the development of a novel class of inhibitors having a novel mode of action against MurE.
Collapse
|
24
|
Paradis-Bleau C, Lloyd A, Sanschagrin F, Clarke T, Blewett A, Bugg TDH, Levesque RC. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC BIOCHEMISTRY 2008; 9:33. [PMID: 19099588 PMCID: PMC2626591 DOI: 10.1186/1471-2091-9-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/19/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND To develop antibacterial agents having novel modes of action against bacterial cell wall biosynthesis, we targeted the essential MurF enzyme of the antibiotic resistant pathogen Pseudomonas aeruginosa. MurF catalyzes the formation of a peptide bond between D-Alanyl-D-Alanine (D-Ala-D-Ala) and the cell wall precursor uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (UDP-MurNAc-Ala-Glu-meso-A2pm) with the concomitant hydrolysis of ATP to ADP and inorganic phosphate, yielding UDP-N-acetylmuramyl-pentapeptide. As MurF acts on a dipeptide, we exploited a phage display approach to identify peptide ligands having high binding affinities for the enzyme. RESULTS Screening of a phage display 12-mer library using purified P. aeruginosa MurF yielded to the identification of the MurFp1 peptide. The MurF substrate UDP-MurNAc-Ala-Glumeso-A2pm was synthesized and used to develop a sensitive spectrophotometric assay to quantify MurF kinetics and inhibition. MurFp1 acted as a weak, time-dependent inhibitor of MurF activity but was a potent inhibitor when MurF was pre-incubated with UDP-MurNAc-Ala-Glu-meso-A2pm or ATP. In contrast, adding the substrate D-Ala-D-Ala during the pre-incubation nullified the inhibition. The IC50 value of MurFp1 was evaluated at 250 microM, and the Ki was established at 420 microM with respect to the mixed type of inhibition against D-Ala-D-Ala. CONCLUSION MurFp1 exerts its inhibitory action by interfering with the utilization of D-Ala-D-Ala by the MurF amide ligase enzyme. We propose that MurFp1 exploits UDP-MurNAc-Ala-Glu-meso-A2pm-induced structural changes for better interaction with the enzyme. We present the first peptide inhibitor of MurF, an enzyme that should be exploited as a target for antimicrobial drug development.
Collapse
|
25
|
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
26
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
27
|
McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT. L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci U S A 2006; 103:17909-14. [PMID: 17093042 PMCID: PMC1693846 DOI: 10.1073/pnas.0608643103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synthesis of meso-diaminopimelic acid (m-DAP) in bacteria is essential for both peptidoglycan and lysine biosynthesis. From genome sequencing data, it was unclear how bacteria of the Chlamydiales order would synthesize m-DAP in the absence of dapD, dapC, and dapE, which are missing from the genome. Here, we assessed the biochemical capacity of Chlamydia trachomatis serovar L2 to synthesize m-DAP. Expression of the chlamydial asd, dapB, and dapF genes in the respective Escherichia coli m-DAP auxotrophic mutants restored the mutants to DAP prototrophy. Screening of a C. trachomatis genomic library in an E. coli DeltadapD DAP auxotroph identified ct390 as encoding an enzyme that restored growth to the Escherichia coli mutant. ct390 also was able to complement an E. coli DeltadapD DeltadapE, but not a DeltadapD DeltadapF mutant, providing genetic evidence that it encodes an aminotransferase that may directly convert tetrahydrodipicolinate to L,L-diaminopimelic acid. This hypothesis was supported by in vitro kinetic analysis of the CT390 protein and the fact that similar properties were demonstrated for the Protochlamydia amoebophila homologue, PC0685. In vivo, the C. trachomatis m-DAP synthesis genes are expressed as early as 8 h after infection. An aminotransferase activity analogous to CT390 recently has been characterized in plants and cyanobacteria. This previously undescribed pathway for m-DAP synthesis supports an evolutionary relationship among the chlamydiae, cyanobacteria, and plants and strengthens the argument that chlamydiae synthesize a cell wall despite the inability of efforts to date to detect peptidoglycan in these organisms.
Collapse
Affiliation(s)
- Andrea J. McCoy
- *Department of Microbiology and Immunology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799
| | - Nancy E. Adams
- *Department of Microbiology and Immunology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799
| | - André O. Hudson
- Biotech Center and Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520; and
| | - Charles Gilvarg
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Thomas Leustek
- Biotech Center and Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520; and
| | - Anthony T. Maurelli
- *Department of Microbiology and Immunology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Vederas JC. 2005 Alfred Bader Award Lecture Diaminopimelate and lysine biosynthesis - An antimicrobial target in bacteria. CAN J CHEM 2006. [DOI: 10.1139/v06-072] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of bacterial resistance to current antibiotic therapy has stimulated the search for novel antimicrobial agents. The essential peptidoglycan cell wall layer in bacteria is the site of action of many current drugs, such as β-lactams and vancomycin. It is also a target for a number of very potent bacterially produced antibiotic peptides, such as nisin A and lacticin 3147, both of which are highly posttranslationally modified lantibiotics that act by binding to lipid II, the peptidoglycan precursor. Another set of potential targets for antibiotic development are the bacterial enzymes that make precursors for lipid II and peptidoglycan, for example, those in the pathway to diamino pimelic acid (DAP) and its metabolic product, L-lysine. Among these, DAP epimerase is a unique nonpyridoxal phosphate (PLP) dependent enzyme that appears to use two active site thiols (Cys73 and Cys217) as a base and an acid to depro tonate the α-hydrogen of LL-DAP or meso-DAP from one side and reprotonate from the other. This process cannot be easily duplicated in the absence of the enzyme. A primary goal of our work was to generate inhibitors of DAP epi merase that would accurately mimic the natural substrates (meso-DAP and LL-DAP) in the enzyme active site and, through crystallographic analysis, provide insight into mechanism and substrate specificity. A series of aziridine-containing DAP analogs were chemically synthesized and tested as inhibitors of DAP epimerase from Haemophilus influenzae. Two diastereomers of 2-(4-amino-4-carboxybutyl)aziridine-2-carboxylic acid (AziDAP) act as rapid irreversible inactivators of DAP epimerase; the AziDAP analog of LL-DAP reacts selectively with the sulfhydryl of Cys73, whereas the corresponding analog of meso-DAP reacts with Cys217. AziDAP isomers are too unstable to be useful antibiotics. However, mass spectral and X-ray crystallographic analyses of the inactivated enzymes confirm that the thiol attacks the methylene group of the aziridine with concomitant ring opening to give a DAP analog bound in the active site. Further crystallographic analyses should yield useful mechanistic insights.Key words: enzyme mechanism, enzyme inhibition, antibiotics, aziridines, amino acids.
Collapse
|
29
|
Boniface A, Bouhss A, Mengin-Lecreulx D, Blanot D. The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity. J Biol Chem 2006; 281:15680-6. [PMID: 16595662 DOI: 10.1074/jbc.m506311200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidoglycan of Thermotoga maritima, an extremely thermophilic eubacterium, was shown to contain no diaminopimelic acid and approximate amounts of both enantiomers of lysine (Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B., and Stetter, K. O. (1986) Arch. Microbiol. 144, 324-333). To assess the possible involvement of the MurE activity in the incorporation of D-lysine, the murE gene from this organism was cloned in Escherichia coli, and the corresponding protein was purified as the C-terminal His6-tagged form. In vitro assays showed that D-lysine and meso-diaminopimelic acid were added to UDP-N-acetylmuramoyl-dipeptide with 25 and 10% efficiencies, respectively, relative to L-lysine. The purified enzyme was used to synthesize the L- and D-lysine-containing UDP-N-acetylmuramoyl-tripeptides; chemical analysis revealed an unusual structure for the D-lysine-containing nucleotide, namely acylation of the epsilon-amino function of D-lysine by the D-glutamyl residue. In vitro assays with MurF and MraY enzymes from T. maritima showed that this novel nucleotide was not a substrate for MurF but that it could be directly processed into tripeptide lipid I by MraY, thereby substantiating the role of MurE in the incorporation of D-lysine into peptidoglycan.
Collapse
Affiliation(s)
- Audrey Boniface
- Laboratory of Bacterial Envelopes and Antibiotics, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Université Paris-Sud, 91405 Orsay, France
| | | | | | | |
Collapse
|
30
|
Baum EZ, Crespo-Carbone SM, Foleno B, Peng S, Hilliard JJ, Abbanat D, Goldschmidt R, Bush K. Identification of a dithiazoline inhibitor of Escherichia coli L,D-carboxypeptidase A. Antimicrob Agents Chemother 2006; 49:4500-7. [PMID: 16251288 PMCID: PMC1280138 DOI: 10.1128/aac.49.11.4500-4507.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme L,D-carboxypeptidase A is involved in the recycling of bacterial peptidoglycan and is essential in Escherichia coli during stationary phase. By high-throughput screening, we have identified a dithiazoline inhibitor of the enzyme with a 50% inhibitory concentration of 3 microM. The inhibitor appeared to cause lysis of E. coli during stationary phase, behavior that is similar to a previously described deletion mutant of L,D-carboxypeptidase A (M. F. Templin, A. Ursinus, and J.-V. Holtje, EMBO J. 18:4108-4117, 1999). As much as a one-log drop in CFU in stationary phase was observed upon treatment of E. coli with the inhibitor, and the amount of intracellular tetrapeptide substrate increased by approximately 33%, consistent with inhibition of the enzyme within bacterial cells. Stationary-phase targets such as L,D-carboxypeptidase A are largely underrepresented as targets of the antibiotic armamentarium but provide potential opportunities to interfere with bacterial growth and persistence.
Collapse
Affiliation(s)
- Ellen Z Baum
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 1000 Route 202, Raritan, New Jersey 08869, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. Crystal Structure of a Peptidoglycan Synthesis Regulatory Factor (PBP3) from Streptococcus pneumoniae. J Biol Chem 2005; 280:15984-91. [PMID: 15596446 DOI: 10.1074/jbc.m408446200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are membrane-associated enzymes which perform critical functions in the bacterial cell division process. The single d-Ala,d-Ala (d,d)-carboxypeptidase in Streptococcus pneumoniae, PBP3, has been shown to play a key role in control of availability of the peptidoglycal substrate during cell growth. Here, we have biochemically characterized and solved the crystal structure of a soluble form of PBP3 to 2.8 A resolution. PBP3 folds into an NH(2)-terminal, d,d-carboxypeptidase-like domain, and a COOH-terminal, elongated beta-rich region. The carboxypeptidase domain harbors the classic signature of the penicilloyl serine transferase superfamily, in that it contains a central, five-stranded antiparallel beta-sheet surrounded by alpha-helices. As in other carboxypeptidases, which are present in species whose peptidoglycan stem peptide has a lysine residue at the third position, PBP3 has a 14-residue insertion at the level of its omega loop, a feature that distinguishes it from carboxypeptidases from bacteria whose peptidoglycan harbors a diaminopimelate moiety at this position. PBP3 performs substrate acylation in a highly efficient manner (k(cat)/K(m) = 50,500 M(-1) x s(-1)), an event that may be linked to role in control of pneumococcal peptidoglycan reticulation. A model that places PBP3 poised vertically on the bacterial membrane suggests that its COOH-terminal region could act as a pedestal, placing the active site in proximity to the peptidoglycan and allowing the protein to "skid" on the surface of the membrane, trimming pentapeptides during the cell growth and division processes.
Collapse
Affiliation(s)
- Cécile Morlot
- Laboratoire de Cristallographie Macromoléculaire and Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/CEA/UJF), 41 rue Jules Horowitz, Grenoble 38027, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Consaul SA, Wright LF, Mahapatra S, Crick DC, Pavelka MS. An unusual mutation results in the replacement of diaminopimelate with lanthionine in the peptidoglycan of a mutant strain of Mycobacterium smegmatis. J Bacteriol 2005; 187:1612-20. [PMID: 15716431 PMCID: PMC1064014 DOI: 10.1128/jb.187.5.1612-1620.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial peptidoglycan contains L-alanyl-D-iso-glutaminyl-meso-diaminopimelyl-D-alanyl-D-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the L-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate D-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to beta-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine beta-synthase, an enzyme that is a part of the cysteine biosynthetic pathway.
Collapse
Affiliation(s)
- Sandra A Consaul
- University of Rochester Medical Center, Department of Microbiology and Immunology, 601 Elmwood Ave., Box 672, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
33
|
Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Hervé M, Chaput C, Boneca IG, Lee WJ, Lemaitre B, Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. THE JOURNAL OF IMMUNOLOGY 2005; 173:7339-48. [PMID: 15585858 DOI: 10.4049/jimmunol.173.12.7339] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor.
Collapse
Affiliation(s)
- Carolyn R Stenbak
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 2003; 278:41702-8. [PMID: 12871942 DOI: 10.1074/jbc.m307198200] [Citation(s) in RCA: 495] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nod1 and Nod2 are mammalian proteins implicated in the intracellular detection of pathogen-associated molecular patterns. Recently, naturally occurring peptidoglycan (PG) fragments were identified as the microbial motifs sensed by Nod1 and Nod2. Whereas Nod2 detects GlcNAc-MurNAc dipeptide (GM-Di), Nod1 senses a unique diaminopimelate-containing GlcNAc-MurNAc tripeptide muropeptide (GM-TriDAP) found mostly in Gram-negative bacterial PGs. Because Nod1 and Nod2 detect similar yet distinct muropeptides, we further analyzed the molecular sensing specificity of Nod1 and Nod2 toward PG fragments. Using a wide array of natural or modified muramyl peptides, we show here that Nod1 and Nod2 have evolved divergent strategies to achieve PG sensing. By defining the PG structural requirements for Nod1 and Nod2 sensing, this study reveals how PG processing and modifications, either by host or bacterial enzymes, may affect innate immune responses.
Collapse
Affiliation(s)
- Stephen E Girardin
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dmitriev BA, Toukach FV, Schaper KJ, Holst O, Rietschel ET, Ehlers S. Tertiary structure of bacterial murein: the scaffold model. J Bacteriol 2003; 185:3458-68. [PMID: 12754246 PMCID: PMC155389 DOI: 10.1128/jb.185.11.3458-3468.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the chemical structure and physical properties of peptidoglycan have been elucidated for some time, the precise three-dimensional organization of murein has remained elusive. Earlier published computer simulations of the bacterial murein architecture modeled peptidoglycan strands in either a regular (D. Pink, J. Moeller, B. Quinn, M. Jericho, and T. Beveridge, J. Bacteriol. 182: 5925-5930, 2000) or an irregular (A. Koch, J. Theor. Biol. 204: 533-541, 2000) parallel orientation with respect to the plasma membrane. However, after integrating published experimental data on glycan chain length distribution and the degree of peptide side chain cross-linking into this computer simulation, we now report that the proposed planar network of murein appears largely dysfunctional. In contrast, a scaffold model of murein architecture, which assumes that glycan strands extend perpendicularly to the plasma membrane, was found to accommodate published experimental evidence and yield a viable stress-bearing matrix. Moreover, this model is in accordance with the well-established principle of murein assembly in vivo, i.e., sequential attachment of strands to the preexisting structure. For the first time, the phenomenon of division plane alternation in dividing bacteria can be reconciled with a computer model of the molecular architecture of murein.
Collapse
Affiliation(s)
- Boris A Dmitriev
- N. F. Gamaleya Institute for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
This review focuses on target-based approaches for developing new chemical classes of antibacterial agents aimed at the bacterial cell wall. The clinical success of antibiotics such as beta-lactams and glycopeptides validates this chemotherapeutic strategy and emerging resistance to these agents warrants the development of new antibacterial drugs. Understanding the mechanism of action and resistance to beta-lactams and glycopeptides at a molecular level has supported the development of new agents that prevent transpeptidation and transglycosylation reactions of peptidoglycan polymerisation. The enzymes involved in the synthesis of the peptidoglycan structural unit have also been targeted for antibacterial discovery. The influence of bacterial genetics and genomics, structural biology, assay development and the properties of known inhibitors on these approaches will be discussed in the context of drug discovery.
Collapse
Affiliation(s)
- David W Green
- Cubist Pharmaceuticals, Inc., 65 Hayden Ave., Lexington, MA 02421, USA.
| |
Collapse
|
37
|
Gordon E, Flouret B, Chantalat L, van Heijenoort J, Mengin-Lecreulx D, Dideberg O. Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 2001; 276:10999-1006. [PMID: 11124264 DOI: 10.1074/jbc.m009835200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-diaminopimelate ligase is a cytoplasmic enzyme that catalyzes the addition of meso-diaminopimelic acid to nucleotide precursor UDP-N-acetylmuramoyl-l-alanyl-d-glutamate in the biosynthesis of bacterial cell-wall peptidoglycan. The crystal structure of the Escherichia coli enzyme in the presence of the final product of the enzymatic reaction, UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, has been solved to 2.0 A resolution. Phase information was obtained by multiwavelength anomalous dispersion using the K shell edge of selenium. The protein consists of three domains, two of which have a topology reminiscent of the equivalent domain found in the already established three-dimensional structure of the UDP-N-acetylmuramoyl-l-alanine: D-glutamate-ligase (MurD) ligase, which catalyzes the immediate previous step of incorporation of d-glutamic acid in the biosynthesis of the peptidoglycan precursor. The refined model reveals the binding site for UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, and comparison with the six known MurD structures allowed the identification of residues involved in the enzymatic mechanism. Interestingly, during refinement, an excess of electron density was observed, leading to the conclusion that, as in MurD, a carbamylated lysine residue is present in the active site. In addition, the structural determinant responsible for the selection of the amino acid to be added to the nucleotide precursor was identified.
Collapse
Affiliation(s)
- E Gordon
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS, Laboratoire de Cristallographie Macromoléculaire, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | | | | | | | | | | |
Collapse
|
38
|
Cox RJ, Sutherland A, Vederas JC. Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorg Med Chem 2000; 8:843-71. [PMID: 10881998 DOI: 10.1016/s0968-0896(00)00044-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R J Cox
- School of Chemistry, University of Bristol, Clifton, UK.
| | | | | |
Collapse
|
39
|
Mengin-Lecreulx D, Falla T, Blanot D, van Heijenoort J, Adams DJ, Chopra I. Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl- L-alanyl-D-glutamate:L-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. J Bacteriol 1999; 181:5909-14. [PMID: 10498701 PMCID: PMC103616 DOI: 10.1128/jb.181.19.5909-5914.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monomer units in the Escherichia coli and Staphylococcus aureus cell wall peptidoglycans differ in the nature of the third amino acid in the L-alanyl-gamma-D-glutamyl-X-D-alanyl-D-alanine side chain, where X is meso-diaminopimelic acid or L-lysine, respectively. The murE gene from S. aureus encoding the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase was identified and cloned into plasmid vectors. Induction of its overexpression in E. coli rapidly results in abnormal morphological changes and subsequent cell lysis. A reduction of 28% in the peptidoglycan content was observed in induced cells, and analysis of the peptidoglycan composition and structure showed that ca. 50% of the meso-diaminopimelic acid residues were replaced by L-lysine. Lysine was detected in both monomer and dimer fragments, but the acceptor units from the latter contained exclusively meso-diaminopimelic acid, suggesting that no transpeptidation could occur between the epsilon-amino group of L-lysine and the alpha-carboxyl group of D-alanine. The overall cross-linking of the macromolecule was only slightly decreased. Detection and analysis of meso-diaminopimelic acid- and L-lysine-containing peptidoglycan precursors confirmed the presence of L-lysine in precursors containing amino acids added after the reaction catalyzed by the MurE ligase and provided additional information about the specificity of the enzymes involved in these latter processes.
Collapse
Affiliation(s)
- D Mengin-Lecreulx
- Laboratoire des Enveloppes Bactériennes, Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France.
| | | | | | | | | | | |
Collapse
|
40
|
Auger G, van Heijenoort J, Vederas JC, Blanot D. Effect of analogues of diaminopimelic acid on the meso-diaminopimelate-adding enzyme from Escherichia coli. FEBS Lett 1996; 391:171-4. [PMID: 8706910 DOI: 10.1016/0014-5793(96)00619-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several analogues of diaminopimelic acid (A2pm) were tested as substrates or inhibitors of the meso-diaminopimelate-adding enzyme from Escherichia coli. They included lanthionine derivatives, a phosphonic analogue, heterocyclic compounds, 3-fluoro-A2pm, 4-methylene-A2pm and N-hydroxy-A2pm. The best substrates were, in decreasing order of specific enzyme activity, (2S,3R,6S)-3-fluoro-A2pm, meso-lanthionine sulfoxide and N-hydroxy-A2pm (mixture of stereoisomers). In those cases where all the stereoisomers were available, the specificity could be described as meso > > DD approximately to LL. N-Hydroxy-A2pm (mixture of stereoisomers) strongly inhibited the addition of radioactive meso-A2pm to UDP-N-acetylmuramoyl-dipeptide.
Collapse
Affiliation(s)
- G Auger
- URA 1131 du CNRS, Biochimie Moléculaire et Cellulaire, Université de Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|