1
|
Kalizang'oma A, Swarthout TD, Mwalukomo TS, Kamng’ona A, Brown C, Msefula J, Demetriou H, Chan JM, Roalfe L, Obolski U, Lourenço J, Goldblatt D, Chaguza C, French N, Heyderman RS. Clonal Expansion of a Streptococcus pneumoniae Serotype 3 Capsule Variant Sequence Type 700 With Enhanced Vaccine Escape Potential After 13-Valent Pneumococcal Conjugate Vaccine Introduction. J Infect Dis 2024; 230:e189-e198. [PMID: 39052729 PMCID: PMC11272040 DOI: 10.1093/infdis/jiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/21/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Todd D Swarthout
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thandie S Mwalukomo
- School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Arox Kamng’ona
- School of Life Sciences and Allied Health Professionals, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Comfort Brown
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Jacquline Msefula
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Hayley Demetriou
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Lucy Roalfe
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Uri Obolski
- Porter School of the Environment and Earth Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Jose Lourenço
- Faculdade de Ciências, BioISI, Universidade de Lisboa, Lisbon, Portugal
| | - David Goldblatt
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Chrispin Chaguza
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Robert S Heyderman
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| |
Collapse
|
2
|
Disruption of the cpsE and endA Genes Attenuates Streptococcus pneumoniae Virulence: Towards the Development of a Live Attenuated Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8020187. [PMID: 32326482 PMCID: PMC7349068 DOI: 10.3390/vaccines8020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of deaths due to Streptococcus pneumoniae infections are in developing countries. Although polysaccharide-based pneumococcal vaccines are available, newer types of vaccines are needed to increase vaccine affordability, particularly in developing countries, and to provide broader protection across all pneumococcal serotypes. To attenuate pneumococcal virulence with the aim of engineering candidate live attenuated vaccines (LAVs), we constructed knockouts in S. pneumoniae D39 of one of the capsular biosynthetic genes, cpsE that encodes glycosyltransferase, and the endonuclease gene, endA, that had been implicated in the uptake of DNA from the environment as well as bacterial escape from neutrophil-mediated killing. The cpsE gene knockout significantly lowered peak bacterial density, BALB/c mice nasopharyngeal (NP) colonisation but increased biofilm formation when compared to the wild-type D39 strain as well as the endA gene knockout mutant. All constructed mutant strains were able to induce significantly high serum and mucosal antibody response in BALB/c mice. However, the cpsE-endA double mutant strain, designated SPEC, was able to protect mice from high dose mucosal challenge of the D39 wild-type. Furthermore, SPEC showed 23-fold attenuation of virulence compared to the wild-type. Thus, the cpsE-endA double-mutant strain could be a promising candidate for further development of a LAV for S. pneumoniae.
Collapse
|
3
|
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.
Collapse
|
4
|
Mohammadzadeh M, Pourakbari B, Doosti A, Mahmoudi S, Habibi-Anbouhi M, Mamishi S. Construction and evaluation of a whole-cell pneumococcal vaccine candidate. J Appl Microbiol 2018; 125:1901-1910. [PMID: 30133088 DOI: 10.1111/jam.14079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 11/29/2022]
Abstract
AIMS Pneumococcal infections are a major public health problem, especially in developing countries, and the current pneumococcal vaccines do not cover all pathogenic strains. New, more economical serotype-independent vaccines based on species-common protein antigens are being pursued. The pneumococcal whole-cell vaccine which is based on noncapsular antigens common to all strains induces serotype-independent immunity. In the present study, we developed a new candidate for a whole-cell pneumococcal vaccine in which two important virulence factors, the capsule and pneumolysin, were deleted. METHODS AND RESULTS Protection was elicited by immunization against colonization in mice with a killed mutant strain and the antibody response in the mice serum was evaluated. This candidate vaccine was effective in preventing nasopharyngeal colonization. The mice immunized with this candidate vaccine had significantly higher serum antibody titres than mice that received the adjuvant alone. CONCLUSIONS Based on obtained results in this study, the engineered whole-cell pneumococci can be considered as a vaccine candidate in future studies. SIGNIFICANCE AND IMPACT OF THE STUDY This candidate vaccine can overcome the limitations of available polysaccharide vaccines.
Collapse
Affiliation(s)
- M Mohammadzadeh
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - B Pourakbari
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - A Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - S Mahmoudi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M Habibi-Anbouhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - S Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ye W, Zhang J, Shu Z, Yin Y, Zhang X, Wu K. Pneumococcal LytR Protein Is Required for the Surface Attachment of Both Capsular Polysaccharide and Teichoic Acids: Essential for Pneumococcal Virulence. Front Microbiol 2018; 9:1199. [PMID: 29951042 PMCID: PMC6008509 DOI: 10.3389/fmicb.2018.01199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
The LytR-Cps-Psr family proteins are commonly present in Gram-positive bacteria, which have been shown to implicate in anchoring cell wall-related glycopolymers to the peptidoglycan. Here, we report the cellular function of SPD_1741 (LytR) in Streptococcus pneumoniae and its role in virulence of pneumococci. Pneumococcal ΔlytR mutants have been successfully constructed by replacing the lytR gene with erm cassette. The role of LytR in pneumococcal growth was determined by growth experiments, and surface accessibility of the LytR protein was analyzed using flow cytometry. Transmission electron microscopy (TEM) and immunoblotting were used to reveal the changes in capsular polysaccharide (CPS). Dot blot and ELISA were used to quantify the amount of teichoic acids (TAs). The contribution of LytR on bacterial virulence was assessed using in vitro phagocytosis assays and infection experiments. Compared to the wild-type strain, the ΔlytR mutant showed a defect in growth which merely grew to a maximal OD620 of 0.2 in the liquid medium. The growth of the ΔlytR mutant could be restored by addition of recombinant ΔTM-LytR protein in culture medium in a dose-dependent manner. TEM results showed that the D39ΔlytR mutant was impaired in the surface attachment of CPS. Deletion of lytR gene also impaired the retention of TAs on the surface of pneumococci. The reduction of CPS and TAs on the pneumocccal cells were confirmed using Dot blot and ELISA assays. Compared to wild-type D39, the ΔlytR mutant was more susceptible to the phagocytosis. Animal studies showed that the ability to colonize the nasophaynx and virulence of pneumococci were affected by impairment of the lytR gene. Collectively, these results suggest that pneumococcal LytR is involved in anchoring both the CPS and TAs to cell wall, which is important for virulence of pneumococci.
Collapse
Affiliation(s)
- Weijie Ye
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhaoche Shu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Kaifeng Wu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Abstract
Glycans play diverse biological roles, ranging from structural and regulatory functions to mediating cellular interactions. For pathogens, they are also often required for virulence and survival in the host. In Cryptococcus neoformans, an opportunistic pathogen of humans, the acidic monosaccharide glucuronic acid (GlcA) is a critical component of multiple essential glycoconjugates. One of these glycoconjugates is the polysaccharide capsule, a major virulence factor that enables this yeast to modulate the host immune response and resist antimicrobial defenses. This allows cryptococci to colonize the lung and brain, leading to hundreds of thousands of deaths each year worldwide. Synthesis of most glycans, including capsule polysaccharides, occurs in the secretory pathway. However, the activated precursors for this process, nucleotide sugars, are made primarily in the cytosol. This topological problem is resolved by the action of nucleotide sugar transporters (NSTs). We discovered that Uut1 is the sole UDP-GlcA transporter in C. neoformans and is unique among NSTs for its narrow substrate range and high affinity for UDP-GlcA. Mutant cells with UUT1 deleted lack capsule polysaccharides and are highly sensitive to environmental stress. As a result, the deletion mutant is internalized and cleared by phagocytes more readily than wild-type cells are and is completely avirulent in mice. These findings expand our understanding of the requirements for capsule synthesis and cryptococcal virulence and elucidate a critical protein family.IMPORTANCECryptococcus neoformans causes lethal meningitis in almost two hundred thousand immunocompromised patients each year. Much of this fungal pathogen's ability to resist host defenses and cause disease is mediated by carbohydrate structures, including a complex polysaccharide capsule around the cell. Like most eukaryotic glycoconjugates, capsule polysaccharides are made within the secretory pathway, although their precursors are generated in the cytosol. Specific transporters are therefore required to convey these raw materials to the site of synthesis. One precursor of particular interest is UDP-glucuronic acid, which donates glucuronic acid to growing capsule polysaccharides. We discovered a highly specific, high-affinity transporter for this molecule. Deletion of the gene encoding this unusual protein abolishes capsule synthesis, alters stress resistance, and eliminates fungal virulence. In this work, we have identified a novel transporter, elucidated capsule synthesis and thereby aspects of fungal pathogenesis, and opened directions for potential antifungal therapy.
Collapse
|
7
|
Freas N, Newton P, Perozich J. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships. FEBS Open Bio 2016; 6:77-89. [PMID: 27047744 PMCID: PMC4794789 DOI: 10.1002/2211-5463.12022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 12/02/2022] Open
Abstract
UDP‐glucose dehydrogenase (UDPGDH), UDP‐N‐acetyl‐mannosamine dehydrogenase (UDPNAMDH) and GDP‐mannose dehydrogenase (GDPMDH) belong to a family of NAD+‐linked 4‐electron‐transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP‐SDHs). UDPGDH is an enzyme responsible for converting UDP‐d‐glucose to UDP‐d‐glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP‐N‐acetyl‐mannosamine to UDP‐N‐acetyl‐mannosaminuronic acid and GDP‐mannose to GDP‐mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP‐SDH group, including residue positions critical to NDP‐sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. Enzymes UDP‐glucose dehydrogenase (UDPGDH, EC 1.1.1.22).
Collapse
Affiliation(s)
- Nicholas Freas
- Department of Biology Franciscan University of Steubenville OH USA
| | - Peter Newton
- Department of Biology Franciscan University of Steubenville OH USA
| | - John Perozich
- Department of Biology Franciscan University of Steubenville OH USA
| |
Collapse
|
8
|
Sequence elements upstream of the core promoter are necessary for full transcription of the capsule gene operon in Streptococcus pneumoniae strain D39. Infect Immun 2015; 83:1957-72. [PMID: 25733517 DOI: 10.1128/iai.02944-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/16/2015] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae is a major bacterial pathogen in humans. Its polysaccharide capsule is a key virulence factor that promotes bacterial evasion of human phagocytic killing. While S. pneumoniae produces at least 94 antigenically different types of capsule, the genes for biosynthesis of almost all capsular types are arranged in the same locus. The transcription of the capsular polysaccharide (cps) locus is not well understood. This study determined the transcriptional features of the cps locus in the type 2 virulent strain D39. The initial analysis revealed that the cps genes are cotranscribed from a major transcription start site at the -25 nucleotide (G) upstream of cps2A, the first gene in the locus. Using unmarked chromosomal truncations and a luciferase-based transcriptional reporter, we showed that the full transcription of the cps genes not only depends on the core promoter immediately upstream of cps2A, but also requires additional elements upstream of the core promoter, particularly a 59-bp sequence immediately upstream of the core promoter. Unmarked deletions of these promoter elements in the D39 genome also led to significant reduction in CPS production and virulence in mice. Lastly, common cps gene (cps2ABCD) mutants did not show significant abnormality in cps transcription, although they produced significantly less CPS, indicating that the CpsABCD proteins are involved in the encapsulation of S. pneumoniae in a posttranscriptional manner. This study has yielded important information on the transcriptional characteristics of the cps locus in S. pneumoniae.
Collapse
|
9
|
Schaffner TO, Hinds J, Gould KA, Wüthrich D, Bruggmann R, Küffer M, Mühlemann K, Hilty M, Hathaway LJ. A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence. BMC Microbiol 2014; 14:210. [PMID: 25163487 PMCID: PMC4243769 DOI: 10.1186/s12866-014-0210-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3010, Switzerland.
| |
Collapse
|
10
|
Draft Genome Sequences of Five Multilocus Sequence Types of Nonencapsulated Streptococcus pneumoniae. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00520-13. [PMID: 23887920 PMCID: PMC3735068 DOI: 10.1128/genomea.00520-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonencapsulated Streptococcus pneumoniae can colonize the human nasopharynx and cause conjunctivitis and otitis media. Different deletions in the capsular polysaccharide biosynthesis locus and different multilocus sequence types have been described for nonencapsulated strains. Draft genome sequences were generated to provide insight into the genomic diversity of these strains.
Collapse
|
11
|
Polysialic and colanic acids metabolism in Escherichia coli K92 is regulated by RcsA and RcsB. Biosci Rep 2013; 33:BSR20130018. [PMID: 23607330 PMCID: PMC3673037 DOI: 10.1042/bsr20130018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have shown previously that Escherichia coli K92 produces two different capsular polymers known as CA (colanic acid) and PA (polysialic acid) in a thermoregulated manner. The complex Rcs phosphorelay is largely related to the regulation of CA synthesis. Through deletion of rscA and rscB genes, we show that the Rcs system is involved in the regulation of both CA and PA synthesis in E. coli K92. Deletion of either rcsA or rcsB genes resulted in decreased expression of cps (CA biosynthesis cluster) at 19°C and 37°C, but only CA production was reduced at 19°C. Concerning PA, both deletions enhanced its synthesis at 37°C, which does not correlate with the reduced kps (PA biosynthesis cluster) expression observed in the rcsB mutant. Under this condition, expression of the nan operon responsible for PA catabolism was greatly reduced. Although RcsA and RcsB acted as negative regulators of PA synthesis at 37°C, their absence did not reestablish PA expression at low temperatures, despite the deletion of rcsB resulting in enhanced kps expression. Finally, our results revealed that RcsB controlled the expression of several genes (dsrA, rfaH, h-ns and slyA) involved in the thermoregulation of CA and PA synthesis, indicating that RcsB is part of a complex regulatory mechanism governing the surface appearance in E. coli.
Collapse
|
12
|
Sakuraba H, Kawai T, Yoneda K, Ohshima T. Structure of a UDP-glucose dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1003-7. [PMID: 22949183 PMCID: PMC3433186 DOI: 10.1107/s1744309112030667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
The crystal structure of an extremely thermostable UDP-glucose dehydrogenase (UDP-GDH) from the hyperthermophilic archaeon Pyrobaculum islandicum was determined at a resolution of 2.0 Å. The overall fold was comprised of an N-terminal NAD(+) dinucleotide binding domain and a C-terminal UDP-sugar binding domain connected by a long α-helix, and the main-chain coordinates of the enzyme were similar to those of previously studied UDP-GDHs, including the enzymes from Burkholderia cepacia, Streptococcus pyogenes and Klebsiella pneumoniae. However, the sizes of several surface loops in P. islandicum UDP-GDH were much smaller than the corresponding loops in B. cepacia UDP-GDH but were comparable to those of the S. pyogenes and K. pneumoniae enzymes. Structural comparison revealed that the presence of extensive intersubunit hydrophobic interactions, as well as the formation of an intersubunit aromatic pair network, is likely to be the main factor contributing to the hyperthermostability of P. islandicum UDP-GDH.
Collapse
Affiliation(s)
- Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Tomoyuki Kawai
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto 869-1404, Japan
| | - Toshihisa Ohshima
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
13
|
Melchiorre S, Camilli R, Pietrantoni A, Moschioni M, Berti F, Del Grosso M, Superti F, Barocchi MA, Pantosti A. Point mutations in wchA are responsible for the non-typability of two invasive Streptococcus pneumoniae isolates. MICROBIOLOGY-SGM 2011; 158:338-344. [PMID: 22034485 DOI: 10.1099/mic.0.054270-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-typable Streptococcus pneumoniae (NTPn) strains are typically isolated from nasopharyngeal carriage or from conjunctivitis. Since the isolation of NTPn from invasive disease is rare, we characterized the genetic basis of the non-typability of two isolates obtained in Italy from two cases of bacteraemic pneumonia. MLST revealed that both NTPn belonged to ST191, which, according to the MLST database, is associated with serotype 7F. Sequencing of the capsular locus (cps) confirmed the presence of a 7F cps in both strains and revealed the existence of distinct single point mutations in the wchA gene (a glycosyltransferase), both leading to the translation of proteins truncated at the C terminus. To verify that these mutations were responsible for the non-typability of the isolates, a functional 7F WchA was overexpressed in both NTPn. The two NTPn along with their WchA-overexpressing derivatives were analysed by transmission electron microscopy and by high-resolution magic angle spinning NMR spectroscopy. Both NTPn were devoid of a polysaccharide capsule, and WchA overexpression was sufficient to restore the assembly of a serotype 7F capsule on the surface of the two NTPn. In conclusion, we identified two new naturally occurring point mutations that lead to non-typability in the pneumococcus, and demonstrated that WchA is essential for the biosynthesis of the serotype 7F capsule.
Collapse
Affiliation(s)
| | - Romina Camilli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | - Maria Del Grosso
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Superti
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Annalisa Pantosti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Rajakannan V, Lee HS, Chong SH, Ryu HB, Bae JY, Whang EY, Huh JW, Cho SW, Kang LW, Choe H, Robinson RC. Structural basis of cooperativity in human UDP-glucose dehydrogenase. PLoS One 2011; 6:e25226. [PMID: 21984906 PMCID: PMC3184952 DOI: 10.1371/journal.pone.0025226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND UDP-glucose dehydrogenase (UGDH) is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH) in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.
Collapse
Affiliation(s)
- Venkatachalam Rajakannan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui-Sun Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seon-Ha Chong
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Bong Ryu
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Young Bae
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Whang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Lin-Woo Kang
- Department of Advanced Technology Fusion, Kunkuk University, Seoul, Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
15
|
Denapaite D, Hakenbeck R. A new variant of the capsule 3 cluster occurs in Streptococcus pneumoniae from deceased wild chimpanzees. PLoS One 2011; 6:e25119. [PMID: 21969869 PMCID: PMC3182177 DOI: 10.1371/journal.pone.0025119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
The presence of new Streptococcus pneumoniae clones in dead wild chimpanzees from the Taï National Park, Côte d'Ivoire, with previous respiratory problems has been demonstrated recently by DNA sequence analysis from samples obtained from the deceased apes. In order to broadenour understanding on the relatedness of these pneumococcal clones to those from humans, the gene locus responsible for biosynthesis of the capsule polysaccharide (CPS) has now been characterized. DNA sequence analysis of PCR fragments identified a cluster named cps3(Taï) containing the four genes typical for serotype 3 CPS, but lacking a 5'-region of ≥2 kb which is degenerated in other cps3 loci and not required for type 3 biosynthesis. CPS3 is composed of a simple disaccharide repeat unit comprising glucose and glucuronic acid (GlcUA). The two genes ugd responsible for GlcUA synthesis and wchE encoding the type 3 synthase are essential for CPS3 biosynthesis, whereas both, galU and the 3'-truncated gene pgm are not required due to the presence of homologues elsewhere in the genome. The DNA sequence of cps3(Taï) diverged considerably from those of other cps3 loci. Also, the gene pgm(Taï) represents a full length version with a nonsense mutation at codon 179. The two genes ugd(Taï) and wchE(Taï) including the promoter region were transformed into a nonencapsulated laboratory strain S. pneumoniae R6. Transformants which expressed type 3 capsule polysaccharide were readily obtained, documenting that the gene products are functional. In summary, the data indicate that cps3(Taï) evolved independent from other cps3 loci, suggesting the presence of specialized serotype 3 S. pneumoniae clones endemic to the Taï National Park area.
Collapse
Affiliation(s)
- Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
16
|
Sequence diversity within the capsular genes of Streptococcus pneumoniae serogroup 6 and 19. PLoS One 2011; 6:e25018. [PMID: 21949837 PMCID: PMC3174988 DOI: 10.1371/journal.pone.0025018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022] Open
Abstract
The main virulence factor of Streptococcus pneumoniae is the capsule. The polysaccharides comprising this capsule are encoded by approximately 15 genes and differences in these genes result in different serotypes. The aim of this study was to investigate the sequence diversity of the capsular genes of serotypes 6A, 6B, 6C, 19A and 19F and to explore a possible effect of vaccination on variation and distribution of these serotypes in the Netherlands. The complete capsular gene locus was sequenced for 25 serogroup 6 and for 20 serogroup 19 isolates. If one or more genes varied in 10 or more base pairs from the reference sequence, it was designated as a capsular subtype. Allele-specific PCRs and specific gene sequencing of highly variable capsular genes were performed on 184 serogroup 6 and 195 serogroup 19 isolates to identify capsular subtypes. This revealed the presence of 6, 3 and a single capsular subtype within serotypes 6A, 6B and 6C, respectively. The serotype 19A and 19F isolates comprised 3 and 4 capsular subtypes, respectively. For serogroup 6, the genetic background, as determined by multi locus sequence typing (MLST) and multiple- locus variable number of tandem repeat analysis (MLVA), seemed to be closely related to the capsular subtypes, but this was less pronounced for serogroup 19 isolates. The data also suggest shifts in the occurrence of capsular subtypes within serotype 6A and 19A after introduction of the 7-valent pneumococcal vaccine. The shifts within these non-vaccine serotypes might indicate that these capsular subtypes are filling the niche of the vaccine serotypes. In conclusion, there is considerable DNA sequence variation of the capsular genes within pneumococcal serogroup 6 and 19. Such changes may result in altered polysaccharides or in strains that produce more capsular polysaccharides. Consequently, these altered capsules may be less sensitive for vaccine induced immunity.
Collapse
|
17
|
Huang W, Llano J, Gauld JW. A DFT study on the catalytic mechanism of UDP-glucose dehydrogenase. CAN J CHEM 2010. [DOI: 10.1139/v10-044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5′-diphosphate glucuronic acid (UDPGlcUA) is a key intermediary metabolite in many species, including pathogenic bacteria and humans. It is biosynthesized from UDP-glucose (UDPGlc) by uridine diphosphate glucose dehydrogenase (UDPGlcDH) via a twofold two-electron–one-proton oxidation that successively transforms the 6-hydroxymethyl of glucopyranose into a formyl, and the latter into the final carboxylic function. The catalytic mechanism of UDPGlcDH was investigated using a large enzyme active-site model in combination with the B3LYP method and the polarizable continuum model (IEF-PCM) self-consistent reaction field. The latter was used to correct for the long-range electrostatic effect of the protein environment. The overall mechanism consists of four catalytic steps: (i) NAD+-dependent oxidation of glucose to glucuronaldehyde, (ii) nucleophilic addition of Cys260–SH to glucuronaldehyde to form a 6-thiohemiacetal intermediate, (iii) NAD+-dependent oxidation of the 6-thiohemiacetal to form a 6-thioester intermediate, and finally, (iv) hydrolysis of the 6-thioester to give glucuronic acid. In addition, this study also provides insight into the debated roles of Lys204 and Asp264, and the most likely protonation state of a reactive Michaelis complex of UDPGlcDH.
Collapse
Affiliation(s)
- WenJuan Huang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jorge Llano
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
18
|
Moscoso M, Domenech M, García E. Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide. Mol Microbiol 2010; 77:1052-64. [PMID: 20598082 DOI: 10.1111/j.1365-2958.2010.07271.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vancomycin is frequently added to standard therapy for pneumococcal meningitis. Although vancomycin-resistant Streptococcus pneumoniae strains have not been isolated, reports on the emergence of vancomycin-tolerant pneumococci are a cause of concern. To date, the molecular basis of vancomycin tolerance in S. pneumoniae is essentially unknown. We examined two vancomycin-tolerant clinical isolates, i.e. a purported autolysin negative (LytA(-)), serotype 23F isolate (strain S3) and the serotype 14 strain 'Tupelo', which is considered a paradigm of vancomycin tolerance. S3 was characterized here as carrying a frameshift mutation in the lytA gene encoding the main pneumococcal autolysin. The vancomycin tolerance of strain S3 was abolished by transformation to the autolysin-proficient phenotype. The original Tupelo strain was discovered to be a mixture: a strain showing a vancomycin-tolerant phenotype (Tupelo_VT) and a vancomycin-nontolerant strain (Tupelo_VNT). The two strains differed only in terms of a single mutation in the ciaH gene present in the VT strain. Most interestingly, although the vancomycin tolerance of Tupelo_VT could be overcome by increasing the LytA dosage upon transformation by a multicopy plasmid or by externally adding the autolysin, we show that vancomycin tolerance in S. pneumoniae requires the simultaneous presence of a mutated CiaH histidine kinase and capsular polysaccharide.
Collapse
Affiliation(s)
- Miriam Moscoso
- Centro de Investigaciones Biológicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Mirian Domenech
- Centro de Investigaciones Biológicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
Domenech M, García E, Moscoso M. Versatility of the capsular genes during biofilm formation by Streptococcus pneumoniae. Environ Microbiol 2009; 11:2542-55. [PMID: 19549167 DOI: 10.1111/j.1462-2920.2009.01979.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Streptococcus pneumoniae forms part of the natural microbiota of the nasopharynx. For the pneumococcus to cause infection, colonization needs to occur and this process is mediated by adherence of bacteria to the respiratory epithelium. Although the capsular polysaccharide (CPS) of S. pneumoniae is known to be important for infection to occur, its role in colonization is controversial. Biofilm models are starting to emerge as a promising tool to investigate the role of CPS during nasopharyngeal carriage, which is the first step in the dissemination and initiation of a pneumococcal infection. Using a well-defined model system to analyse in vitro biofilm formation in pneumococcus, here we explore the molecular changes underlying the appearance of capsular mutants using type 3 S. pneumoniae cells. Spontaneous colony phase variants show promoter mutations, as well as duplications, deletions and point mutations in the cap3A gene, which codes for a UDP-glucose dehydrogenase (UDP-GlcDH). Increased biofilm-forming capacity could usually be correlated with a reduction both in colony size and in the relative amount of CPS present on the cell surface of each colony variant. However, a mutation in Cap3A Thr83Ile (a strictly conserved residue in bacterial UDP-GlcDHs) that resulted in very low CPS production also led to impaired biofilm formation. We propose that non-encapsulated mutants of pneumococcal type 3 strains are essentially involved in the initial stages (the attachment stage) of biofilm formation during colonization/pathogenesis.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | | | | |
Collapse
|
20
|
Llobet E, Tomás JM, Bengoechea JA. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. MICROBIOLOGY-SGM 2009; 154:3877-3886. [PMID: 19047754 DOI: 10.1099/mic.0.2008/022301-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.
Collapse
Affiliation(s)
- Enrique Llobet
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Program Infection and Immunity, Fundació Caubet-CIMERA Illes Balears, Bunyola, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Jose A Bengoechea
- Área de Microbiología, Facultad Biología, Universitat Illes Balears, Palma Mallorca, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Program Infection and Immunity, Fundació Caubet-CIMERA Illes Balears, Bunyola, Spain
| |
Collapse
|
21
|
Evolution of the Hyaluronic Acid Synthesis (has) Operon in Streptococcus zooepidemicus and Other Pathogenic Streptococci. J Mol Evol 2008; 67:13-22. [DOI: 10.1007/s00239-008-9117-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 01/29/2023]
|
22
|
Hathaway LJ, Bättig P, Mühlemann K. In vitro expression of the first capsule gene of Streptococcus pneumoniae, cpsA, is associated with serotype-specific colonization prevalence and invasiveness. Microbiology (Reading) 2007; 153:2465-2471. [PMID: 17660411 DOI: 10.1099/mic.0.2006/005066-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polysaccharide capsule protects Streptococcus pneumoniae from phagocytosis during invasive infection, but inhibits adherence. Serotypes vary in their tendency to colonize the nasopharynx or cause invasive infection, and differences in capsule expression may play a role. Expression of the first gene of the capsule operon, cpsA, during in vitro growth of 43 clinical isolates representing 14 common pneumococcal serotypes was compared using quantitative RT-PCR. Serotypes associated with invasive infection (1, 4, 5, 7F, 8 and 14) expressed an average of twofold (P=0.0003) more cpsA than serotypes associated with nasopharyngeal colonization (6A, 6B, 9V, 15, 18C, 19F, 23F and 33). There was no difference in cpsA expression in response to growth under environmental oxygen or anaerobic conditions between the invasive and colonizing transparent strains tested: oxygen concentration did not affect cpsA expression in either the invasive or the colonizing transparent strains. Expression of cpsA at OD(600) 0.6 tended to be greater in strains with a longer lag phase during in vitro growth (P=0.07). Therefore, cpsA expression under ambient oxygen concentrations correlates with serotype-specific invasiveness and is inversely associated with the prevalence of serotype-specific carriage.
Collapse
Affiliation(s)
- Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Patrick Bättig
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Kathrin Mühlemann
- University Hospital, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Marcobal A, de las Rivas B, Moreno-Arribas MV, Muñoz R. Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Appl Environ Microbiol 2006; 72:7954-8. [PMID: 17056681 PMCID: PMC1694244 DOI: 10.1128/aem.01213-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of a 17.2-kb chromosomal DNA fragment containing the odc gene encoding ornithine decarboxylase has been determined in the putrescine producer Oenococcus oeni RM83. This DNA fragment contains 13 open reading frames, including genes coding for five transposases and two phage proteins. This description might represent the first evidence of a horizontal gene transfer event as the origin of a biogenic amine biosynthetic locus.
Collapse
Affiliation(s)
- Angela Marcobal
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
McEllistrem MC, Ransford JV, Khan SA. Characterization of in vitro biofilm-associated pneumococcal phase variants of a clinically relevant serotype 3 clone. J Clin Microbiol 2006; 45:97-101. [PMID: 17093036 PMCID: PMC1828957 DOI: 10.1128/jcm.01658-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An increasing proportion of children with acute otitis media due to Streptococcus pneumoniae have serotype 3 infections since licensure of the seven-valent pneumococcal conjugate vaccine. These serotype 3 strains are genetically related by molecular subtyping. During otitis media with effusion and recurrent otitis media, biofilms commonly develop. Pneumococcal in vitro biofilms are comprised of phase variants that differ in colony morphology. By using a representative strain of the mucoid serotype 3 clone, rough phase variants with a diverse array of mutations were detected in biofilms formed in vitro. Most phase variants had mutations in the cps3D gene, the first gene of the capsular operon. Eleven had single nucleotide polymorphisms (SNPs) in the cps3D gene, one had an SNP in the -10 promoter, and three had large deletions in the cps3D gene. Reversion to the mucoid phenotype was associated with reversion of the mutation in the cps3D gene. Unlike the phase variants detected in the nasopharynx, which have at least 20% of the parental amount of capsule, the in vitro biofilm-associated phase variants had < or =12% of the parental amount of capsule, as determined by capsule enzyme-linked immunosorbent assays. Using real-time reverse transcription-PCR, we determined that capsule expression in the phase variants was likely regulated at multiple levels. These in vitro phase variation data, which underscore the plasticity of the pneumococcus, need to be confirmed with in vivo analyses of the middle ear mucosa during otitis media.
Collapse
Affiliation(s)
- M Catherine McEllistrem
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, PA 15213-2582, USA.
| | | | | |
Collapse
|
25
|
Loeffler JM, Fischetti VA. Lysogeny of Streptococcus pneumoniae with MM1 phage: improved adherence and other phenotypic changes. Infect Immun 2006; 74:4486-95. [PMID: 16861634 PMCID: PMC1539626 DOI: 10.1128/iai.00020-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal prophages are extremely frequent, but no role in pathogenesis has so far been attributed to them. We isolated a variant of phage MM1, named MM1-1998, from a serotype 24 strain of Streptococcus pneumoniae. We created three isogenic strain pairs (serotypes 3, 4, and 24) that differed only by the lysogenic presence of the MM1-1998 phage and did a phenotypic comparison. Lysogeny led to improved adherence to inert surfaces and pharyngeal cells compared to that with the cured variants of the strains. We found that lysogeny with MM1-1998 coincided with a more transparent phenotype and phage curing with more opaque colonies in all strain pairs, and we discovered that transparency was associated with more successful and stable lysogeny. Since transparency alone was possibly responsible for the adherence difference, we further compared the TIGR4 lysogen with an equally transparent variant of TIGR4 in order to reassess the role of phage or transparency separately. The results revealed that improved adherence was independently associated with lysogeny with the MM1-1998 phage. Other phenotypic differences such as faster growth, increased autolysis, and decreased intracellular hemolytic activity were more likely due to transparency. By improving the adherence of pneumococci, this prophage may contribute to their fitness and possibly to their persistence in humans.
Collapse
Affiliation(s)
- Jutta M Loeffler
- Laboratory of Bacterial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, New York 10021, USA
| | | |
Collapse
|
26
|
Tonnaer ELGM, Graamans K, Sanders EAM, Curfs JHAJ. Advances in understanding the pathogenesis of pneumococcal otitis media. Pediatr Infect Dis J 2006; 25:546-52. [PMID: 16732155 DOI: 10.1097/01.inf.0000222402.47887.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, a state of the art on otitis media research is provided with emphasis on the role of Streptococcus pneumoniae in the pathogenesis of this disease. Articles have been selected by MEDLINE search supplemented with a manual crosscheck of bibliographies. Pathogenic mechanisms in middle ear and eustachian tube are described. Furthermore, pneumococcal characteristics and pneumococcus-host interactions are highlighted as well as the possible role of biofilms in persistence or recurrence of otitis media. Because of the availability of new techniques, an increasing number of pneumococcal features contributing in the pathogenesis of otitis media are identified and in-depth knowledge of pneumococcus-host interactions has been gained. The present advances in research on otitis media open up new perspectives for therapeutic or preventive strategies.
Collapse
Affiliation(s)
- Edith L G M Tonnaer
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K. Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 2006; 188:2325-35. [PMID: 16547018 PMCID: PMC1428403 DOI: 10.1128/jb.188.7.2325-2335.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease. S. pneumoniae has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different S. pneumoniae strains representing at least 10 unique serotypes. The biofilm development process was found to occur in three distinct stages, including initial attachment, cluster formation, and biofilm maturation. While all 14 pneumococcal strains displayed similar developmental stages, the mature biofilm architecture differed significantly among the serotypes tested. Overall, three biofilm architectural groups were detected based on biomass, biofilm thickness, and cluster size. The biofilm viable cell counts and total protein concentration increased steadily over the course of biofilm development, reaching approximately 8 x 10(8) cells and approximately 15 mg of protein per biofilm after 9 days of biofilm growth. Proteomic analysis confirmed the presence of distinct biofilm developmental stages by the detection of multiple phenotypes over the course of biofilm development. The biofilm development process was found to correlate not only with differential production of proteins but also with a dramatic increase in the number of detectable proteins, indicating that biofilm formation by S. pneumoniae may be a far more complex process than previously anticipated. Protein identification revealed that proteins involved in virulence, adhesion, and resistance were more abundant under biofilm growth conditions. A possible role of the identified proteins in biofilm formation is discussed.
Collapse
Affiliation(s)
- Magee Allegrucci
- State University of New York at Binghamton, Department of Biological Sciences, 104 Science III, Vestal Parkway East, Binghamton, NY 13902, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft MS, Barrell B, Reeves PR, Parkhill J, Spratt BG. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2006; 2:e31. [PMID: 16532061 PMCID: PMC1391919 DOI: 10.1371/journal.pgen.0020031] [Citation(s) in RCA: 539] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 01/25/2006] [Indexed: 11/18/2022] Open
Abstract
Several major invasive bacterial pathogens are encapsulated. Expression of a polysaccharide capsule is essential for survival in the blood, and thus for virulence, but also is a target for host antibodies and the basis for effective vaccines. Encapsulated species typically exhibit antigenic variation and express one of a number of immunochemically distinct capsular polysaccharides that define serotypes. We provide the sequences of the capsular biosynthetic genes of all 90 serotypes of Streptococcus pneumoniae and relate these to the known polysaccharide structures and patterns of immunological reactivity of typing sera, thereby providing the most complete understanding of the genetics and origins of bacterial polysaccharide diversity, laying the foundations for molecular serotyping. This is the first time, to our knowledge, that a complete repertoire of capsular biosynthetic genes has been available, enabling a holistic analysis of a bacterial polysaccharide biosynthesis system. Remarkably, the total size of alternative coding DNA at this one locus exceeds 1.8 Mbp, almost equivalent to the entire S. pneumoniae chromosomal complement.
Collapse
Affiliation(s)
- Stephen D Bentley
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vigetti D, Ori M, Viola M, Genasetti A, Karousou E, Rizzi M, Pallotti F, Nardi I, Hascall VC, De Luca G, Passi A. Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J Biol Chem 2006; 281:8254-63. [PMID: 16418163 DOI: 10.1074/jbc.m508516200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) supplies the cell with UDP-glucuronic acid (UDP-GlcUA), a precursor of glycosaminoglycan and proteoglycan synthesis. Here we reported the cloning and the characterization of the UGDH from the amphibian Xenopus laevis that is one of the model organisms for developmental biology. We found that X. laevis UGDH (xUGDH) maintained a very high degree of similarity with other known UGDH sequences both at the genomic and the protein levels. Also its kinetic parameters are similar to those of UGDH from other species. During X. laevis development, UDGH is always expressed but clearly increases its mRNA levels at the tail bud stage (i.e. 30 h post-fertilization). This result fits well with our previous observation that hyaluronan, a glycosaminoglycan that is synthesized using UDP-GlcUA and UDP-N-acetylglucosamine, is abundantly detected at this developmental stage. The expression of UGDH was found to be related to hyaluronan synthesis. In human smooth muscle cells the overexpression of xUGDH or endogenous abrogation of UGDH modulated hyaluronan synthesis specifically. Our findings were confirmed by in vivo experiments where the silencing of xUGDH in X. laevis embryos decreased glycosaminoglycan synthesis causing severe embryonic malformations because of a defective gastrulation process.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qinghua H, Dairong Q, Qinglian Z, Shunji H, Yin L, Linhan B, Zhirong Y, Yi C. Cloning and expression studies of the Dunaliella salina UDP-glucose dehydrogenase cDNA. ACTA ACUST UNITED AC 2005; 16:202-6. [PMID: 16147876 DOI: 10.1080/10425170500061665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate. Plant UDP-glucose dehydrogenase (UGDH) is an important enzyme in the formation of hemicellulose and pectin, the components of primary cell walls. A cDNA, named DsUGDH, (GeneBank accession number: AY795899) corresponding to UGDH was cloned by RT-PCR approach from Dunaliella salina. The cDNA is 1941-bp long and has an open reading frame encoded a protein of 483 amino acids with a calculated molecular weight of 53 kDa. The derived amino acids sequence shows high homology with reported plants UGDHs, and has highly conserved amino acids motifs believed to be NAD binding site and catalytic site. Although UDP-glucose dehydrogenase is a comparatively well characterized enzyme, the cloning and characterization of the green alga Dunaliella salina UDP-glucose dehydrogenase gene is very important to understand the salt tolerance mechanism of Dunaliella salina. Northern analyses indicate that NaCl can induce the expression the DsUGDH.
Collapse
Affiliation(s)
- He Qinghua
- Key Laboratory of bio-resources and Eco-environment (Sichuan University), Ministry of Education, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
López R, García E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 2005; 28:553-80. [PMID: 15539074 DOI: 10.1016/j.femsre.2004.05.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S. pneumoniae. Precise knowledge of the topics reviewed here should facilitate the rationale to move towards the design of alternative ways to combat pneumococcal disease.
Collapse
Affiliation(s)
- Rubens López
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | |
Collapse
|
32
|
Romero P, López R, García E. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J Bacteriol 2005; 186:8229-39. [PMID: 15576771 PMCID: PMC532422 DOI: 10.1128/jb.186.24.8229-8239.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new temperate bacteriophages exhibiting a Myoviridae (phiB6) and a Siphoviridae (phiHER) morphology have been isolated from Streptococcus mitis strains B6 and HER 1055, respectively, and partially characterized. The lytic phage genes were overexpressed in Escherichia coli, and their encoded proteins were purified. The lytAHER and lytAB6 genes are very similar (87% identity) and appeared to belong to the group of the so-called typical LytA amidases (atypical LytA displays a characteristic two-amino-acid deletion signature). although they exhibited several differential biochemical properties with respect to the pneumococcal LytA, e.g., they were inhibited in vitro by sodium deoxycholate and showed a more acidic pH for optimal activity. However, and in sharp contrast with the pneumococcal LytA, a short dialysis of LytAHER or LytAB6 resulted in reversible deconversion to the low-activity state (E-form) of the fully active phage amidases (C-form). Comparison of the amino acid sequences of LytAHER and LytAB6 with that of the pneumococcal amidase suggested that Val317 might be responsible for at least some of the peculiar properties of S. mitis phage enzymes. Site-directed mutagenesis that changed Val317 in the pneumococcal LytA amidase to a Thr residue (characteristic of LytAB6 and LytAHER) produced a fully active pneumococcal enzyme that differs from the parental one only in that the mutant amidase can reversibly recover the low-activity E-form upon dialysis. This is the first report showing that a single amino acid residue is involved in the conversion process of the major S. pneumoniae autolysin. Our results also showed that some lysogenic S. mitis strains possess a lytA-like gene, something that was previously thought to be exclusive to Streptococcus pneumoniae. Moreover, the newly discovered phage lysins constitute a missing link between the typical and atypical pneumococcal amidases known previously.
Collapse
Affiliation(s)
- Patricia Romero
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28006 Madrid, Spain
| | | | | |
Collapse
|
33
|
Mavroidi A, Godoy D, Aanensen DM, Robinson DA, Hollingshead SK, Spratt BG. Evolutionary genetics of the capsular locus of serogroup 6 pneumococci. J Bacteriol 2005; 186:8181-92. [PMID: 15576766 PMCID: PMC532438 DOI: 10.1128/jb.186.24.8181-8192.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of the capsular biosynthetic (cps) locus of serogroup 6 Streptococcus pneumoniae was investigated by analyzing sequence variation within three serotype-specific cps genes from 102 serotype 6A and 6B isolates. Sequence variation within these cps genes was related to the genetic relatedness of the isolates, determined by multilocus sequence typing, and to the inferred patterns of recent evolutionary descent, explored using the eBURST algorithm. The serotype-specific cps genes had a low percent G+C, and there was a low level of sequence diversity in this region among serotype 6A and 6B isolates. There was also little sequence divergence between these serotypes, suggesting a single introduction of an ancestral cps sequence, followed by slight divergence to create serotypes 6A and 6B. A minority of serotype 6B isolates had cps sequences (class 2 sequences) that were approximately 5% divergent from those of other serotype 6B isolates (class 1 sequences) and which may have arisen by a second, more recent introduction from a related but distinct source. Expression of a serotype 6A or 6B capsule correlated perfectly with a single nonsynonymous polymorphism within wciP, the rhamnosyl transferase gene. In addition to ample evidence of the horizontal transfer of the serotype 6A and 6B cps locus into unrelated lineages, there was evidence for relatively frequent changes from serotype 6A to 6B, and vice versa, among very closely related isolates and examples of recent recombinational events between class 1 and 2 cps serogroup 6 sequences.
Collapse
Affiliation(s)
- Angeliki Mavroidi
- Department of Infectious Disease Epidemiology, Imperial College London, Room G22, Old Medical School Building, St. Mary's Hospital, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Ulijasz AT, Andes DR, Glasner JD, Weisblum B. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J Bacteriol 2004; 186:8123-36. [PMID: 15547286 PMCID: PMC529065 DOI: 10.1128/jb.186.23.8123-8136.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RitR (formerly RR489) is an orphan two-component signal transduction response regulator in Streptococcus pneumoniae that has been shown to be required for lung pathogenicity. In the present study, by using the rough strain R800, inactivation of the orphan response regulator gene ritR by allele replacement reduced pathogenicity in a cyclophosphamide-treated mouse lung model but not in a thigh model, suggesting a role for RitR in regulation of tissue-specific virulence factors. Analysis of changes in genome-wide transcript mRNA levels associated with the inactivation of ritR compared to wild-type cells was performed by the use of high-density DNA microarrays. Genes with a change in transcript abundance associated with inactivation of ritR included piuB, encoding an Fe permease subunit, and piuA, encoding an Fe carrier-binding protein. In addition, a dpr ortholog, encoding an H(2)O(2) resistance protein that has been shown to reduce synthesis of reactive oxygen intermediates, was activated in the wild-type (ritR(+)) strain. Microarray experiments suggested that RitR represses Fe uptake in vitro by negatively regulating the Piu hemin-iron transport system. Footprinting experiments confirmed site-specific DNA-binding activity for RitR and identified three binding sites that partly overlap the +1 site for transcription initiation upstream of piuB. Transcripts belonging to other gene categories found to be differentially expressed in our array studies include those associated with (i) H(2)O(2) resistance, (ii) repair of DNA damage, (iii) sugar transport and capsule biosynthesis, and (iv) two-component signal transduction elements. These observations suggest that RitR is an important response regulator whose primary role is to maintain iron homeostasis in S. pneumoniae. The name ritR (repressor of iron transport) for the orphan response regulator gene, rr489, is proposed.
Collapse
Affiliation(s)
- Andrew T Ulijasz
- Pharmacology Department, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
35
|
Bar-Peled M, Griffith C, Ory J, Doering T. Biosynthesis of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the pathogenic fungus Cryptococcus neoformans. Biochem J 2004; 381:131-6. [PMID: 15030319 PMCID: PMC1133770 DOI: 10.1042/bj20031075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 03/18/2004] [Accepted: 03/19/2004] [Indexed: 11/17/2022]
Abstract
UDP-glucose dehydrogenase catalyses the conversion of UDP-glucose into UDP-GlcA, a critical precursor for glycan synthesis across evolution. We have cloned the gene encoding this important enzyme from the opportunistic pathogen Cryptococcus neoformans. In this fungus, UDP-GlcA is required for the synthesis of capsule polysaccharides, which in turn are essential for virulence. The gene was expressed in Escherichia coli and the 51.3-kDa recombinant protein from wild-type and five mutants was purified for analysis. The cryptococcal enzyme is strongly inhibited by UDP-xylose and NADH, has highest activity at pH 7.5 and demonstrates Km (app) values of 0.1 and 1.5 mM for NAD+ and UDP-glucose respectively. Its activity was significantly decreased by mutations in the putative sites of NAD+ and UDP-glucose binding. Unlike previously reported eukaryotic UDP-glucose dehydrogenases, which are hexamers, the cryptococcal enzyme is a dimer.
Collapse
Affiliation(s)
- Maor Bar-Peled
- *Complex Carbohydrate Research Center of the University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, U.S.A
| | - Cara L. Griffith
- †Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, U.S.A
| | - Jeramia J. Ory
- †Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, U.S.A
| | - Tamara L. Doering
- †Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, U.S.A
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
36
|
Hathaway LJ, Stutzmann Meier P, Bättig P, Aebi S, Mühlemann K. A homologue of aliB is found in the capsule region of nonencapsulated Streptococcus pneumoniae. J Bacteriol 2004; 186:3721-9. [PMID: 15175285 PMCID: PMC419944 DOI: 10.1128/jb.186.12.3721-3729.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidemiology, phylogeny, and biology of nonencapsulated Streptococcus pneumoniae are largely unknown. Increased colonization capacity and transformability are, however, intriguing features of these pneumococci and play an important role. Twenty-seven nonencapsulated pneumococci were identified in a nationwide collection of 1,980 nasopharyngeal samples and 215 blood samples obtained between 1998 and 2002. On the basis of multilocus sequence typing and capsule region analysis we divided the nonencapsulated pneumococci into two groups. Group I was closely related to encapsulated strains. Group II had a clonal population structure, including two geographically widespread clones able to cause epidemic conjunctivitis and invasive diseases. Group II strains also carried a 1,959-bp homologue of aliB (aliB-like ORF 2) in the capsule region, which was highly homologous to a sequence in the capsule region of Streptococcus mitis. In addition, strains of the two major clones in group II had an additional sequence, aliB-like ORF 1 (1,968 to 2,004 bp), upstream of aliB-like ORF 2. Expression of aliB-like ORF 1 was detected by reverse transcription-PCR, and the corresponding RNA was visualized by Northern blotting. A gene fragment homologous to capN of serotypes 33 and 37 suggests that group II strains were derived from encapsulated pneumococci some time ago. Therefore, loss of capsule expression in vivo was found to be associated with the importation of one or two aliB homologues in some nonencapsulated pneumococci.
Collapse
Affiliation(s)
- Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3010 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Huh JW, Yoon HY, Lee HJ, Choi WB, Yang SJ, Cho SW. Importance of Gly-13 for the coenzyme binding of human UDP-glucose dehydrogenase. J Biol Chem 2004; 279:37491-8. [PMID: 15247292 DOI: 10.1074/jbc.m404234200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) is the unique pathway enzyme furnishing in vertebrates UDP-glucuronate for numerous transferases. In this report, we have identified an NAD(+)-binding site within human UGDH by photoaffinity labeling with a specific probe, [(32)P]nicotinamide 2-azidoadenosine dinucleotide (2N(3) NAD(+)), and cassette mutagenesis. For this work, we have chemically synthesized a 1509-base pair gene encoding human UGDH and expressed it in Escherichia coli as a soluble protein. Photolabel-containing peptides were generated by photolysis followed by tryptic digestion and isolated using the phosphopeptide isolation kit. Photolabeling of these peptides was effectively prevented by the presence of NAD(+) during photolysis, demonstrating a selectivity of the photoprobe for the NAD(+)-binding site. Amino acid sequencing and compositional analysis identified the NAD(+)-binding site of UGDH as the region containing the sequence ICCIGAXYVGGPT, corresponding to Ile-7 through Thr-19 of the amino acid sequence of human UGDH. The unidentified residue, X, can be designated as a photolabeled Gly-13 because the sequences including the glycine residue in question have a complete identity with those of other UGDH species known. The importance of Gly-13 residue in the binding of NAD(+) was further examined with a G13E mutant by cassette mutagenesis. The mutagenesis at Gly-13 had no effects on the expression or stability of the mutant. Enzyme activity of the G13E point mutant was not measurable under normal assay conditions, suggesting an important role for the Gly-13 residue. No incorporation of [(32)P]2N(3)NAD(+) was observed for the G13E mutant. These results indicate that Gly-13 plays an important role for efficient binding of NAD(+) to human UGDH.
Collapse
Affiliation(s)
- Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Ge X, Penney LC, van de Rijn I, Tanner ME. Active site residues and mechanism of UDP-glucose dehydrogenase. ACTA ACUST UNITED AC 2004; 271:14-22. [PMID: 14686915 DOI: 10.1046/j.1432-1033.2003.03876.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UDP-glucose dehydrogenase catalyzes the NAD+-dependent twofold oxidation of UDP-glucose to give UDP-glucuronic acid. A sequestered aldehyde intermediate is produced in the first oxidation step and a covalently bound thioester is produced in the second oxidation step. This work demonstrates that the Streptococcus pyogenes enzyme incorporates a single solvent-derived oxygen atom during catalysis and probably does not generate an imine intermediate. The reaction of UDP-[6",6"-di-2H]-d-glucose is not accompanied by a primary kinetic isotope effect, indicating that hydride transfer is not rate determining in this reaction. Studies with a mutant of the key active site nucleophile, Cys260Ala, show that it is capable of both reducing the aldehyde intermediate, and oxidizing the hydrated form of the aldehyde intermediate but is incapable of oxidizing UDP-glucose to UDP-glucuronic acid. In the latter case, a ternary Cys260Ala/aldehyde intermediate/NADH complex is presumably formed, but it does not proceed to product as both release and hydration of the bound aldehyde occur slowly. A washout experiment demonstrates that the NADH in this ternary complex is not exchangeable with external NADH, indicating that dissociation only occurs after the addition of a nucleophile to the aldehyde carbonyl. Studies on Thr118Ala show that the value of kcat is reduced 160-fold by this mutation, and that the reaction of UDP-D-[6",6"-di-2H]-glucose is now accompanied by a primary kinetic isotope effect. This indicates that the barriers for the hydride transfer steps have been selectively increased and supports a mechanism in which an ordered water molecule (H-bonded to Thr118) serves as the catalytic base in these steps.
Collapse
Affiliation(s)
- Xue Ge
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
39
|
Grangeasse C, Obadia B, Mijakovic I, Deutscher J, Cozzone AJ, Doublet P. Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 2003; 278:39323-9. [PMID: 12851388 DOI: 10.1074/jbc.m305134200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophosphorylation of protein-tyrosine kinases (PTKs) involved in exopolysaccharide and capsular polysaccharide biosynthesis and transport has been observed in a number of Gram-negative and Gram-positive bacteria. However, besides their own phosphorylation, little is known about other substrates targeted by these protein-modifying enzymes. Here, we present evidence that the protein-tyrosine kinase Wzc of Escherichia coli is able to phosphorylate an endogenous enzyme, UDP-glucose dehydrogenase (Ugd), which participates in the synthesis of the exopolysaccharide colanic acid. The process of phosphorylation of Ugd by Wzc was shown to be stimulated by previous autophosphorylation of Wzc on tyrosine 569. The phosphorylation of Ugd was demonstrated to actually occur on tyrosine and result in a significant increase of its dehydrogenase activity. In addition, the phosphotyrosine-protein phosphatase Wzb, which is known to effectively dephosphorylate Wzc, exhibited only a low effect, if any, on the dephosphorylation of Ugd. These data were related to the recent observation that two other UDP-glucose dehydrogenases have been also shown to be phosphorylated by a PTK in the Gram-positive bacterium Bacillus subtilis. Comparative analysis of the activities of PTKs from Gram-negative and Gram-positive bacteria showed that they are regulated by different mechanisms that involve, respectively, either the autophosphorylation of kinases or their interaction with a membrane protein activator.
Collapse
Affiliation(s)
- Christophe Grangeasse
- Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon, 69367 Lyon Cedex 07, France.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The capsule is a major virulence factor of pneumococci, and it was shown that some capsular variants are associated with antimicrobial resistance and certain types of disease. Moreover, pneumococcal capsular typing has received renewed interest since the availability of conjugate vaccines, which include serotypes frequently associated with pediatric disease. Our aim was to develop a simple, reliable, and economical method for detecting epidemiologically important serotypes present in the proposed 11-valent conjugate vaccine. We designed primers based on the sequences available for the capsular types 1, 3, 4, 6B, 14, 18C, 19F, 19A, and 23F and combined them into seven multiplex PCRs. The method involves streamlined DNA template preparation and agarose gel electrophoresis to analyze the amplification products. A total of 446 pneumococci selected from among isolates colonizing the nasopharynx of children attending day care centers in Lisbon, Portugal, were typed both by conventional immunological techniques and by multiplex PCR. Capsular types identified by the PCR method invariably produced results concordant with the conventional serotyping technique. Even when the method presented does not fully type an isolate, the PCR data can guide the experimenter when using immunological serotyping. Multiplex PCR for the analysis of pneumococci provides an accurate, expeditious, and cost-effective way of reducing the number of strains that have to be serotyped by conventional immunological techniques.
Collapse
Affiliation(s)
- D A Brito
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
41
|
Abstract
The Salmonella ugd gene is required for the incorporation of 4-aminoarabinose in the lipopolysaccharide and resistance to the antibiotic polymyxin B. Transcription of the ugd gene is induced by Fe3+ via the PmrA-PmrB two-component system and by low Mg2+ in a process that requires the PhoP-PhoQ two-component system, the PhoP-activated PmrD protein and the PmrA-PmrB system. Here, we establish that mutation of the tolB gene promotes ugd transcription independently of both the PhoP-PhoQ and PmrA-PmrB systems. This activation is mediated by the RcsC-YojN-RcsB phosphorelay and the RcsA protein, suggesting a role for ugd in capsule synthesis. Binding sites for the RcsB, PmrA and PhoP proteins were identified in the ugd promoter. Although the PmrA-PmrB and RcsC-YojN-RcsB systems promoted ugd transcription independently of the PhoP-PhoQ system under different environmental conditions, ugd expression inside macrophages was strictly dependent on PhoP-PhoQ, suggesting that low Mg2+ is a cue for the intracellular environment.
Collapse
Affiliation(s)
- Chakib Mouslim
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington U niversity School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | | |
Collapse
|
42
|
de las Rivas B, García JL, López R, García P. Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 2002; 7:213-22. [PMID: 11759082 DOI: 10.1089/10766290152652756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A search to identify proteins with high affinity for choline-containing pneumococcal cell walls (choline-binding proteins) has permitted the localization, cloning, sequencing, and overexpression of a gene (pce), coding for a protein (Pce) that liberates phosphorylcholine from purified cell walls of Streptococcus pneumoniae. The pce gene of the pneumococcal strain R6 encodes a protein of 627 amino acids with a predicted Mr of 72,104. Pce can remove a maximum of 20% phosphorylcholine residues from the cell wall teichoic acid. In silico analysis of Pce shows a modular organization of the enzyme where the choline-binding domain, involved in cell wall substrate recognition, and the catalytic domain are located at the carboxy- and amino-terminal moieties of the protein, respectively. Remarkably, a long tail of 85 amino acids follows the carboxy-terminal domain, a structural feature that had not been described for the published choline-binding proteins. The carboxy-terminal moiety of Pce is assembled by 10 repeated motifs, and the protein has also a cleavable signal peptide of 25 amino acids that renders after its cleavage a mature protein of 69,426 Da (602 amino acids). The pce gene has been expressed in Escherichia coli, and Pce was active when assayed on pneumococcal walls. We have also found that the signal peptide of Pce was functional in E. coli. Biochemical analysis suggested that Pce is the teichoic acid phosphorylcholine esterase of S. pneumoniae that had been biochemically characterized previously. Construction of two pce pneumococcal mutants (R6D and M31D) by insertion-duplication mutagenesis revealed that these mutants grew at a doubling-time similar to those of the parental strains of the wild-type R6 and the lytA-mutant M31, respectively. R6D and M31D were morphologically indistinguishable from the parental strains when whole-mounted cells were observed under the electron microscope and exhibited levels of competence for genetic transformation slightly lower than those reported for R6 and M31.
Collapse
Affiliation(s)
- B de las Rivas
- Centro de Investigaciones Biológicas, CSIC, Velázquez, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Waite RD, Struthers JK, Dowson CG. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol Microbiol 2001; 42:1223-32. [PMID: 11886554 DOI: 10.1046/j.1365-2958.2001.02674.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular genetic basis of high-frequency serotype 3 capsule phase variation in Streptococcus pneumoniae (the pneumococcus) was investigated. Pneumococci were grown in sorbarod biofilms at 34 degrees C to mimic nasopharyngeal carriage. Different type 3 pneumococci commonly associated with invasive disease generated apparently random tandem duplications of 11-239 bp segments within the cap3A gene of the type 3 capsule locus. These duplications alone were found to be responsible for high-frequency capsule phase variation, in which (phase off) acapsular variants possessed duplications within cap3A, and (phase on) capsular revertants possessed wild-type cap3A genes, indicating the precise excision of the duplication. Additionally, the frequency of phase reversion (off to on) was found to exhibit a linear relationship between (log) frequency of reversion and (log) length of duplication. This apparently random duplication giving rise to phase variation is in stark contrast to the 'preprogrammed' contingency genes in many Gram-negative organisms that possess homopolymeric sequence repeats or motifs for site-specific recombination.
Collapse
Affiliation(s)
- R D Waite
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK. Public Health Laboratory, Coventry and Warwick Hospital, Coventry CV1 4FH, UK
| | | | | |
Collapse
|
44
|
Abstract
It has been recently reported that different type 37 clinical isolates of Streptococcus pneumoniae have an identical tts gene directing the formation of type 37 capsular polysaccharide. Here we show that type 37 S. pneumoniae strains isolated in two different continents (Europe and America) some 60 years apart frequently gave rise to nontypable variants upon in vitro cultivation. The tts gene from three independent nontypable mutants was PCR amplified and sequenced showing different classes of inactivating mutations. Furthermore, pulsed-field gel electrophoresis and multilocus sequence typing demonstrated that the type 37 pneumococcal isolates studied so far constitute a highly related strain cluster (a clonal complex), and strongly suggested that every type 37 pneumococcus has spread globally from a single, old clone.
Collapse
Affiliation(s)
- D Llull
- Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | |
Collapse
|
45
|
Mollerach M, García E. The galU gene of Streptococcus pneumoniae that codes for a UDP-glucose pyrophosphorylase is highly polymorphic and suitable for molecular typing and phylogenetic studies. Gene 2000; 260:77-86. [PMID: 11137293 DOI: 10.1016/s0378-1119(00)00468-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme UTP-glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, UDPG:PP) is synthesized by practically all organisms, although prokaryotic UDPG:PPs are evolutionarily unrelated to the eukaryotic counterparts. The primary structure of prokaryotic UDPG:PPs is well conserved, although little information exists on the polymorphism of the genes coding for these enzymes. It has been reported that the galU gene encoding the Streptococcus pneumoniae UDPG:PP is absolutely required for the synthesis of the capsular polysaccharide, a sine qua non prerequisite for virulence. A 594 bp fragment covering 66% of the galU gene from 37 pneumococcal isolates and the type strains of Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus sanguinis, Streptococcus salivarius, and Streptococcus sobrinus has been amplified by PCR and sequenced. Up to 21 different alleles were found in S. pneumoniae. They possess a mosaic-like structure and belong to, at least, two evolutionarily distinct families that show a sequence divergence of 15-20%. In spite of its marked polymorphism, phylogenetic relationships among pneumococcal strains deduced from the galU gene matched those previously established by using alternative approaches. Comparison of the pneumococcal galU alleles with those from other streptococci indicated the existence of a complex network of genetic interchange. The galU gene represents an informative marker to be used alone or in conjunction with other molecular typing methods.
Collapse
Affiliation(s)
- M Mollerach
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
| | | |
Collapse
|
46
|
Orihuela CJ, Janssen R, Robb CW, Watson DA, Niesel DW. Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties. Infect Immun 2000; 68:6082-6. [PMID: 10992528 PMCID: PMC101580 DOI: 10.1128/iai.68.10.6082-6086.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Accepted: 07/03/2000] [Indexed: 11/20/2022] Open
Abstract
We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.
Collapse
Affiliation(s)
- C J Orihuela
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | | | | | | | | |
Collapse
|
47
|
Gindreau E, López R, García P. MM1, a temperate bacteriophage of the type 23F Spanish/USA multiresistant epidemic clone of Streptococcus pneumoniae: structural analysis of the site-specific integration system. J Virol 2000; 74:7803-13. [PMID: 10933687 PMCID: PMC112310 DOI: 10.1128/jvi.74.17.7803-7813.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a temperate phage (MM1) from a clinical isolate of the multiply antibiotic-resistant Spanish/American 23F Streptococcus pneumoniae clone (Spain(23F)-1 strain). The 40-kb double-stranded genome of MM1 has been isolated as a DNA-protein complex. The use of MM1 DNA as a probe revealed that the phage genome is integrated in the host chromosome. The host and phage attachment sites, attB and attP, respectively, have been determined. Nucleotide sequencing of the attachment sites identified a 15-bp core site (5'-TTATAATTCATCCGC-3') that has not been found in any bacterial genome described so far. Sequence information revealed the presence of an integrase gene (int), which represents the first identification of an integrase in the pneumococcal system. A 1.5-kb DNA fragment embracing attP and the int gene contained all of the genetic information needed for stable integration of a nonreplicative plasmid into the attB site of a pneumococcal strain. This vector will facilitate the introduction of foreign genes into the pneumococcal chromosome. Interestingly, DNAs highly similar to that of MM1 have been detected in several clinical pneumococcal isolates of different capsular types, suggesting a widespread distribution of these phages in relevant pathogenic strains.
Collapse
Affiliation(s)
- E Gindreau
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
48
|
García E, Llull D, Muñoz R, Mollerach M, López R. Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae. Res Microbiol 2000; 151:429-35. [PMID: 10961455 DOI: 10.1016/s0923-2508(00)00173-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The capsular gene cluster (cap/cps) of 13 out of the 90 known pneumococcal types has been sequenced. The cap/cps operon, located between dexB and aliA in the Streptococcus pneumoniae chromosome, contains some of the genes responsible for the synthesis of the type-specific polysaccharide flanked by four conserved open reading frames. The biochemical function of only a few capsular genes has been established, whereas the role of the flanking regions is controversial. Remarkably, only one gene (tts) located outside the cap locus is required for the synthesis of type 37 capsule. Moreover, other genes not linked to the cap gene cluster are also needed for capsule synthesis in pneumococcus.
Collapse
Affiliation(s)
- E García
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | | | | | | | |
Collapse
|
49
|
Campbell RE, Mosimann SC, van de Rijn I, Tanner ME, Strynadka NCJ. The First Structure of UDP-Glucose Dehydrogenase Reveals the Catalytic Residues Necessary for the Two-fold Oxidation,. Biochemistry 2000. [DOI: 10.1021/bi000181h] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert E. Campbell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, and Wake Forest University Medical Center, Winston-Salem, North Carolina 27157
| | - Steven C. Mosimann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, and Wake Forest University Medical Center, Winston-Salem, North Carolina 27157
| | - Ivo van de Rijn
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, and Wake Forest University Medical Center, Winston-Salem, North Carolina 27157
| | - Martin E. Tanner
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, and Wake Forest University Medical Center, Winston-Salem, North Carolina 27157
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, and Wake Forest University Medical Center, Winston-Salem, North Carolina 27157
| |
Collapse
|
50
|
Lawrence ER, Arias CA, Duke B, Beste D, Broughton K, Efstratiou A, George RC, Hall LM. Evaluation of serotype prediction by cpsA-cpsB gene polymorphism in Streptococcus pneumoniae. J Clin Microbiol 2000; 38:1319-23. [PMID: 10747101 PMCID: PMC86439 DOI: 10.1128/jcm.38.4.1319-1323.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New pneumococcal conjugate vaccines covering a limited number of serotypes are likely to come into widespread use over the next few years. It is unknown what effect this will have on the relative importance of different serotypes as causes of pneumococcal infection. Hence, it will be important to monitor serotype prevalence before, during, and after the introduction of new vaccines. We have investigated the ability of a PCR method based on polymorphisms in two genes common to the different capsule loci to predict the serotype of 93 clinical isolates of Streptococcus pneumoniae submitted to the Central Public Health Laboratory in 1997. Of 70 isolates with vaccine serotypes, 65 were predicted to belong to the correct serotype; this number was improved to 69 with the inclusion of two additional patterns to the database. Of 23 isolates with other serotypes, 19 were correctly predicted as non-vaccine serotypes, the discrepancy lying with four isolates of 6A (non-vaccine serotype) that were indistinguishable from isolates of 6B (vaccine serotype). In situations in which culture of the organism is not feasible, this method could potentially be applicable directly to clinical specimens and could be a valuable aid to the surveillance of pneumococcal serotypes.
Collapse
Affiliation(s)
- E R Lawrence
- Department of Medical Microbiology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London E1 2AD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|