1
|
Li F, Wang Y, Zhang J. Kinetic isotope effect study of N-6 methyladenosine chemical demethylation in bicarbonate-activated peroxide system. J Chem Phys 2023; 159:124103. [PMID: 38127372 DOI: 10.1063/5.0169285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
N-6 methyladenosine is the most abundant nucleic acid modification in eukaryotes and plays a crucial role in gene regulation. The AlkB family of alpha-ketoglutarate-dependent dioxygenases is responsible for nucleic acid demethylation. Recent studies have discovered that a chemical demethylation system using hydrogen peroxide and ammonium bicarbonate can effectively demethylate nucleic acids. The addition of ferrous ammonium sulfate boosts the oxidation rate by forming a Fenton reagent with hydrogen peroxide. However, the specific mechanism and key steps of this process remain unclear. In this study, we investigate the influence of ferrous ammonium sulfate concentration on the kinetic isotope effect (KIE) of the chemical demethylation system using LC-MS. As the concentration of ferrous ions increases, the observed KIE decreases from 1.377 ± 0.020 to 1.120 ± 0.016, indicating a combination of the primary isotope effect and inverse α-secondary isotope effect with the ion pairing effect. We propose that the initial hydrogen extraction is the rate-limiting step and observe a tight transition state structure in the formation of the hm6A process through the analysis of KIE trends. The concentration-dependent KIE provides a novel perspective on the mechanism of chemical demethylation and offers a chemical model for enzyme-catalyzed demethylation.
Collapse
Affiliation(s)
- Fangya Li
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Ying Wang
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| |
Collapse
|
2
|
Zhang L, Ding X, Kratka CR, Levine A, Lee JK. Gas Phase Experimental and Computational Studies of AlkB Substrates: Intrinsic Properties and Biological Implications. J Org Chem 2023; 88:13115-13124. [PMID: 37651719 DOI: 10.1021/acs.joc.3c01335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The gas phase acidity and proton affinity of nucleobases that are substrates for the DNA repair enzyme AlkB have been examined using both computational and experimental methods. These thermochemical values have not heretofore been measured and provide experimental data that help benchmark the theoretical results. We also use our gas phase results to lend insight into the AlkB mechanism, particularly in terms of the role AlkB plays in DNA repair, versus its complementary enzyme AlkA.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Xiao Ding
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Catherine R Kratka
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Alec Levine
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
3
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
4
|
Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci 2021; 78:129-141. [PMID: 32642789 PMCID: PMC11072825 DOI: 10.1007/s00018-020-03594-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.
Collapse
Affiliation(s)
- Baofang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Dongyang Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruixia Tian
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
5
|
Xie LJ, Liu L, Cheng L. Selective Inhibitors of AlkB Family of Nucleic Acid Demethylases. Biochemistry 2019; 59:230-239. [PMID: 31603665 DOI: 10.1021/acs.biochem.9b00774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The α-ketoglutarate-dependent (AlkB) superfamily of FeII/2-oxoglutarate (2-OG)-dependent dioxygenases consists of a unique class of nucleic acid repair enzymes that reversibly remove alkyl substituents from nucleobases through oxidative dealkylation. Recent studies have verified the involvement of AlkB dioxygenases in a variety of human diseases. However, the development of small organic molecules that can function as enzyme inhibitors to block the action of oxidative dealkylation is still in its infancy. These purposeful chemical motifs, if capable of influencing the dealkylation activity, would have a potential clinical value by controlling genetic information expression. In this Perspective, we will summarize some of the most updated inhibitors of AlkB family demethylases and hope to provide a thought for the follow-up screening optimization.
Collapse
Affiliation(s)
- Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
6
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
7
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|
8
|
Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015; 290:20734-20742. [PMID: 26152727 DOI: 10.1074/jbc.r115.656462] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vipender Singh
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - James C Delaney
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Deyu Li
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - John M Essigmann
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
9
|
Ougland R, Rognes T, Klungland A, Larsen E. Non-homologous functions of the AlkB homologs. J Mol Cell Biol 2015; 7:494-504. [PMID: 26003568 DOI: 10.1093/jmcb/mjv029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022] Open
Abstract
The DNA repair enzyme AlkB was identified in E. coli more than three decades ago. Since then, nine mammalian homologs, all members of the superfamily of alpha-ketoglutarate and Fe(II)-dependent dioxygenases, have been identified (designated ALKBH1-8 and FTO). While E. coli AlkB serves as a DNA repair enzyme, only two mammalian homologs have been confirmed to repair DNA in vivo. The other mammalian homologs have remarkably diverse substrate specificities and biological functions. Substrates recognized by the different AlkB homologs comprise erroneous methyl- and etheno adducts in DNA, unique wobble uridine modifications in certain tRNAs, methylated adenines in mRNA, and methylated lysines on proteins. The phenotypes of organisms lacking or overexpressing individual AlkB homologs include obesity, severe sensitivity to inflammation, infertility, growth retardation, and multiple malformations. Here we review the present knowledge of the mammalian AlkB homologs and their implications for human disease and development.
Collapse
Affiliation(s)
- Rune Ougland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Torbjørn Rognes
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Arne Klungland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Elisabeth Larsen
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
10
|
Chan CTY, Deng W, Li F, DeMott MS, Babu IR, Begley TJ, Dedon PC. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chem Res Toxicol 2015; 28:978-88. [PMID: 25772370 PMCID: PMC4438938 DOI: 10.1021/acs.chemrestox.5b00004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Cells respond to stress by controlling
gene expression at several
levels, with little known about the role of translation. Here, we
demonstrate a coordinated translational stress response system involving
stress-specific reprogramming of tRNA wobble modifications that leads
to selective translation of codon-biased mRNAs representing different
classes of critical response proteins. In budding yeast exposed to
four oxidants and five alkylating agents, tRNA modification patterns
accurately distinguished among chemically similar stressors, with
14 modified ribonucleosides forming the basis for a data-driven model
that predicts toxicant chemistry with >80% sensitivity and specificity.
tRNA modification subpatterns also distinguish SN1 from
SN2 alkylating agents, with SN2-induced increases
in m3C in tRNA mechanistically linked to selective translation
of threonine-rich membrane proteins from genes enriched with ACC and
ACT degenerate codons for threonine. These results establish tRNA
modifications as predictive biomarkers of exposure and illustrate
a novel regulatory mechanism for translational control of cell stress
response.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J Begley
- ∥College of Nanoscale Science, State University of New York, Albany, New York 12203, United States
| | | |
Collapse
|
11
|
Lu L, Zhu C, Xia B, Yi C. Oxidative Demethylation of DNA and RNA Mediated by Non-Heme Iron-Dependent Dioxygenases. Chem Asian J 2014; 9:2018-29. [DOI: 10.1002/asia.201402148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/10/2022]
|
12
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Ye Fu
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Chuan He
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
13
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|
14
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
15
|
Korvald H, Falnes PØ, Laerdahl JK, Bjørås M, Alseth I. The Schizosaccharomyces pombe AlkB homolog Abh1 exhibits AP lyase activity but no demethylase activity. DNA Repair (Amst) 2012; 11:453-62. [PMID: 22365419 DOI: 10.1016/j.dnarep.2012.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 11/24/2022]
Abstract
2-Oxoglutarate (2OG) and iron (Fe(II)) dependent dioxygenases catalyze a wide range of biological oxidations, including hydroxylation and demethylation of proteins and nucleic acids. AlkB from Escherichia coli directly reverses certain methyl lesions in DNA, and defines a subfamily of 2OG/Fe(II) dioxygenases that has so far been shown to be involved in both nucleic acid repair and modification. The human genome encodes nine AlkB homologs and the function of most of these is still unknown. The fission yeast Schizosaccharomyces pombe has two AlkB homologs and here we have addressed the function of one of these, Abh1, which appears not to possess a classical AlkB-like repair activity. No enzymatic activity was found toward methylated DNA or etheno adducts, nor was the yeast abh1- mutant sensitive toward alkylating agents. Interestingly, heterologous expression of E. coli AlkB protected the fission yeast cells from alkylation induced cytotoxicity, suggesting that S. pombe lacks systems for efficient repair of lesions that are AlkB substrates. Further, we show that Abh1 possesses an unexpected DNA incision activity at apurinic/apyrimidinic (AP) sites. This AP lyase activity did not depend on 2OG and Fe(II) and was not repressed by dioxygenase inhibitors. Survival and complementation analyses failed to reveal any biological role for AP lyase cleavage by Abh1. It appears that in vitro AP lyase activity can be detected for a number of enzymes belonging to structurally and functionally unrelated families, but the in vivo significance of such activities may be questionable.
Collapse
Affiliation(s)
- Hanne Korvald
- Department of Microbiology, Oslo University Hospital HF Rikshospitalet, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- M. V. Kovalchuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
17
|
Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell 2010; 37:843-53. [PMID: 20347426 DOI: 10.1016/j.molcel.2010.01.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/28/2009] [Accepted: 01/21/2010] [Indexed: 12/17/2022]
Abstract
Human alkyladenine DNA glycosylase (hAAG) excises alkylated purines, hypoxanthine, and etheno bases from DNA to form abasic (AP) sites. Surprisingly, elevated expression of hAAG increases spontaneous frameshift mutagenesis. By random mutagenesis of eight active site residues, we isolated hAAG-Y127I/H136L double mutant that induces even higher rates of frameshift mutation than does the wild-type hAAG; the Y127I mutation accounts for the majority of the hAAG-Y127I/H136L-induced mutator phenotype. The hAAG-Y127I/H136L and hAAG-Y127I mutants increased the rate of spontaneous frameshifts by up to 120-fold in S. cerevisiae and also induced high rates of microsatellite instability (MSI) in human cells. hAAG and its mutants bind DNA containing one and two base-pair loops with significant affinity, thus shielding them from mismatch repair; the strength of such binding correlates with their ability to induce the mutator phenotype. This study provides important insights into the mechanism of hAAG-induced genomic instability.
Collapse
|
18
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
19
|
Yi C, Yang CG, He C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc Chem Res 2009; 42:519-29. [PMID: 19852088 DOI: 10.1021/ar800178j] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes. The crystal structures show a distinct base-flipping feature in AlkB and establish ABH2 as a dsDNA repair protein. They also provide a molecular framework for understanding the demethylation reaction catalyzed by these proteins and help to explain their substrate preferences. The chemical cross-linking method demonstrated here can be applied to trap other labile protein-DNA interactions and can serve as a general strategy for exploring the structural and functional aspects of base-flipping proteins.
Collapse
Affiliation(s)
- Chengqi Yi
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Cai-Guang Yang
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Chuan He
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| |
Collapse
|
20
|
Cetica V, Genitori L, Giunti L, Sanzo M, Bernini G, Massimino M, Sardi I. Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage. J Neurooncol 2009; 94:195-201. [PMID: 19290481 DOI: 10.1007/s11060-009-9837-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
Alkylating agents, commonly used for brain tumor therapy, induce DNA and RNA lesions that, if not repaired, drive cells to apoptosis. Thus, cellular mechanisms that are responsible for nucleic acid repair are possibly involved in drug resistance. This work analyzes hABH2 and hABH3, two human Fe(II)-dependent dioxygenases in pediatric brain tumors that are treated with alkylating agents. We analyzed 25 brain tumor samples for hABH2 and hABH3 mutations; a subset of samples was tested for quantitative expression with Real-Time PCR. Sequencing analysis showed two new mutations in two glioma patients, one of hABH2 coding sequence (I141 V) and the other of hABH3 (D189 N). The mutation at codon 189 falls in a crucial region of the protein. All subjects analyzed by Real-Time PCR showed an enhanced expression of the two genes, particularly of hABH2. This is the first study of hABH2 and hABH3 in pediatric brain tumors; further molecular investigations of their mutations and expression may help determine their role in response to chemotherapy.
Collapse
Affiliation(s)
- Valentina Cetica
- Onco-Hematology Unit, Department of Pediatrics, Florence Medical School, A. Meyer Children's Hospital, viale Pieraccini 24, 50139, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pan Z, Sikandar S, Witherspoon M, Dizon D, Nguyen T, Benirschke K, Wiley C, Vrana P, Lipkin SM. Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dyn 2008; 237:316-27. [PMID: 18163532 DOI: 10.1002/dvdy.21418] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
E. coli AlkB has been intensively studied since 1983, but the in vivo roles of its mammalian homologue Alkbh1 are unknown. We, therefore, created null mice for Alkbh1. Alkbh1 mRNA is expressed at highest levels in the trophoblast lineages of the developing placenta. Alkbh1(-/-) placentas have decreased expression of differentiated trophoblast markers including Tpbp, Gcm1, and Pl-1, and increased expression of the trophoblast stem cell marker Eomes. Alkbh1 localizes to nuclear euchromatin, and interacts strongly with Mrj, an essential placental gene that mediates gene repression by recruitment of class II histone deacetylases (HDACs). Competition experiments show Alkbh1 and HDAC4 binding to Mrj are mutually exclusive, which causes decreased HDAC activity and increased target gene expression. Our study demonstrates Alkbh1 performs important functions in placental trophoblast lineage differentiation and participates in mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Zishu Pan
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Thomson NR, Howard S, Wren BW, Holden MTG, Crossman L, Challis GL, Churcher C, Mungall K, Brooks K, Chillingworth T, Feltwell T, Abdellah Z, Hauser H, Jagels K, Maddison M, Moule S, Sanders M, Whitehead S, Quail MA, Dougan G, Parkhill J, Prentice MB. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2007; 2:e206. [PMID: 17173484 PMCID: PMC1698947 DOI: 10.1371/journal.pgen.0020206] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/20/2006] [Indexed: 11/19/2022] Open
Abstract
The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens. The goal of this study was to catalogue all the genes encoded within the Y. enterocolitica genome to help us better understand how this bacterium and related bacteria cause different diseases. There are currently genome sequences (complete gene catalogues) available for two other members of this bacterial lineage, which cause dramatically different diseases: Y. pseudotuberculosis, like Y. enterocolitica, is a gut pathogen (enteropathogen) causing gastroenteritis in humans and animals. Yersinia pestis mostly resides within blood (circulating or in fleas following blood meals) and lymph tissue. It causes bubonic plague in humans and animals, and is historically known as “The Black Death.” A three-way comparison of these genomes revealed a patchwork of genes we have defined as being species- or disease-specific and genes that are common to all three Yersinia species. This has provided us with important information on shared gene functions that define the two enteropathogenic yersinias and those that differentiate them. This will help us to connect what we know about the Y. enterocolitica lifestyle within the gut to the disease it causes and its genetic makeup. We have also provided further evidence of gene-loss by Y. pestis as it has evolved from Y. pseudotuberculosis into a more acute systemic pathogen. Similar patterns of gene loss are seen in other important pathogens such as Salmonella enterica serovar Typhi.
Collapse
Affiliation(s)
- Nicholas R Thomson
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2007; 19:1580-94. [PMID: 17173371 PMCID: PMC2542901 DOI: 10.1021/tx060164e] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER, thus, counteract the toxic, mutagenic, and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate the elucidation of the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type-specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a radiomimetic, that is, capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if the damage is not repaired.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Basic Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
24
|
Yu B, Edstrom WC, Benach J, Hamuro Y, Weber PC, Gibney BR, Hunt JF. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 2006; 439:879-84. [PMID: 16482161 DOI: 10.1038/nature04561] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 01/05/2006] [Indexed: 11/08/2022]
Abstract
Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coli AlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by S(N)2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(II) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 A. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.
Collapse
Affiliation(s)
- Bomina Yu
- Department of Biological Sciences and Northeast Structural Genomics Consortium, 702A Fairchild Center, MC2434, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Mishina Y, He C. Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. J Inorg Biochem 2006; 100:670-8. [PMID: 16469386 PMCID: PMC2386269 DOI: 10.1016/j.jinorgbio.2005.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
DNA can be damaged by various intracellular and environmental alkylating agents to produce alkylation base lesions. These base damages, if not repaired promptly, may cause genetic changes that lead to diseases such as cancer. Recently, it was discovered that some of the alkylation DNA base damage can be directly removed by a family of proteins called the AlkB proteins that utilize a mononuclear non-heme iron(II) and alpha-ketoglutarate as cofactor and cosubstrate. These proteins activate dioxygen and perform an unprecedented oxidative dealkylation of the alkyl adducts on DNA heteroatoms. This review summarizes the discovery of this activity and the recent research advances in studying this unique DNA repair pathway. The focus is placed on the chemical mechanism and function of these proteins.
Collapse
Affiliation(s)
| | - Chuan He
- Corresponding author. Tel.: +1 773 702 5061; fax: +1 773 702 0805. E-mail address: (C. He)
| |
Collapse
|
26
|
Affiliation(s)
- Yukiko Mishina
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Erica M. Duguid
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Chuan He
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| |
Collapse
|
27
|
Brégeon D, Sarasin A. Hypothetical role of RNA damage avoidance in preventing human disease. Mutat Res 2005; 577:293-302. [PMID: 15916782 DOI: 10.1016/j.mrfmmm.2005.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/31/2005] [Accepted: 04/02/2005] [Indexed: 01/21/2023]
Abstract
Most of nucleic acids damaging agents are not only restricted to DNA but equally affect DNA and RNA molecules. Considering that RNA damage could be very toxic for the cell, a property used by some cancer treatments, it would not be unexpected to find out that several proteins may be involved in RNA damage avoidance mechanisms helping cells to counteract such cytotoxic effects. Up to now, only one specific repair mechanism allowing cells to deal with toxic effects of methylated RNA have been described. However, there are in the literature several data suggesting that this study may only be the tip of the iceberg and that cells might be able to counteract the deleterious effects of a large variety of RNA damage. In this review, we will discuss the different proteins that may be involved in the mechanism of RNA damage avoidance and their potential role in human diseases.
Collapse
Affiliation(s)
- Damien Brégeon
- Institut Gustave Roussy PR2, CNRS UPR-2169, 39 rue Camille Desmoulins 94805 Villejuif Cedex, France
| | | |
Collapse
|
28
|
Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O'Connor TR. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 2005; 280:39448-59. [PMID: 16174769 DOI: 10.1074/jbc.m509881200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and Escherichia coli derivatives of AlkB enzymes remove methyl groups from 1-methyladenine and 3-methylcytosine in nucleic acids via an oxidative mechanism that releases the methyl group as formaldehyde. In this report, we demonstrate that the mouse homologues of the alpha-ketoglutarate Fe(II) oxygen-dependent enzymes mAbh2 and Abh3 have activities comparable to those of their human counterparts. The mAbh2 and mAbh3 release modified bases from both DNA and RNA. Comparison of the activities of the homogenous ABH2 and ABH3 enzymes demonstrate that these activities are shared by both sets of enzymes. An assay for the detection of alpha-ketoglutarate Fe(II) dioxygenase activity using an oligodeoxyribonucleotide with a unique modification shows activity for all four enzymes studied and a loss of activity for eight mutant proteins. Steady-state kinetics for removal of methyl groups from DNA substrates indicates that the reactions of the proteins are close to the diffusion limit. Moreover, mAbh2 or mAbh3 activity increases survival in a strain defective in alkB. The mRNAs of AHB2 and ABH3 are expressed most in testis for ABH2 and ABH3, whereas expression of the homologous mouse genes is different. The mAbh3 is strongly expressed in testis, whereas highest expression of mAbh2 is in heart. Other purified human AlkB homologue proteins ABH4, ABH6, and ABH7 do not manifest activity. The demonstration of mAbh2 and mAbh3 activities and their distributions provide data on these mammalian homologues of AlkB that can be used in animal studies.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
29
|
Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan HE. Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst) 2005; 3:1389-407. [PMID: 15380096 DOI: 10.1016/j.dnarep.2004.05.004] [Citation(s) in RCA: 443] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 12/13/2022]
Abstract
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.
Collapse
Affiliation(s)
- Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Delaney JC, Essigmann JM. Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine, and 3-methylthymine in alkB Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:14051-6. [PMID: 15381779 PMCID: PMC521119 DOI: 10.1073/pnas.0403489101] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AlkB repairs 1-alkyladenine and 3-methylcytosine lesions in DNA by directly reversing the base damage. Although repair studies with randomly alkylated substrates have been performed, the miscoding nature of these and related individually alkylated bases and the suppression of mutagenesis by AlkB within cells have not yet been explored. Here, we address the miscoding potential of 1-methyldeoxyadenosine (m1A), 3-methyldeoxycytidine (m3C), 3-ethyldeoxycytidine (e3C), 1-methyldeoxyguanosine (m1G), and 3-methyldeoxythymidine (m3T) by synthesizing single-stranded vectors containing each alkylated base, followed by vector passage through Escherichia coli. In SOS(-), AlkB-deficient cells, m1A was only 1% mutagenic; however, m3C and e3C were 30% mutagenic, rising to 70% in SOS(+) cells. In contrast, the mutagenicity of m1G and m3T in AlkB(-) cells dropped slightly when SOS polymerases were expressed (m1G from 80% to 66% and m3T from 60% to 53%). Mutagenicity was abrogated for m1A, m3C, and e3C in wild-type (AlkB(+)) cells, whereas m3T mutagenicity was only partially reduced. Remarkably, m1G mutagenicity was also eliminated in AlkB(+) cells, establishing it as a natural AlkB substrate. All lesions were blocks to replication in AlkB-deficient cells. The m1A, m3C, and e3C blockades were completely removed in wild-type cells; the m1G blockade was partially removed and that for m3T was unaffected by the presence of AlkB. All lesions demonstrated enhanced bypass when SOS polymerases were induced. This work provides direct evidence that AlkB suppresses both genotoxicity and mutagenesis by physiologically realistic low doses of 1-alkylpurine and 3-alkylpyrimidine DNA damage in vivo.
Collapse
Affiliation(s)
- James C Delaney
- Department of Chemistry and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
31
|
Kisby GE, Lesselroth H, Olivas A, Samson L, Gold B, Tanaka K, Turker MS. Role of nucleotide- and base-excision repair in genotoxin-induced neuronal cell death. DNA Repair (Amst) 2004; 3:617-27. [PMID: 15135729 DOI: 10.1016/j.dnarep.2004.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 02/10/2004] [Indexed: 12/29/2022]
Abstract
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Methylating agents modify DNA at many different sites, thereby producing lethal and mutagenic lesions. To remove all the main harmful base lesions, at least three types of DNA-repair activities can be used, each of which involves a different reaction mechanism. These activities include DNA-glycosylases, DNA-methyltransferases and the recently characterized DNA-dioxygenases. The Escherichia coli AlkB dioxygenase and the two human homologues, ABH2 and ABH3, represent a novel mechanism of DNA repair. They use iron-oxo intermediates to oxidize stable methylated bases in DNA and directly revert them to the unmodified form.
Collapse
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
33
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
34
|
Welford RWD, Schlemminger I, McNeill LA, Hewitson KS, Schofield CJ. The selectivity and inhibition of AlkB. J Biol Chem 2003; 278:10157-61. [PMID: 12517755 DOI: 10.1074/jbc.m211058200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AlkB is one of four proteins involved in the adaptive response to DNA alkylation damage in Escherichia coli and is highly conserved from bacteria to humans. Recent analyses have verified the prediction that AlkB is a member of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase family of enzymes. AlkB mediates repair of methylated DNA by direct demethylation of 1-methyladenine and 3-methylcytosine lesions. Other members of the Fe(II) and 2OG-dependent oxygenase family, including those involved in the hypoxic response, are targets for therapeutic intervention. Assays measuring 2OG turnover were used to investigate the selectivity of AlkB. 1-Methyladenosine, 1-methyl-2'-deoxyadenosine, 3-methylcytidine, and 3-methyl-2'-deoxycytidine all stimulated 2OG turnover by AlkB but were not demethylated indicating an uncoupling of 2OG and prime substrate oxidation and that oligomeric DNA is required for hydroxylation and subsequent demethylation. In contrast the equivalent unmethylated nucleosides did not stimulate 2OG turnover indicating that the presence of a methyl group in the substrate is important in initiating oxidation of 2OG. Stimulation of 2OG turnover by 1-methyladenosine was highly dependent on the presence of a reducing agent, ascorbate or dithiothreitol. Following the observation that AlkB is inhibited by high concentrations of 2OG, analogues of 2OG, including 2-mercaptoglutarate, were found to specifically inhibit AlkB. The flavonoid quercetin inhibits both AlkB and the 2OG oxygenase factor-inhibiting hypoxia-inducible factor (FIH) in vitro. FIH inhibition by quercetin occurs in the presence of excess iron indicating a specific interaction, while the inhibition of AlkB by quercetin is, predominantly, due to nonspecific iron chelation.
Collapse
Affiliation(s)
- Richard W D Welford
- Dyson Perrins Laboratory and The Oxford Centre for Molecular Sciences, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Begley TJ, Samson LD. AlkB mystery solved: oxidative demethylation of N1-methyladenine and N3-methylcytosine adducts by a direct reversal mechanism. Trends Biochem Sci 2003; 28:2-5. [PMID: 12517444 DOI: 10.1016/s0968-0004(02)00010-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All organisms have multiple DNA repair pathways to protect against alkylation-induced mutation and cell death. For nearly two decades, we have known that the Escherichia coli alkB gene product protects against cell killing by S(N)2-alkylating agents, probably through DNA repair. Despite numerous attempts, a specific DNA repair activity could not be assigned to AlkB. Now, a breakthrough in biology and biochemistry, coupled with the discovery of an in silico protein structure, has uncovered a novel direct reversal DNA repair mechanism that is catalyzed by AlkB, namely the oxidative demethylation of N1-methyladenine or N3-methylcytosine DNA lesions. This reaction occurs on both single- and double-stranded DNA, and requires AlkB-bound non-heme Fe(2+), O(2) and alpha-ketogluterate to oxidize the offending methyl group. This is followed by the release of succinate, CO(2) and formaldehyde, and the restoration of undamaged A or C in DNA.
Collapse
Affiliation(s)
- Thomas J Begley
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci U S A 2002; 99:16660-5. [PMID: 12486230 PMCID: PMC139200 DOI: 10.1073/pnas.262589799] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli AlkB protein protects against the cytotoxicity of methylating agents by repair of the DNA lesions 1-methyladenine and 3-methylcytosine, which are generated in single-stranded stretches of DNA. AlkB is an alpha-ketoglutarate- and Fe(II)-dependent dioxygenase that oxidizes the relevant methyl groups and releases them as formaldehyde. Here, we identify two human AlkB homologs, ABH2 and ABH3, by sequence and fold similarity, functional assays, and complementation of the E. coli alkB mutant phenotype. The levels of their mRNAs do not appear to correlate with cell proliferation but tissue distributions are different. Both enzymes remove 1-methyladenine and 3-methylcytosine from methylated polynucleotides in an alpha-ketoglutarate-dependent reaction, and act by direct damage reversal with the regeneration of the unsubstituted bases. AlkB, ABH2, and ABH3 can also repair 1-ethyladenine residues in DNA with the release of acetaldehyde.
Collapse
Affiliation(s)
- Tod Duncan
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Sedgwick B, Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 2002; 21:8886-94. [PMID: 12483506 DOI: 10.1038/sj.onc.1205998] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
38
|
Margison G. A new damage limitation exercise: ironing (Fe(II)) out minor DNA methylation lesions. DNA Repair (Amst) 2002; 1:1057-61. [PMID: 12531015 DOI: 10.1016/s1568-7864(02)00169-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Geoff Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Christie Hospital Trust, Manchester, M20 4BX, UK.
| |
Collapse
|
39
|
Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 2002; 419:174-8. [PMID: 12226667 DOI: 10.1038/nature00908] [Citation(s) in RCA: 572] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylating agents generate cytotoxic and mutagenic DNA damage. Cells use 3-methyladenine-DNA glycosylases to excise some methylated bases from DNA, and suicidal O(6)-methylguanine-DNA methyltransferases to transfer alkyl groups from other lesions onto a cysteine residue. Here we report that the highly conserved AlkB protein repairs DNA alkylation damage by means of an unprecedented mechanism. AlkB has no detectable nuclease, DNA glycosylase or methyltransferase activity; however, Escherichia coli alkB mutants are defective in processing methylation damage generated in single-stranded DNA. Theoretical protein fold recognition had suggested that AlkB resembles the Fe(ii)- and alpha-ketoglutarate-dependent dioxygenases, which use iron-oxo intermediates to oxidize chemically inert compounds. We show here that purified AlkB repairs the cytotoxic lesions 1-methyladenine and 3-methylcytosine in single- and double-stranded DNA in a reaction that is dependent on oxygen, alpha-ketoglutarate and Fe(ii). The AlkB enzyme couples oxidative decarboxylation of alpha-ketoglutarate to the hydroxylation of these methylated bases in DNA, resulting in direct reversion to the unmodified base and the release of formaldehyde.
Collapse
Affiliation(s)
- Sarah C Trewick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | |
Collapse
|
40
|
Falnes PØ, Johansen RF, Seeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 2002; 419:178-82. [PMID: 12226668 DOI: 10.1038/nature01048] [Citation(s) in RCA: 487] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bacterial AlkB protein is known to be involved in cellular recovery from alkylation damage; however, the function of this protein remains unknown. AlkB homologues have been identified in several organisms, including humans, and a recent sequence alignment study has suggested that these proteins may belong to a superfamily of 2-oxoglutarate-dependent and iron-dependent oxygenases (2OG-Fe(ii)-oxygenases). Here we show that AlkB from Escherichia coli is indeed a 2-oxoglutarate-dependent and iron-dependent DNA repair enzyme that releases replication blocks in alkylated DNA by a mechanism involving oxidative demethylation of 1-methyladenine residues. This mechanism represents a new pathway for DNA repair and the third type of DNA damage reversal mechanism so far discovered.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Centre for Molecular Biology and Neuroscience, and Institute of Medical Microbiology, University of Oslo, National Hospital, 0027 Oslo, Norway.
| | | | | |
Collapse
|
41
|
Aravind L, Koonin EV. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol 2001; 2:RESEARCH0007. [PMID: 11276424 PMCID: PMC30706 DOI: 10.1186/gb-2001-2-3-research0007] [Citation(s) in RCA: 345] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 12/14/2000] [Accepted: 01/12/2001] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Protein fold recognition using sequence profile searches frequently allows prediction of the structure and biochemical mechanisms of proteins with an important biological function but unknown biochemical activity. Here we describe such predictions resulting from an analysis of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenases, a class of enzymes that are widespread in eukaryotes and bacteria and catalyze a variety of reactions typically involving the oxidation of an organic substrate using a dioxygen molecule. RESULTS We employ sequence profile analysis to show that the DNA repair protein AlkB, the extracellular matrix protein leprecan, the disease-resistance-related protein EGL-9 and several uncharacterized proteins define novel families of enzymes of the 2OG-Fe(II) oxygenase superfamily. The identification of AlkB as a member of the 2OG-Fe(II) oxygenase superfamily suggests that this protein catalyzes oxidative detoxification of alkylated bases. More distant homologs of AlkB were detected in eukaryotes and in plant RNA viruses, leading to the hypothesis that these proteins might be involved in RNA demethylation. The EGL-9 protein from Caenorhabditis elegans is necessary for normal muscle function and its inactivation results in resistance against paralysis induced by the Pseudomonas aeruginosa toxin. EGL-9 and leprecan are predicted to be novel protein hydroxylases that might be involved in the generation of substrates for protein glycosylation. CONCLUSIONS Here, using sequence profile searches, we show that several previously undetected protein families contain 2OG-Fe(II) oxygenase fold. This allows us to predict the catalytic activity for a wide range of biologically important, but biochemically uncharacterized proteins from eukaryotes and bacteria.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
42
|
Landini P, Volkert MR. Regulatory responses of the adaptive response to alkylation damage: a simple regulon with complex regulatory features. J Bacteriol 2000; 182:6543-9. [PMID: 11073893 PMCID: PMC111391 DOI: 10.1128/jb.182.23.6543-6549.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P Landini
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Institute for Environmental Technology, 8600 Duebendorf, Switzerland
| | | |
Collapse
|
43
|
Dinglay S, Trewick SC, Lindahl T, Sedgwick B. Defective processing of methylated single-stranded DNA by E. coli alkB mutants. Genes Dev 2000. [DOI: 10.1101/gad.14.16.2097] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agentN-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. ArecA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells.
Collapse
|
44
|
Dinglay S, Trewick SC, Lindahl T, Sedgwick B. Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes Dev 2000; 14:2097-105. [PMID: 10950872 PMCID: PMC316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated lambda phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agent N-methyl-N-nitrosourea or by gamma irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. A recA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells.
Collapse
Affiliation(s)
- S Dinglay
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | |
Collapse
|
45
|
Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2135-49. [PMID: 10759836 DOI: 10.1046/j.1432-1327.2000.01266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed.
Collapse
Affiliation(s)
- G Frosina
- DNA Repair Unit, Mutagenesis laboratory, Istituto Nazionale Ricerca Cancro, Genova, Italy.
| |
Collapse
|
46
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
47
|
Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A 1998; 95:9997-10002. [PMID: 9707589 PMCID: PMC21450 DOI: 10.1073/pnas.95.17.9997] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased spontaneous mutation is associated with increased cancer risk. Here, by using a model system, we show that spontaneous mutation can be increased several hundred-fold by a simple imbalance between the first two enzymes involved in DNA base excision repair. The Saccharomyces cerevisiae MAG1 3-methyladenine (3MeA) DNA glycosylase, when expressed at high levels relative to the apurinic/apyrimidinic endonuclease, increases spontaneous mutation by up to approximately 600-fold in S. cerevisiae and approximately 200-fold in Escherichia coli. Genetic evidence suggests that, in yeast, the increased spontaneous mutation requires the generation of abasic sites and the processing of these sites by the REV1/REV3/REV7 lesion bypass pathway. Comparison of the mutator activity produced by Mag1, which has a broad substrate range, with that produced by the E. coli Tag 3MeA DNA glycosylase, which has a narrow substrate range, indicates that the removal of endogenously produced 3MeA is unlikely to be responsible for the mutator effect of Mag1. Finally, the human AAG 3-MeA DNA glycosylase also can produce a small (approximately 2-fold) but statistically significant increase in spontaneous mutation, a result which could have important implications for carcinogenesis.
Collapse
Affiliation(s)
- B J Glassner
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Dinglay S, Gold B, Sedgwick B. Repair in Escherichia coli alkB mutants of abasic sites and 3-methyladenine residues in DNA. Mutat Res 1998; 407:109-16. [PMID: 9637239 DOI: 10.1016/s0921-8777(97)00065-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Escherichia coli alkB mutants are sensitive to methyl methanesulfonate and dimethylsulphate, and are defective in the processing of methylated DNA. The function of the AlkB protein has not been determined. Here, we show that alkB mutants are not defective in repairing several different types of potentially toxic DNA lesions that are known to be generated by MMS, including apyrimidinic and apurinic sites, and secondary lesions that could arise at these sites (DNA-protein cross-links and DNA interstrand cross-links). Also, alkB mutants were not sensitive to MeOSO2-(CH2)2-Lex, a compound that alkylates the minor groove of DNA generating primarily 3-methyladenine.
Collapse
Affiliation(s)
- S Dinglay
- Imperial Cancer Research Fund, Clare Hall Laboratories, Herts, UK
| | | | | |
Collapse
|
49
|
Gustafson DL, Trotter BK, Snead D, Waldren CA. Expression of human O6-methyl guanine methyl transferase (MGMT) in post replication repair (PRR) deficient CHO-UV-1 cells: compensation for hypersensitivity to methylating and ethylating agents but not to mitomycin C. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:9-17. [PMID: 9217997 DOI: 10.1007/bf02679951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cDNA for human MGMT was transfected into and expressed in CHO cells and the post-replication repair deficient mutant CHO-UV-1 cell, both of which are devoid of endogenous MGMT activity. Expression of MGMT activity was demonstrated by measurement of activity and by immunoblot analysis. The mutant phenotype of UV-1 is characterized by extreme hypersensitivity to killing by methylating and ethylating agents as well as the antitumor antibiotic mitomycin C (MMC). MGMT expression conferred equivalent, supra-normal levels of resistance to killing by MNNG (N-methyl-N'-nitro-nitrosoguanidine) or EMS (ethyl methanesulfonate) on CHO and UV-1, but had no effect on the lethality of MMC. So, even though a mutated gene other than MGMT is known to underlie the pleiotropic phenotype of UV-1, expression of MGMT compensates for part of this phenotype. This result indicates that attempts to concordance map and clone the gene(s) responsible for the UV-1 phenotype can be complicated when using MNNG selection due to compensation by the MGMT gene. These results also indicate that the post-replication repair deficient phenotype characterized in CHO-UV-1 cells, will be masked in cells normally expressing MGMT due to MGMT-mediated resistance to methylating and ethylating agents.
Collapse
Affiliation(s)
- D L Gustafson
- Department of Radiological Health Sciences, Colorado State University, Fort Collins 80521, USA
| | | | | | | |
Collapse
|
50
|
Wei YF, Carter KC, Wang RP, Shell BK. Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res 1996; 24:931-37. [PMID: 8600462 PMCID: PMC145711 DOI: 10.1093/nar/24.5.931] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Escherichia coli AlkB protein is involved in protecting cells against mutation and cell death induced specifically by SN2-type alkylating agents such as methyl methanesulfonate (MMS). A human cDNA encoding a polypeptide homologous to E.coli AlkB was discovered by searching a database of expressed sequence tags (ESTs) derived from high throughput cDNA sequencing. The full-length human AlkB homolog (hABH) cDNA clone contains a 924 bp open reading frame encoding a 34 kDa protein which is 52% similar and 23% identical to E.coli AlkB. The hABH gene, which maps to chromosome 14q24, was ubiquitously expressed in 16 human tissues examined. When hABH was expressed in E.coli alkB mutant cells partial rescue of the cells from MMS-induced cell death occurred. Under the conditions used expression of hABH in skin fibroblasts was not regulated by treatment with MMS. Our findings show that the AlkB protein is structurally and functionally conserved from bacteria to human, but its regulation may have diverged during evolution.
Collapse
Affiliation(s)
- Y F Wei
- Department of Molecular Biology, Human Genome Sciences Inc., Rockville, MD 20850-3338, USA
| | | | | | | |
Collapse
|