1
|
Norris V. Hunting the Cell Cycle Snark. Life (Basel) 2024; 14:1213. [PMID: 39459514 PMCID: PMC11509034 DOI: 10.3390/life14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
In this very personal hunt for the meaning of the bacterial cell cycle, the snark, I briefly revisit and update some of the mechanisms we and many others have proposed to regulate the bacterial cell cycle. These mechanisms, which include the dynamics of calcium, membranes, hyperstructures, and networks, are based on physical and physico-chemical concepts such as ion condensation, phase transition, crowding, liquid crystal immiscibility, collective vibrational modes, reptation, and water availability. I draw on ideas from subjects such as the 'prebiotic ecology' and phenotypic diversity to help with the hunt. Given the fundamental nature of the snark, I would expect that its capture would make sense of other parts of biology. The route, therefore, followed by the hunt has involved trying to answer questions like "why do cells replicate their DNA?", "why is DNA replication semi-conservative?", "why is DNA a double helix?", "why do cells divide?", "is cell division a spandrel?", and "how are catabolism and anabolism balanced?". Here, I propose some relatively unexplored, experimental approaches to testing snark-related hypotheses and, finally, I propose some possibly original ideas about DNA packing, about phase separations, and about computing with populations of virtual bacteria.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| |
Collapse
|
2
|
Back O, Asally M, Wang Z, Hayashi Y. Electrotaxis behavior of droplets composed of aqueous Belousov-Zhabotinsky solutions suspended in oil phase. Sci Rep 2023; 13:1340. [PMID: 36693937 PMCID: PMC9873656 DOI: 10.1038/s41598-023-27639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Taxis is ubiquitous in biological and physical chemistry systems as a response to various external stimulations. We prepared aqueous droplets containing Belousov-Zhabotinsky (BZ) solutions suspended on an oleic acid oil phase subject to DC electric field and found that these BZ droplets undergo chemically driven translational motion towards the negative electrode under DC electric field. This electrotaxis phenomenon originates from the field-induced inhomogeneous distribution of reactants, in particular Br[Formula: see text] ions, and consequently the biased location of the leading centers towards the positive electrode. We define the 'leading center' (LC) as a specific location within the droplet where the BZ chemical wave (target pattern) is initiated. The chemical wave generated from the LC propagates passing the droplet center of mass and creates a gradient of interfacial tension when reaching the droplet-oil interface on the other side, resulting in a momentum exchange between the droplet and oil phases which drives the droplet motion in the direction of the electric field. A greater electric field strength renders a more substantial electrotaxis effect.
Collapse
Affiliation(s)
- Oliver Back
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Zuowei Wang
- Department of Mathematics and Statistics, School of Mathematical, Physical and Computational Sciences, University of Reading, Reading, UK
| | - Yoshikatsu Hayashi
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
3
|
Yu S, Liu S, Yao X, Ning P. Enhanced biological phosphorus removal from wastewater by current stimulation coupled with anaerobic digestion. CHEMOSPHERE 2022; 293:133661. [PMID: 35063560 DOI: 10.1016/j.chemosphere.2022.133661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The integrated wastewater discharge standard for phosphorus has become increasingly strict. In this study, a synergetic current stimulation system coupled with anaerobic digestion was used to enhance phosphorus removal from wastewater. The effects of current intensity, pH, and methane (CH4) synthesis on phosphorus removal were investigated. As direct current was supplied to an anaerobic bioreactor, the removal of sewage total phosphorus was significantly enhanced. The conditions of weak acid and low negative oxidation-reduction potential facilitated the phosphorus removal from wastewater. The optimal parameters for the dephosphorisation process were a current intensity of 100 mA and a pH of 6.0. When the anaerobic digestion process was inhibited by the reagent 2-bromoethanesulphonic acid sodium (BES), abundant metabolic intermediates accumulated and methanogenesis clearly decreased. Affected by the current stimulation and the inhibition of CH4 synthesis, the formation of gaseous phosphine (PH3) was greatly improved, and then PH3 escaped from the digestion mixture after it was absorbed by microbial cells. The maximum PH3 content of the digestion gas was 41.8 mg m-3 in the reactor supplied with a current of 100 mA and BES addition of 10 mmol L-1, and the phosphorus removal in this digestion system reached 55.2% at 6 d; however, the removal in the conventional anaerobic digestion system was only 17.7% after the same amount of time. Finally, a pathway of enhanced anaerobic biological phosphorus removal was proposed to better understand the inherent synergistic mechanism.
Collapse
Affiliation(s)
- Shuo Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shugen Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiaofei Yao
- Panzhihua University, Panzhihua, 617000, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Abstract
Background The growing field of bacterial electrophysiology examines the relationship between bacterial membrane potential and cell division, growth, sporulation, and biofilm formation. These experiments require Nernstian fluorescent dyes to monitor membrane potential. Our research uses single cell imaging to determine if a common fluorescent dye, Thioflavin T (ThT), affects the growth of bacteria. Materials and Methods We use a combination of standard growth curve measurements and single cell imaging, both brightfield and fluorescence microscopy, to monitor the growth of Bacillus subtilis and Escherichia coli as a function of ThT concentration. Increased membrane potential (hyperpolarization) leads to increased intracellular accumulation of ThT: High fluorescence intensity is an indicator of hyperpolarization. Blue light is used to hyperpolarize a subpopulation of cells to monitor cellular elongation in response to increased cellular internalization of ThT. Results Single cell imaging shows that the elongation rates of B. subtilis and E. coli are decreased when these cells are incubated with ThT. At micromolar concentrations of ThT, this effect may be masked in standard growth curves, but is visible with single cell measurements on agarose pads. Conclusions The increased cellular accumulation of ThT is a standard measure of hyperpolarization in bacterial electrophysiology. Growth curves, a bulk measurement, are typically used to determine suitable concentrations of ThT for use in experiments. Single cell measurements show that cells incubated with ThT have decreased elongation rates. This creates a potential experimental artifact that could lead to misinterpretation of data. Hyperpolarized cells internalize more ThT. This increased intracellular concentration of ThT, rather than the change in membrane potential, could lead to decreased growth. These experiments point toward the importance of single cell measurements to detect subtle changes in cell growth. We hope this research will be useful for other researchers in their choice of dye for the detection of membrane potential.
Collapse
Affiliation(s)
- Xu Han
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Han X, Foster BR, Payne CK. Electrical Control of Escherichia coli Growth Measured with Simultaneous Modulation and Imaging. Bioelectricity 2020; 2:221-228. [PMID: 34476354 PMCID: PMC8370336 DOI: 10.1089/bioe.2020.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The use of electricity to mediate bacterial growth is unique in providing spatial control, but requires a more detailed understanding. Methods: We use two gold wires on a glass coverslip with an overlayer of agar to image Escherichia coli cells with brightfield and fluorescence microscopy while simultaneously applying a voltage. Cells outside of the wires provide a control population to measure cell growth as a function of voltage, rather than any difference in culture conditions or growth phase. Results: An applied voltage suppresses the fraction of E. coli undergoing elongation and division with recovery to control values when the voltage is removed. Depolarization is observed over the same voltage range suggesting a membrane potential-mediated response. Conclusions: Our experiments identify and use subcytotoxic voltages to measure differences in the fraction of E. coli cells elongating and dividing as a function of applied voltage. It is hoped that this research will inform the developing field of bacterial electrophysiology.
Collapse
Affiliation(s)
- Xu Han
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Bradley R. Foster
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Levin M, Pezzulo G, Finkelstein JM. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annu Rev Biomed Eng 2017; 19:353-387. [PMID: 28633567 PMCID: PMC10478168 DOI: 10.1146/annurev-bioeng-071114-040647] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Tufts University, Medford, Massachusetts 02155-4243;
- Allen Discovery Center, Tufts University, Medford, Massachusetts 02155;
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy;
| | | |
Collapse
|
7
|
Jiang B, Tan L, Ning S, Shi S. A novel integration system of magnetically immobilized cells and a pair of graphite plate-stainless iron mesh electrodes for the bioremediation of coking wastewater. BIORESOURCE TECHNOLOGY 2016; 216:684-690. [PMID: 27289060 DOI: 10.1016/j.biortech.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Magnetically immobilized cells of Comamonas sp. JB coupling with electrode reaction was developed to enhance the treatment efficiency of coking wastewater containing phenol, carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). The pair of graphite plate-stainless iron mesh electrodes was chosen as the most suitable electrodes. Magnetically immobilized cells coupling with graphite plate-stainless iron mesh electrodes (coupling system) exhibited high degradation activity for all the compounds, which were significantly higher than the sum by single magnetically immobilized cells and electrode reaction at the optimal voltage. Recycling experiments demonstrated that the degradation activity of coupling system increased gradually during eight recycles, indicating that there was a coupling effect between the biodegradation and electrode reaction. Phenol hydroxylase and qPCR assays confirmed that appropriate electrical stimulation could improve phenol hydroxylase activity and promote cells growth. Toxicity assessment suggested the treatment of the coking wastewater by coupling system led to less toxicity than untreated wastewater.
Collapse
Affiliation(s)
- Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shuxiang Ning
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
8
|
Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip. Sci Rep 2016; 6:19812. [PMID: 26804186 PMCID: PMC4726441 DOI: 10.1038/srep19812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies—consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions.
Collapse
|
9
|
Affiliation(s)
- Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032;
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, 75205 Paris cedex 13, France;
| |
Collapse
|
10
|
Bonazzi D, Minc N. Dissecting the Molecular Mechanisms of Electrotactic Effects. Adv Wound Care (New Rochelle) 2014; 3:139-148. [PMID: 24761354 DOI: 10.1089/wound.2013.0438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/07/2013] [Indexed: 11/13/2022] Open
Abstract
Significance: Steady electric fields (EFs) surround cells and tissues in vivo and may regulate cellular behavior during development, wound healing, or tissue regeneration. Application of exogenous EFs of similar magnitude as those found in vivo can direct migration, growth, and division in most cell types, ranging from bacteria to mammalian cells. These EF effects have therapeutic potential, for instance, in accelerating wound healing or improving nerve repair. EFs are thought to signal through the plasma membrane to locally activate or recruit components of the cytoskeleton and the polarity machinery. How EFs might function to steer polarity is, however, poorly understood at a molecular level. Recent Advances: Here, we review recent work introducing genetically tractable systems, such as yeast and Dictyostelium cells, that begin to identify proteins and pathways involved in this response both at the level of ion transport at the membrane and at the level of cytoskeleton regulation. Critical Issues: These studies highlight the complexity of these EF effects and bring important novel views on core polarity regulation. Future Directions: Future work pursuing initial screening in model organisms should generate broad mechanistic understanding of electrotactic effects.
Collapse
Affiliation(s)
- Daria Bonazzi
- Subcellular Structure and Cellular Dynamics Research Group (UMR 144 CNRS/IC), Institut Curie, Paris, France
| | - Nicolas Minc
- Subcellular Structure and Cellular Dynamics Research Group (UMR 144 CNRS/IC), Institut Curie, Paris, France
| |
Collapse
|
11
|
Freebairn D, Linton D, Harkin-Jones E, Jones DS, Gilmore BF, Gorman SP. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces. Expert Rev Med Devices 2014; 10:85-103. [DOI: 10.1586/erd.12.70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Jahanshahi A, Schonfeld L, Janssen MLF, Hescham S, Kocabicak E, Steinbusch HWM, van Overbeeke JJ, Temel Y. Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain. Exp Brain Res 2013; 231:165-77. [DOI: 10.1007/s00221-013-3680-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023]
|
13
|
Abstract
Hormetic morphogens are morphogens such as transforming growth factor beta (TGF-β) in mammals and auxin in plants that induce hormetic responses. For example, in vitro, TGF-β stimulates and inhibits cell proliferation at low and high concentrations respectively. I developed a model of hormetic morphogen gradient control of the morphogenesis of the fusion of bilateral aortic precursors (Anlagen) that form the aorta during development; and validated the model with findings obtained by Daucus Carota fusion experiments. Theoretically, radial concentration gradients of a hormetic morphogen can form hollow (vessels) or solid (Carota) tubular structures. In arteries, blood flow and pressure can shape mural gradients and determine wall curvature and thereby vessel diameter. As Anlagen grow they form a temporary common wall that is subsequently removed, which results in fusion of the Anlagen lumina and an aorta with a lumen diameter that accommodates the combined blood flow to the iliac arteries. Carota seedlings grown close together exhibited proximally fused root cones, serial cross-sections of which exhibited coaxial fusion patterns that closely resembled the predicted vascular fusion patterns, thus validating a role for hormesis and hormetic morphogens in the morphogenesis of the aorta and possibly the morphogenesis of other human midline structures.
Collapse
Affiliation(s)
- Egil Fosslien
- College of Medicine, University of Illinois at Chicago
| |
Collapse
|
14
|
Campetelli A, Bonazzi D, Minc N. Electrochemical regulation of cell polarity and the cytoskeleton. Cytoskeleton (Hoboken) 2012; 69:601-12. [PMID: 22736620 DOI: 10.1002/cm.21047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023]
Abstract
Cell polarity plays a key role in regulating cell-cell communication, tissue architecture, and development. Both internal and external cues participate in directing polarity and feedback onto each other for robust polarization. One poorly appreciated layer of polarity regulation comes from electrochemical signals spatially organized at the level of the cell or the tissue. These signals which include ion fluxes, membrane potential gradients, or even steady electric fields, emerge from the polarized activation of specific ion transporters, and may guide polarity in wound-healing, development or regeneration. How a given electrochemical cue may influence cytoskeletal elements and cell polarity remains unclear. Here, we review recent progress highlighting the role of electrochemical signals in cell and tissue spatial organization, and elucidating the mechanisms for how such signals may regulate cytoskeletal assembly for cell polarity.
Collapse
Affiliation(s)
- Alexis Campetelli
- Institut Curie, UMR 144 CNRS/IC, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
15
|
Reguera G. When microbial conversations get physical. Trends Microbiol 2011; 19:105-13. [PMID: 21239171 DOI: 10.1016/j.tim.2010.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 02/03/2023]
Abstract
It is widely accepted that microorganisms are social beings. Whereas communication via chemical signals (e.g. quorum sensing) has been the focus of most investigations, the use of physical signals for microbial cell-cell communication has received only limited attention. In this Opinion article, I postulate that physical modes of microbial communication could be widespread in nature. This is based on experimental evidence on the microbial emission and response to three physical signals: sound waves, electromagnetic radiation and electric currents. These signals propagate rapidly, and even at very low intensities, they provide useful mechanisms when a rapid response is required. I also make some suggestions for promising future research avenues that could provide novel and unsuspected insights into the physical nature of microbial signaling networks.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 6190 Biomedical & Physical Science Building, East Lansing, MI 48824, USA.
| |
Collapse
|
16
|
Abstract
The hormetic morphogen theory of curvature (Fosslien 2009) proposes that hormetic morphogen concentration gradients modulate the synthesis of adenosine triphosphate (ATP) by cells along the gradients (field cells) and thus regulate their proliferation and induce curvature such as vascular wall curvature; however, it is unclear whether such morphogen gradients can also determine the histological pattern of the walls. Here, I propose that the ATP gradients modulate export of H(+) by vacuolar H(+)-ATPase (V-ATPase) located on the surface of field cells and generate extracellular ion concentration gradients, ion currents and electrical fields along the paths of morphogen gradients. In vitro, electrical fields can induce directional migration and elongation of vascular cells and align the cells with their long axis perpendicular to electrical field vectors (Bai et al. 2004). I suggest that likewise, in vivo vascular transmural electrical fields induced by hormetic morphogen concentration gradients can modulate cell shape i.e. cell elongation and cell curvature, and determine cell orientation. Moreover, I suggest that the electrical fields can modulate bidirectional cell migration and cell sorting via dynamic hormetic galvanotaxis analogous to in vitro isoelectric focusing in proton gradients, thus, hormetic morphogen gradients can determine the curvature of vessel walls and their histological patterns.
Collapse
Affiliation(s)
- Egil Fosslien
- College of Medicine, University of Illinois at Chicago
| |
Collapse
|
17
|
|
18
|
Minc N, Chang F. Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr Biol 2010; 20:710-6. [PMID: 20362451 DOI: 10.1016/j.cub.2010.02.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/19/2022]
Abstract
Electric signals surround tissues and cells and have been proposed to participate in directing cell polarity in processes such as development, wound healing, and host invasion [1, 2]. The application of exogenous electric fields (EFs) can direct cell polarization in cell types ranging from bacteria and fungi to neurons and neutrophils [3-7]. The mechanisms by which EFs modulate cell polarity, however, remain poorly understood. Here we introduce the fission yeast Schizosaccharomyces pombe as a model organism to elucidate the mechanisms underlying this process. In these rod-shaped cells, an exogenous EF reorients cell growth in a direction orthogonal to the field, producing cells with a bent morphology. A candidate genetic screen identifies conserved factors involved in this process: an integral membrane proton ATPase pma1p that regulates intracellular pH, the small GTPase cdc42p, and the formin for3p that assembles actin cables. Interestingly, mutants in these genes still respond to the EF but orient in a different direction, toward the anode. In addition, EFs also cause electrophoretic movement of cell wall synthase complex proteins toward the anode. These data suggest molecular models for how the EF reorients cell polarization by modulating intracellular pH and steering cell polarity factors in multiple directions.
Collapse
Affiliation(s)
- Nicolas Minc
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
19
|
|
20
|
Gabel CV, Gabel H, Pavlichin D, Kao A, Clark DA, Samuel ADT. Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J Neurosci 2007; 27:7586-96. [PMID: 17626220 PMCID: PMC6672606 DOI: 10.1523/jneurosci.0775-07.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/04/2007] [Accepted: 06/04/2007] [Indexed: 11/21/2022] Open
Abstract
The nematode Caenorhabditis elegans deliberately crawls toward the negative pole in an electric field. By quantifying the movements of individual worms navigating electric fields, we show that C. elegans prefers to crawl at specific angles to the direction of the electric field in persistent periods of forward movement and that the preferred angle is proportional to field strength. C. elegans reorients itself in response to time-varying electric fields by using sudden turns and reversals, standard reorientation maneuvers that C. elegans uses during other modes of motile behavior. Mutation or laser ablation that disrupts the structure and function of amphid sensory neurons also disrupts electrosensory behavior. By imaging intracellular calcium dynamics among the amphid sensory neurons of immobilized worms, we show that specific amphid sensory neurons are sensitive to the direction and strength of electric fields. We extend our analysis to the motor level by showing that specific interneurons affect the utilization of sudden turns and reversals during electrosensory steering. Thus, electrosensory behavior may be used as a model system for understanding how sensory inputs are transformed into motor outputs by the C. elegans nervous system.
Collapse
Affiliation(s)
- Christopher V. Gabel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Harrison Gabel
- Department of Genetics, Harvard Medical School, and
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Dmitri Pavlichin
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Albert Kao
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Damon A. Clark
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Aravinthan D. T. Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
21
|
Abstract
Understanding the factors that allow biological systems to reliably self-assemble consistent, highly complex, four dimensional patterns on many scales is crucial for the biomedicine of cancer, regeneration, and birth defects. The role of chemical signaling factors in controlling embryonic morphogenesis has been a central focus in modern developmental biology. While the role of tensile forces is also beginning to be appreciated, another major aspect of physics remains largely neglected by molecular embryology: electromagnetic fields and radiations. The continued progress of molecular approaches to understanding biological form and function in the post genome era now requires the merging of genetics with functional understanding of biophysics and physiology in vivo. The literature contains much data hinting at an important role for bioelectromagnetic phenomena as a mediator of morphogenetic information in many contexts relevant to embryonic development. This review attempts to highlight briefly some of the most promising (and often underappreciated) findings that are of high relevance for understanding the biophysical factors mediating morphogenetic signals in biological systems. These data originate from contexts including embryonic development, neoplasm, and regeneration.
Collapse
Affiliation(s)
- Michael Levin
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02114, USA.
| |
Collapse
|
22
|
Ranalli G, Iorizzo M, Lustrato G, Zanardini E, Grazia L. Effects of low electric treatment on yeast microflora. J Appl Microbiol 2003; 93:877-83. [PMID: 12392536 DOI: 10.1046/j.1365-2672.2002.01758.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To contribute to the understanding of phenomena related to different intensity electric current treatments on the growth and metabolism of selected micro-organisms using laboratory samples of pure and co-cultures (Saccharomyces cerevisiae strain 404 and Hanseniaspora guilliermondii strain 465). METHODS AND RESULTS Low electric current (10, 30, 50 and 100 mA) was applied to prepared samples. Parameters, such as polarity, treatment duration (18-48 h) and type of inoculum yeast, were varied one at a time to highlight their cause-effect relationships. The effects on cell activity as well as microflora viability were assessed. Bioindicators capable of describing the phenomena caused by the electric current on the microflora were identified. CONCLUSIONS Results demonstrated that a low voltage treatment using graphite electrodes had a greater effect on the viable S. cerevisiae strain 404 microflora. There was less bactericidal activity in the S. cerevisiae strain 404 than in the H. guilliermondii strain 465. SIGNIFICANCE AND IMPACT OF THE STUDY These results may be of significant importance in the development of new technological processes in the fields of agriculture and food, particularly new fermenting process controls.
Collapse
Affiliation(s)
- G Ranalli
- DISTAAM, Università del Molise, Campobasso, Italy.
| | | | | | | | | |
Collapse
|
23
|
Zhao M, Jin T, McCaig CD, Forrester JV, Devreotes PN. Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis. J Cell Biol 2002; 157:921-7. [PMID: 12045182 PMCID: PMC2174050 DOI: 10.1083/jcb.200112070] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells display chemotaxis and electrotaxis by migrating directionally in gradients of specific chemicals or electrical potential. Chemotaxis in Dictyostelium discoideum is mediated by G protein-coupled receptors. The unique Gbeta is essential for all chemotactic responses, although different chemoattractants use different receptors and Galpha subunits. Dictyostelium amoebae show striking electrotaxis in an applied direct current electric field. Perhaps electrotaxis and chemotaxis share similar signaling mechanisms? Null mutation of Gbeta and cAMP receptor 1 and Galpha2 did not abolish electrotaxis, although Gbeta-null mutations showed suppressed electrotaxis. By contrast, G protein signaling plays an essential role in chemotaxis. G protein-coupled receptor signaling was monitored with PHcrac-green fluorescent protein, which translocates to inositol phospholipids at the leading edge of cells during chemotaxis. There was no intracellular gradient of this protein during electrotaxis. However, F-actin was polymerized at the leading edge of cells during electrotaxis. We conclude that reception and transduction of the electrotaxis signal are largely independent of G protein-coupled receptor signaling and that the pathways driving chemotaxis and electrotaxis intersect downstream of heterotrimeric G proteins to invoke cytoskeletal elements.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biomedical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Norris V, Alexandre S, Bouligand Y, Cellier D, Demarty M, Grehan G, Gouesbet G, Guespin J, Insinna E, Le Sceller L, Maheu B, Monnier C, Grant N, Onoda T, Orange N, Oshima A, Picton L, Polaert H, Ripoll C, Thellier M, Valleton JM, Verdus MC, Vincent JC, White G, Wiggins P. Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. Biochimie 1999; 81:915-20. [PMID: 10572306 DOI: 10.1016/s0300-9084(99)00203-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A myriad different constituents or elements (genes, proteins, lipids, ions, small molecules etc.) participate in numerous physico-chemical processes to create bacteria that can adapt to their environments to survive, grow and, via the cell cycle, reproduce. We explore the possibility that it is too difficult to explain cell cycle progression in terms of these elements and that an intermediate level of explanation is needed. This level is that of hyperstructures. A hyperstructure is large, has usually one particular function, and contains many elements. Non-equilibrium, or even dissipative, hyperstructures that, for example, assemble to transport and metabolize nutrients may comprise membrane domains of transporters plus cytoplasmic metabolons plus the genes that encode the hyperstructure's enzymes. The processes involved in the putative formation of hyperstructures include: metabolite-induced changes to protein affinities that result in metabolon formation, lipid-organizing forces that result in lateral and transverse asymmetries, post-translational modifications, equilibration of water structures that may alter distributions of other molecules, transertion, ion currents, emission of electromagnetic radiation and long range mechanical vibrations. Equilibrium hyperstructures may also exist such as topological arrays of DNA in the form of cholesteric liquid crystals. We present here the beginning of a picture of the bacterial cell in which hyperstructures form to maximize efficiency and in which the properties of hyperstructures drive the cell cycle.
Collapse
Affiliation(s)
- V Norris
- IFR 'Systèmes Intégrés', Faculté des Sciences et Techniques, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Biofilms have been of considerable interest in the context of food hygiene. Of special significance is the ability of microorganisms to attach and grow on food and food-contact surfaces under favourable conditions. Biofilm formation is a dynamic process and different mechanisms are involved in their attachment and growth. Extracellular polymeric substances play an important role in the attachment and colonization of microorganisms to food-contact surfaces. Various techniques have been adopted for the proper study and understanding of biofilm attachment and control. If the microorganisms from food-contact surfaces are not completely removed, they may lead to biofilm formation and also increase the biotransfer potential. Therefore, various preventive and control strategies like hygienic plant lay-out and design of equipment, choice of materials, correct use and selection of detergents and disinfectants coupled with physical methods can be suitably applied for controlling biofilm formation on food-contact surfaces. In addition, bacteriocins and enzymes are gaining importance and have an unique potential in the food industry for the effective biocontrol and removal of biofilms. These newer biocontrol strategies are considered important for the maintenance of biofilm-free systems, for quality and safety of foods.
Collapse
Affiliation(s)
- C G Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
26
|
Piasecki W, Salwiński L, Froncisz W. New model of charged molecule redistribution induced in spherical vesicles by direct current electric field. Biophys J 1997; 72:613-8. [PMID: 9017190 PMCID: PMC1185588 DOI: 10.1016/s0006-3495(97)78699-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new electrophoresis model of charged components in a spherical phospholipid vesicle is proposed. In the new model the effective local tangential electric field is a result of the uniform external electric field modified by the electric field of redistributed charges. The modification is calculated on the basis of the Gouy-Chapman surface potential theory. Numerical calculations of steady-state distribution of charged molecules and the transmembrane potential are performed. The results show significant difference from the old, simplified model that neglects modification of the external electric field caused by redistributed charges.
Collapse
Affiliation(s)
- W Piasecki
- Department of Biophysics, Jagiellonian University, Cracow, Poland.
| | | | | |
Collapse
|
27
|
Abstract
To discover a unifying theory of biology, it is necessary first to believe in its existence and second to seek its elements. Such a theory would explain the regulation of the cell cycle, differentiation and the origin of life. Some elements of the theory may be obtained by considering both eukaryotic and prokaryotic cell cycles. These elements include cytoskeletal proteins, calcium, cyclins, protein kinase C, phosphorylation, transcriptional sensing, autocatalytic gene expression and the physical properties of lipids. Other more exotic candidate elements include the dynamic enzoskeleton, ATP generation, mechanotransduction, the piezoelectric effect and resonance. Bringing these disparate elements together--and discovering others--will require extensive collaborations between specialists from different sciences. This can only be achieved within the context of an integrated approach to biology.
Collapse
Affiliation(s)
- V Norris
- Department of Microbiology and Immunology, University of Leicester, UK
| | | | | |
Collapse
|
28
|
Popham DL, Setlow P. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J Bacteriol 1996; 178:2079-85. [PMID: 8606187 PMCID: PMC177908 DOI: 10.1128/jb.178.7.2079-2085.1996] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Examination of Bacillus subtilis strains containing multiple mutations affecting the class A high-molecular-weight penicillin-binding proteins (PBPs) 1, 2c, and 4 revealed a significant degree of redundancy in the functions of these three proteins. In rich media, loss of PBPs 2c and 4 resulted in no obvious phenotype. The slight growth and cell morphology defects associated with loss of PBP 1 were exacerbated by the additional loss of PBP 4 but not PBP 2c. Loss of all three of these PBPs slowed growth even further. In minimal medium, loss of PBPs 2c and 4 resulted in a slight growth defect. The decrease in growth rate caused by loss of PBP 1 was accentuated slightly by loss of PBP 2c and greatly by loss of PBP 4. Again, a lack of all three of these PBPs resulted in the slowest growth. Loss of PBP 1 resulted in a 22% reduction in the cell radius. Cultures of a strain lacking PBP 1 also contained some cells that were significantly longer than those produced by the wild type, and some of the rod-shaped cells appeared slightly bent. The additional loss of PBP 4 increased the number of longer cells in the culture. Slow growth caused by a mutation in prfA, a gene found in an operon with the gene encoding PBP 1, was unaffected by the additional loss of PBPs 2c and 4, whereas loss of both prfA and PBP 1 resulted in extremely slow growth and the production of highly bent cells.
Collapse
Affiliation(s)
- D L Popham
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | |
Collapse
|
29
|
Jass J, Costerton JW, Lappin-Scott HM. The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 15:234-42. [PMID: 8519482 DOI: 10.1007/bf01569830] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The combined use of antibiotics with low levels of electrical current has been reported to be more effective in controlling biofilms (the bioelectric effect) than antibiotics alone. An electrical colonisation cell was designed to study the effect of antibiotics on biofilms formed on a dialysis membrane away from the electrode surface. To avoid the electrochemical generation of toxic products, Pseudomonas aeruginosa biofilms were formed in minimal salts medium that excluded chloride-containing compounds. Under these conditions, electrical currents of up to 20 mA cm-2 did not prevent biofilm formation or have any detrimental effect on an established biofilm. Tobramycin alone at concentrations of 10 micrograms ml-1 did not affect the biofilm, but were significantly enhanced by 9 mA cm-2. The effect of tobramycin concentrations of 25 micrograms ml-1 were enhanced by a 15 mA cm-2 electrical current. In both cases higher levels of electrical current, up to 20 mA cm-2, did not further enhance the effect of the antibiotic. The possible mechanisms of action of the bioelectric effect have been reported to involve electrophoresis, iontophoresis and electroporesis, thus overcoming the biofilm biomass and cell wall barriers. Our results suggest that other factors may also be important, such as the metabolic activity and growth rate of the bacteria. Such factors may be critical in maximising antibiotic efficacy.
Collapse
Affiliation(s)
- J Jass
- Department of Biological Sciences, Hatherly Laboratories, University of Exeter, UK
| | | | | |
Collapse
|
30
|
Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 1994; 38:2803-9. [PMID: 7695266 PMCID: PMC188289 DOI: 10.1128/aac.38.12.2803] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The bioelectric effect, in which electric fields are used to enhance the efficacy of biocides and antibiotics in killing biofilm bacteria, has been shown to reduce the very high concentrations of these antibacterial agents needed to kill biofilm bacteria to levels very close to those needed to kill planktonic (floating) bacteria of the same species. In this report, we show that biofilm bacteria are readily killed by an antibiotic on all areas of the active electrodes and on the surfaces of conductive elements that lie within the electric field but do not themselves function as electrodes. Considerations of electrode geometry indicate that very low (< 100 microA/cm2) current densities may be effective in this electrical enhancement of antibiotic efficacy against biofilm bacteria, and flow experiments indicate that this bioelectric effect does not appear to depend entirely on the possible local electrochemical generation of antibacterial molecules or ions. These data are expected to facilitate the use of the bioelectric effect in the prevention and treatment of device-related bacterial infections that are caused by bacteria that grow in biofilms and thereby frustrate antibiotic chemotherapy.
Collapse
Affiliation(s)
- J W Costerton
- Center for Biofilm Engineering Montana State University, Bozeman. 59717-0398
| | | | | | | | | |
Collapse
|