1
|
Luo Y, Imamitsu H, Tsurumaki T, Tanaka K. Structure of the SigF1-dependent pilA1 gene promoter and characterization of the light-activated response in the cyanobacterium Synechococcus elongatus PCC 7942. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38763756 DOI: 10.2323/jgam.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In cyanobacteria that perform oxygenic photosynthesis, alternative sigma factors can play critical roles in environmental acclimation at the transcriptional initiation step. Here, we found in Synechococcus elongatus PCC 7942 that transcription of the pilA1 gene, encoding the type IV pilin, is dependent on one of the group 3 sigma factors, SigF1. We analyzed the promoter sequence determinants and proposed herein that the -10 and -35 boxes upstream of the transcriptional start site are critical for transcription. Interestingly, while the pilA1 promoter is activated by illumination, RNA polymerase containing SigF1 is already located on the promoter region under dark conditions, prior to illumination. This strongly suggests that promoter activation by light follows the recruitment of RNA polymerase during transcriptional initiation.
Collapse
Affiliation(s)
- Ying Luo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Hitomi Imamitsu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Tatsuhiro Tsurumaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
- School of Life Science and Technology, Tokyo Institute of Technology
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
2
|
Kuwabara S, Landers ER, Fisher DJ. Impact of nutrients on the function of the chlamydial Rsb partner switching mechanism. Pathog Dis 2022; 80:6831632. [PMID: 36385643 DOI: 10.1093/femspd/ftac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is a leading cause of sexually transmitted infections and infectious blindness. Chlamydia undergo a biphasic developmental cycle alternating between the infectious elementary body (EB) and the replicative reticulate body (RB). The molecular mechanisms governing RB growth and RB-EB differentiation are unclear. We hypothesize that the bacterium senses host cell and bacterial energy levels and metabolites to ensure that development and growth coincide with nutrient availability. We predict that a partner switching mechanism (PSM) plays a key role in the sensing and response process acting as a molecular throttle sensitive to metabolite levels. Using purified wild type and mutant PSM proteins, we discovered that metal type impacts enzyme activity and the substrate specificity of RsbU and that RsbW prefers ATP over GTP as a phosphate donor. Immunoblotting analysis of RsbV1/V2 demonstrated the presence of both proteins beyond 20 hours post infection and we observed that an RsbV1-null strain has a developmental delay and exhibits differential growth attenuation in response to glucose levels. Collectively, our data support that the PSM regulates growth in response to metabolites and further defines biochemical features governing PSM-component interactions which could help in the development of novel PSM-targeted therapeutics.
Collapse
Affiliation(s)
- Shiomi Kuwabara
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University, Carbondale, IL 62901, United States
| | - Evan R Landers
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University, Carbondale, IL 62901, United States
| | - Derek J Fisher
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University, Carbondale, IL 62901, United States.,School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, United States
| |
Collapse
|
3
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
4
|
Activation of the Listeria monocytogenes Stressosome in the Intracellular Eukaryotic Environment. Appl Environ Microbiol 2021; 87:e0039721. [PMID: 33811030 DOI: 10.1128/aem.00397-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection is unknown. Here, we analyzed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. However, another core protein, RsbS, is undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) postinfection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supramacromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite the fact that many structural data on the complex are available and analyses have been performed in mutants lacking components of the stressosome or the signaling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favoring the idea of a unique stressosome architecture responding to intracellular host cues.
Collapse
|
5
|
Dessaux C, Guerreiro DN, Pucciarelli MG, O'Byrne CP, García-Del Portillo F. Impact of osmotic stress on the phosphorylation and subcellular location of Listeria monocytogenes stressosome proteins. Sci Rep 2020; 10:20837. [PMID: 33257749 PMCID: PMC7705745 DOI: 10.1038/s41598-020-77738-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes responds to environmental stress using a supra-macromolecular complex, the stressosome, to activate the stress sigma factor SigB. The stressosome structure, inferred from in vitro-assembled complexes, consists of the core proteins RsbR (here renamed RsbR1) and RsbS and, the kinase RsbT. The active complex is proposed to be tethered to the membrane and to support RsbR1/RsbS phosphorylation by RsbT and the subsequent release of RsbT following signal perception. Here, we show in actively-growing cells that L. monocytogenes RsbR1 and RsbS localize mostly in the cytosol in a fully phosphorylated state regardless of osmotic stress. RsbT however distributes between cytosolic and membrane-associated pools. The kinase activity of RsbT on RsbR1/RsbS and its requirement for maximal SigB activation in response to osmotic stress were demonstrated in vivo. Cytosolic RsbR1 interacts with RsbT, while this interaction diminishes at the membrane when RsbR1 paralogues (RsbR2, RsbR3 and RsbL) are present. Altogether, the data support a model in which phosphorylated RsbR1/RsbS may sustain basal SigB activity in unstressed cells, probably assuring a rapid increase in such activity in response to stress. Our findings also suggest that in vivo the active RsbR1-RsbS-RsbT complex forms only transiently and that membrane-associated RsbR1 paralogues could modulate its assembly.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain
| | - Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.,Department of Molecular Biology, Centre of Molecular Biology 'Severo Ochoa' (CBMSO)-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Bonilla CY. Generally Stressed Out Bacteria: Environmental Stress Response Mechanisms in Gram-Positive Bacteria. Integr Comp Biol 2020; 60:126-133. [PMID: 32044998 DOI: 10.1093/icb/icaa002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor the environment for toxic chemical and physical disturbances is essential for bacteria that live in dynamic environments. The fundamental sensing mechanisms and physiological responses that allow bacteria to thrive are conserved even if the molecular components of these pathways are not. The bacterial general stress response (GSR) represents a conceptual model for how one pathway integrates a wide range of environmental signals, and how a generalized system with broad molecular responses is coordinated to promote survival likely through complementary pathways. Environmental stress signals such as heat, osmotic stress, and pH changes are received by sensor proteins that through a signaling cascade activate the sigma factor, SigB, to regulate over 200 genes. Additionally, the GSR plays an important role in stress priming that increases bacterial fitness to unrelated subsequent stressors such as oxidative compounds. While the GSR response is implicated during oxidative stress, the reason for its activation remains unknown and suggests crosstalk between environmental and oxidative stress sensors and responses to coordinate antioxidant functions. Systems levels studies of cellular responses such as transcriptomes, proteomes, and metabolomes of stressed bacteria and single-cell analysis could shed light into the regulated functions that protect, remediate, and minimize damage during dynamic environments. This perspective will focus on fundamental stress sensing mechanisms and responses in Gram-positive bacterial species to illustrate their commonalities at the molecular and physiological levels; summarize exciting directions; and highlight how system-level approaches can help us understand bacterial physiology.
Collapse
Affiliation(s)
- Carla Y Bonilla
- Biology Department, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258, USA
| |
Collapse
|
7
|
Soules KR, Dmitriev A, LaBrie SD, Dimond ZE, May BH, Johnson DK, Zhang Y, Battaile KP, Lovell S, Hefty PS. Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation. Mol Microbiol 2020; 113:68-88. [PMID: 31637787 PMCID: PMC7007330 DOI: 10.1111/mmi.14401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.
Collapse
Affiliation(s)
- Katelyn R Soules
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Aidan Dmitriev
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Scott D LaBrie
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Zoë E Dimond
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Benjamin H May
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - David K Johnson
- Computational Chemical Biology Core Facility, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66047, USA
| | - Yang Zhang
- Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, IL, 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66047, USA
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
8
|
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks. PLoS Comput Biol 2016; 12:e1005267. [PMID: 27977677 PMCID: PMC5207722 DOI: 10.1371/journal.pcbi.1005267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
Despite the central role of alternative sigma factors in bacterial stress response and virulence their regulation remains incompletely understood. Here we investigate one of the best-studied examples of alternative sigma factors: the σB network that controls the general stress response of Bacillus subtilis to uncover widely relevant general design principles that describe the structure-function relationship of alternative sigma factor regulatory networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behavior by forcing the σB network to function as an ultrasensitive negative feedback loop. We further demonstrate how this negative feedback regulation insulates alternative sigma factor activity from competition with the housekeeping sigma factor for RNA polymerase and allows multiple stress sigma factors to function simultaneously with little competitive interference. Understanding the regulation of bacterial stress response holds the key to tackling the problems of emerging resistance to anti-bacteria’s and antibiotics. To this end, here we study one of the longest serving model systems of bacterial stress response: the σB pathway of Bacillus subtilis. The sigma factor σB controls the general stress response of Bacillus subtilis to a variety of stress conditions including starvation, antibiotics and harmful environmental perturbations. Recent studies have demonstrated that an increase in stress triggers pulsatile activation of σB. Using mathematical modeling we identify the core structural design feature of the network that are responsible for its pulsatile response. We further demonstrate how the same core design features are common to a variety of stress response pathways. As a result of these features, cells can respond to multiple simultaneous stresses without interference or competition between the different pathways.
Collapse
|
9
|
van der Steen JB, Hellingwerf KJ. Activation of the General Stress Response of Bacillus subtilis by Visible Light. Photochem Photobiol 2015; 91:1032-45. [PMID: 26189730 DOI: 10.1111/php.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
A key challenge for microbiology is to understand how evolution has shaped the wiring of regulatory networks. This is amplified by the paucity of information of power-spectra of physicochemical stimuli to which microorganisms are exposed. Future studies of genome evolution, driven by altered stimulus regimes, will therefore require a versatile signal transduction system that allows accurate signal dosing. Here, we review the general stress response of Bacillus subtilis, and its upstream signal transduction network, as a candidate system. It can be activated by red and blue light, and by many additional stimuli. Signal integration therefore is an intricate function of this system. The blue-light response is elicited via the photoreceptor YtvA, which forms an integral part of stressosomes, to activate expression of the stress regulon of B. subtilis. Signal transfer through this network can be assayed with reporter enzymes, while intermediate steps can be studied with live-cell imaging of fluorescently tagged proteins. Different parts of this system have been studied in vitro, such that its computational modeling has made significant progress. One can directly relate the microscopic characteristics of YtvA with activation of the general stress regulon, making this system a very well-suited system for network evolution studies.
Collapse
Affiliation(s)
- Jeroen B van der Steen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant. Infect Immun 2014; 82:1500-10. [PMID: 24452679 DOI: 10.1128/iai.01635-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.
Collapse
|
11
|
Rate of environmental change determines stress response specificity. Proc Natl Acad Sci U S A 2013; 110:4140-5. [PMID: 23407164 DOI: 10.1073/pnas.1213060110] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells use general stress response pathways to activate diverse target genes in response to a variety of stresses. However, general stress responses coexist with more specific pathways that are activated by individual stresses, provoking the fundamental question of whether and how cells control the generality or specificity of their response to a particular stress. Here we address this issue using quantitative time-lapse microscopy of the Bacillus subtilis environmental stress response, mediated by σ(B). We analyzed σ(B) activation in response to stresses such as salt and ethanol imposed at varying rates of increase. Dynamically, σ(B) responded to these stresses with a single adaptive activity pulse, whose amplitude depended on the rate at which the stress increased. This rate-responsive behavior can be understood from mathematical modeling of a key negative feedback loop in the underlying regulatory circuit. Using RNAseq we analyzed the effects of both rapid and gradual increases of ethanol and salt stress across the genome. Because of the rate responsiveness of σ(B) activation, salt and ethanol regulons overlap under rapid, but not gradual, increases in stress. Thus, the cell responds specifically to individual stresses that appear gradually, while using σ(B) to broaden the cellular response under more rapidly deteriorating conditions. Such dynamic control of specificity could be a critical function of other general stress response pathways.
Collapse
|
12
|
Liebal UW, Sappa PK, Millat T, Steil L, Homuth G, Völker U, Wolkenhauer O. Proteolysis of beta-galactosidase following SigmaB activation in Bacillus subtilis. MOLECULAR BIOSYSTEMS 2012; 8:1806-14. [DOI: 10.1039/c2mb25031d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Eymann C, Schulz S, Gronau K, Becher D, Hecker M, Price CW. In vivo phosphorylation patterns of key stressosome proteins define a second feedback loop that limits activation of Bacillus subtilis σB. Mol Microbiol 2011; 80:798-810. [PMID: 21362065 DOI: 10.1111/j.1365-2958.2011.07609.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Bacillus subtilis stressosome is a 1.8 MDa complex that orchestrates activation of the σ(B) transcription factor by environmental stress. The complex comprises members of the RsbR co-antagonist family and the RsbS antagonist, which together form an icosahedral core that sequesters the RsbT serine-threonine kinase. Phosphorylation of this core by RsbT is associated with RsbT release, which activates downstream signalling. RsbRA, the prototype co-antagonist, is phosphorylated on T171 and T205 in vitro. In unstressed cells T171 is already phosphorylated; this is a prerequisite but not the trigger for activation, which correlates with stress-induced phosphorylation of RsbS on S59. In contrast, phosphorylation of RsbRA T205 has not been detected in vivo. Here we find (i) RsbRA is additionally phosphorylated on T205 following strong stresses, (ii) this modification requires RsbT, and (iii) the phosphorylation-deficient T205A substitution greatly increases post-stress activation of σ(B) . We infer that T205 phosphorylation constitutes a second feedback mechanism to limit σ(B) activation, operating in addition to the RsbX feedback phosphatase. Loss of RsbX function increases the fraction of phosphorylated RsbS and doubly phosphorylated RsbRA in unstressed cells. We propose that RsbX both maintains the ready state of the stressosome prior to stress and restores it post-stress.
Collapse
Affiliation(s)
- Christine Eymann
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Pané-Farré J, Jonas B, Hardwick SW, Gronau K, Lewis RJ, Hecker M, Engelmann S. Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol 2009; 191:2561-73. [PMID: 19201800 PMCID: PMC2668408 DOI: 10.1128/jb.01514-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/28/2009] [Indexed: 02/04/2023] Open
Abstract
SigB is an alternative sigma factor that controls a large regulon in Staphylococcus aureus. Activation of SigB requires RsbU, a protein phosphatase 2C (PP2C)-type phosphatase. In a closely related organism, Bacillus subtilis, RsbU activity is stimulated upon interaction with RsbT, a kinase, which following an activating stimulus switches from a 25S high-molecular-weight complex, the stressosome, to the N-terminal domain of RsbU. Active RsbU dephosporylates RsbV and thereby triggers the release of SigB from its inhibitory complex with RsbW. While RsbU, RsbV, RsbW, and SigB are conserved in S. aureus, proteins similar to RsbT and the components of the stressosome are not, raising the question of how RsbU activity and hence SigB activity are controlled in S. aureus. We found that in contrast to the case in B. subtilis, the induced expression of RsbU was sufficient to stimulate SigB-dependent transcription in S. aureus. However, activation of SigB-dependent transcription following alkaline stress did not lead to a clear accumulation of SigB and its regulators RsbV and RsbW or to a change in the RsbV/RsbV-P ratio in S. aureus. When expressed in B. subtilis, the S. aureus RsbU displayed a high activity even in the absence of an inducing stimulus. This high activity could be transferred to the PP2C domain of the B. subtilis RsbU protein by a fusion to the N-terminal domain of the S. aureus RsbU. Collectively, the data suggest that the activity of the S. aureus RsbU and hence SigB may be subjected to different regulation in comparison to that in B. subtilis.
Collapse
Affiliation(s)
- Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
The growth-promoting and stress response activities of the Bacillus subtilis GTP binding protein Obg are separable by mutation. J Bacteriol 2008; 190:6625-35. [PMID: 18689482 DOI: 10.1128/jb.00799-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis Obg is a ribosome-associating GTP binding protein that is needed for growth, sporulation, and induction of the bacterium's general stress regulon (GSR). It is unclear whether the roles of Obg in sporulation and stress responsiveness are direct or a secondary effect of its growth-promoting functions. The present work addresses this question by an analysis of two obg alleles whose phenotypes argue for direct roles for Obg in each process. The first allele [obg(G92D)] encodes a missense change in the protein's highly conserved "obg fold" region. This mutation impairs cell growth and the ability of Obg to associate with ribosomes but fails to block sporulation or the induction of the GSR. The second obg mutation [obg(Delta22)] replaces the 22-amino-acid carboxy-terminal sequence of Obg with an alternative 26-amino-acid sequence. This Obg variant cofractionates with ribosomes and allows normal growth but blocks sporulation and impairs the induction of the GSR. Additional experiments revealed that the block on sporulation occurs early, preventing the activation of the essential sporulation transcription factor Spo0A, while inhibition of the GSR appears to involve a failure of the protein cascade that normally activates the GSR to effectively catalyze the reactions needed to activate the GSR transcription factor (sigma(B)).
Collapse
|
16
|
Hardwick SW, Pané-Farré J, Delumeau O, Marles-Wright J, Murray JW, Hecker M, Lewis RJ. Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis. J Biol Chem 2007; 282:11562-72. [PMID: 17303566 DOI: 10.1074/jbc.m609733200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general stress response of Bacillus subtilis and close relatives provides the cell with protection from a variety of stresses. The upstream component of the environmental stress signal transduction cascade is activated by the RsbT kinase that switches binding partners from a 25 S macromolecular complex, the stressosome, to the RsbU phosphatase. Once the RsbU phosphatase is activated by interacting with RsbT, the alternative sigma factor, sigmaB, directs transcription of the general stress regulon. Previously, we demonstrated that the N-terminal domain of RsbU mediates the binding of RsbT. We now describe residues in N-RsbU that are crucial to this interaction by experimentation both in vitro and in vivo. Furthermore, crystal structures of the N-RsbU mutants provide a molecular explanation for the loss of interaction. Finally, we also characterize mutants in RsbT that affect binding to both RsbU and a simplified, binary model of the stressosome and thus identify overlapping binding surfaces on the RsbT "switch."
Collapse
Affiliation(s)
- Steven W Hardwick
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Oscarsson J, Kanth A, Tegmark-Wisell K, Arvidson S. SarA is a repressor of hla (alpha-hemolysin) transcription in Staphylococcus aureus: its apparent role as an activator of hla in the prototype strain NCTC 8325 depends on reduced expression of sarS. J Bacteriol 2006; 188:8526-33. [PMID: 17012389 PMCID: PMC1698246 DOI: 10.1128/jb.00866-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022] Open
Abstract
In most Staphylococcus aureus strains, inactivation of sarA increases hla transcription, indicating that sarA is a repressor. However, in S. aureus NCTC 8325 and its derivatives, used for most studies of hla regulation, inactivation of sarA resulted in decreased hla transcription. The disparate phenotype of strain NCTC 8325 seems to be associated with its rsbU mutation, which leads to sigma(B) deficiency. This has now been verified by the demonstration that sarA repressed hla transcription in an rsbU+ derivative of strain 8325-4 (SH1000). That sarA could act as a repressor of hla in an 8325-4 background was confirmed by the observation that inactivation of sarA in an agr sarS rot triple mutant dramatically increased hla transcription to wild-type levels. However, the apparent role of sarA as an activator of hla in 8325-4 was not a result of the rsbU mutation alone, as inactivation of sarA in another rsbU mutant, strain V8, led to increased hla transcription. Northern blot analysis revealed much higher levels of sarS mRNA in strain V8 than in 8325-4, which was likely due to the mutation in the sarS activator, tcaR, in 8325-4, which was not found in strain V8. On the other hand, the relative increase in sarS transcription upon the inactivation of sarA was 15-fold higher in 8325-4 than in strain V8. Because of this, inactivation of sarA in 8325-4 means a net increase in repressor activity, whereas in strain V8, inactivation of sarA means a net decrease in repressor activity and, therefore, enhanced hla transcription.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
18
|
Robert N, Merlot S, N'guyen V, Boisson-Dernier A, Schroeder JI. A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling inArabidopsis. FEBS Lett 2006; 580:4691-6. [PMID: 16876791 DOI: 10.1016/j.febslet.2006.07.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/26/2006] [Accepted: 07/13/2006] [Indexed: 11/16/2022]
Abstract
Protein phosphatases of the 2C family (PP2C) function in the regulation of several signaling pathways from prokaryotes to eukaryotes. In Arabidopsis thaliana, the HAB1 PP2C is a negative regulator of the stress hormone abscisic acid (ABA) signaling. Here, we show that plants expressing a mutant form of HAB1 in which Gly246 was mutated to Asp (G246D) display strong ABA insensitive phenotypes. Our results indicate that the G246D mutation has a hypermorphic rather than a dominant negative effect. The data suggest that this mutation localized in a conserved motif in the PP2C catalytic domain could be used in other PP2Cs to reveal their biological functions.
Collapse
Affiliation(s)
- Nadia Robert
- Division of Biological Sciences, Cell and Developmental Biology Section, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| | | | | | | | | |
Collapse
|
19
|
Karlsson-Kanth A, Tegmark-Wisell K, Arvidson S, Oscarsson J. Natural human isolates of Staphylococcus aureus selected for high production of proteases and alpha-hemolysin are sigmaB deficient. Int J Med Microbiol 2006; 296:229-36. [PMID: 16530010 DOI: 10.1016/j.ijmm.2006.01.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 12/01/2022] Open
Abstract
It has been reported that high production of proteases and alpha-hemolysin in the prototype Staphylococcus aureus strain 8325-4 was associated with its sigmaB deficiency. Here we analyzed one fresh clinical isolate (KS26) and two ancient human isolates (Wood46 and V8) selected for high production of proteases and alpha-hemolysin. All three strains lacked yellow pigment and showed a low level of expression of sigB-dependent promoters, indicating sigmaB deficiency. Nucleotide sequencing of the sigB operon revealed that KS26 and Wood46 had stop codons in rsbU and sigB, respectively, while V8 had an insertion of an IS element in rsbU. Complementation experiments with sigB on a plasmid reduced expression of proteases and alpha-hemolysin dramatically, indicating that the high production of these exoproteins was associated with sigmaB deficiency. Although sigmaB-deficient strains show attenuated virulence in some animal models, our results indicate that such strains can cause infection in humans.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Bacterial Toxins/biosynthesis
- Blotting, Northern
- Blotting, Southern
- Codon, Nonsense
- Codon, Terminator
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Genetic Complementation Test
- Hemolysin Proteins
- Molecular Sequence Data
- Peptide Hydrolases/biosynthesis
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Recombination, Genetic
- Regulon/physiology
- Sequence Analysis, DNA
- Sigma Factor/genetics
- Sigma Factor/physiology
- Staphylococcus aureus/enzymology
- Staphylococcus aureus/genetics
Collapse
Affiliation(s)
- Anna Karlsson-Kanth
- Microbiology and Tumor Biology Center (MTC), Box 280, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Zhang S, Reeves A, Woodbury RL, Haldenwang WG. Coexpression patterns of sigma(B) regulators in Bacillus subtilis affect sigma(B) inducibility. J Bacteriol 2006; 187:8520-5. [PMID: 16321960 PMCID: PMC1317008 DOI: 10.1128/jb.187.24.8520-8525.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RsbT is an essential component of the pathway that activates the Bacillus subtilis sigma(B) transcription factor in response to physical stress. rsbT is located within an operon that includes the genes for its principal negative regulator (RsbS) and the stress pathway component that it activates (RsbU), as immediate upstream and downstream neighbors. In the current work we demonstrate that RsbT's ability to function is strongly influenced by coexpression with these adjoining genes. When rsbT is expressed at a site displaced from rsbS and rsbU, RsbT accumulates but it is unable to activate sigma(B) following stress. RsbT activity is restored if rsbT is cotranscribed at the alternative site with the genes that normally abut it. Additionally, an rsbS allele whose product allows constitutively high RsbT-dependent sigma(B) activity displays this activity in rsbS merodiploid strains only when cotranscribed with rsbT and is recessive to a wild-type rsbS allele only if the wild-type rsbS gene is not cotranscribed with an rsbT gene of its own. The data suggest that RsbS and RsbT are synthesized in equivalent amounts and interact coincidently with their synthesis to form stable regulatory complexes that maintain RsbT in a state from which it can be stress activated.
Collapse
Affiliation(s)
- Shuyu Zhang
- Department of Microbiology and Immunology, MC7758, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
21
|
Allenby NEE, O'Connor N, Prágai Z, Ward AC, Wipat A, Harwood CR. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J Bacteriol 2005; 187:8063-80. [PMID: 16291680 PMCID: PMC1291260 DOI: 10.1128/jb.187.23.8063-8080.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacillus subtilis responds to phosphate starvation stress by inducing the PhoP and SigB regulons. While the PhoP regulon provides a specific response to phosphate starvation stress, maximizing the acquisition of phosphate (P(i)) from the environment and reducing the cellular requirement for this essential nutrient, the SigB regulon provides nonspecific resistance to stress by protecting essential cellular components, such as DNA and membranes. We have characterized the phosphate starvation stress response of B. subtilis at a genome-wide level using DNA macroarrays. A combination of outlier and cluster analyses identified putative new members of the PhoP regulon, namely, yfkN (2',3' cyclic nucleotide 2'-phosphodiesterase), yurI (RNase), yjdB (unknown), and vpr (extracellular serine protease). YurI is thought to be responsible for the nonspecific degradation of RNA, while the activity of YfkN on various nucleotide phosphates suggests that it could act on substrates liberated by YurI, which produces 3' or 5' phosphoribonucleotides. The putative new PhoP regulon members are either known or predicted to be secreted and are likely to be important for the recovery of inorganic phosphate from a variety of organic sources of phosphate in the environment.
Collapse
|
22
|
Zhang S, Haldenwang WG. Contributions of ATP, GTP, and redox state to nutritional stress activation of the Bacillus subtilis sigmaB transcription factor. J Bacteriol 2005; 187:7554-60. [PMID: 16267279 PMCID: PMC1280325 DOI: 10.1128/jb.187.22.7554-7560.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general stress regulon of Bacillus subtilis is induced by activation of the sigma(B) transcription factor. sigma(B) activation occurs when one of two phosphatases responds to physical or nutritional stress to activate a positive sigma(B) regulator by dephosphorylation. The signal that triggers the nutritional stress phosphatase (RsbP) is unknown; however, RsbP activation occurs under culture conditions (glucose/phosphate starvation, azide or decoyinine treatment) that reduce the cell's levels of ATP and/or GTP. Variances in nucleotide levels in these instances may be coincidental rather than causal. RsbP carries a domain (PAS) that in some regulatory systems can respond directly to changes in electron transport, proton motive force, or redox potential, changes that typically precede shifts in high-energy nucleotide levels. The current work uses Bacillus subtilis with mutations in the oxidative phosphorylation and purine nucleotide biosynthetic pathways in conjunction with metabolic inhibitors to better define the inducing signal for RsbP activation. The data argue that a drop in ATP, rather than changes in GTP, proton motive force, or redox state, is the key to triggering sigma(B) activation.
Collapse
Affiliation(s)
- Shuyu Zhang
- Department of Microbiology & Immunology, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | | |
Collapse
|
23
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-543. [PMID: 16339734 DOI: 10.1128/mmbr.69.4.527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
24
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-43. [PMID: 16339734 PMCID: PMC1306804 DOI: 10.1128/mmbr.69.4.527-543.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
25
|
Senn MM, Giachino P, Homerova D, Steinhuber A, Strassner J, Kormanec J, Flückiger U, Berger-Bächi B, Bischoff M. Molecular analysis and organization of the sigmaB operon in Staphylococcus aureus. J Bacteriol 2005; 187:8006-19. [PMID: 16291674 PMCID: PMC1291286 DOI: 10.1128/jb.187.23.8006-8019.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/15/2005] [Indexed: 12/16/2022] Open
Abstract
The alternative sigma factor sigma(B) of Staphylococcus aureus controls the expression of a variety of genes, including virulence determinants and global regulators. Genetic manipulations and transcriptional start point (TSP) analyses showed that the sigB operon is transcribed from at least two differentially controlled promoters: a putative sigma(A)-dependent promoter, termed sigB(p1), giving rise to a 3.6-kb transcript covering sa2059-sa2058-rsbU-rsbV-rsbW-sigB, and a sigma(B)-dependent promoter, sigB(p3), initiating a 1.6-kb transcript covering rsbV-rsbW-sigB. TSP and promoter-reporter gene fusion experiments indicated that a third promoter, tentatively termed sigB(p2) and proposed to lead to a 2.5-kb transcript, including rsbU-rsbV-rsbW-sigB, might govern the expression of the sigB operon. Environmental stresses, such as heat shock and salt stress, induced a rapid response within minutes from promoters sigB(p1) and sigB(p3). In vitro, the sigB(p1) promoter was active in the early growth stages, while the sigB(p2) and sigB(p3) promoters produced transcripts throughout the growth cycle, with sigB(p3) peaking around the transition state between exponential growth and stationary phase. The amount of sigB transcripts, however, did not reflect the concentration of sigma(B) measured in cell extracts, which remained constant over the entire growth cycle. In a guinea pig cage model of infection, sigB transcripts were as abundant 2 and 8 days postinoculation as values found in vitro, demonstrating that sigB is indeed transcribed during the course of infection. Physical interactions between staphylococcal RsbU-RsbV, RsbV-RsbW, and RsbW-sigma(B) were inferred from a yeast (Saccharomyces cerevisiae) two-hybrid approach, indicating the presence of a partner-switching mechanism in the sigma(B) activation cascade similar to that of Bacillus subtilis. The finding that overexpression of RsbU was sufficient to trigger an immediate and strong activation of sigma(B), however, signals a relevant difference in the regulation of sigma(B) activation between B. subtilis and S. aureus in the cascade upstream of RsbU.
Collapse
|
26
|
Topanurak S, Sinchaikul S, Sookkheo B, Phutrakul S, Chen ST. Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress. Proteomics 2005; 5:4456-71. [PMID: 16222717 DOI: 10.1002/pmic.200401250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The thermophilic bacterium Bacillus stearothermophilus TLS33 was examined under cold-shock stress by a proteomic approach to gain a better understanding of the protein synthesis and complex regulatory pathways of bacterial adaptation. After downshift in the temperature from 65 degrees C, the optimal growth temperature for this bacterium, to 37 degrees C and 25 degrees C for 2 h, we used the high-throughput techniques of proteomic analysis combining 2-DE and MS to identify 53 individual proteins including differentially expressed proteins. The bioinformatics database was used to search the biological functions of proteins and correlate these with gene homology and metabolic pathways in cell protection and adaptation. Eight cold-shock-induced proteins were shown to have markedly different protein expression: glucosyltransferase, anti-sigma B (sigma(B)) factor, Mrp protein homolog, dihydroorthase, hypothetical transcriptional regulator in FeuA-SigW intergenic region, RibT protein, phosphoadenosine phosphosulfate reductase and prespore-specific transcriptional activator RsfA. Interestingly, six of these cold-shock-induced proteins are correlated with the signal transduction pathway of bacterial sporulation. This study aims to provide a better understanding of the functional adaptation of this bacterium to environmental cold-shock stress.
Collapse
Affiliation(s)
- Supachai Topanurak
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Abstract
The BvgAS virulence control system regulates the expression of type III secretion genes in Bordetella subspecies that infect humans and other mammals. We have identified five open reading frames, btrS, btrU, btrX, btrW and btrV, that are activated by BvgAS and encode regulatory factors that control type III secretion at the levels of transcription, protein expression and secretion. The btrS gene product bears sequence similarity to ECF (extracytoplasmic function) sigma factors and is required for transcription of the bsc locus. btrU, btrW and btrV encode proteins predicted to contain PP2C-like Ser phosphatase, HPK (His protein kinase)-like Ser kinase and STAS anti-sigma factor antagonist domains, respectively, which are characteristic of Gram-positive partner switching proteins in Bacillus subtilis. BtrU and BtrW are required for secretion of proteins that are exported by the bsc type III secretion system, whereas BtrV is specifically required for protein synthesis and/or stability. Bordetella species have thus evolved a unique cascade to differentially regulate type III secretion that combines a canonical phosphorelay system with an ECF sigma factor and a set of proteins with domain signatures that define partner switchers, which were traditionally thought to function only in Gram-positive bacteria. The presence of multiple layers and mechanisms of regulation most likely reflects the need to integrate multiple signals in controlling type III secretion. The bsc and btr loci are nearly identical between broad-host-range and human-specific Bordetella. Comparative analysis of Bordetella subspecies revealed that, whereas bsc and btr loci were transcribed in all subspecies, only broad-host-range strains expressed a functional type III secretion system in vitro. The block in type III secretion is post-transcriptional in human-adapted strains, and signal recognition appears to be a point of divergence between subspecies.
Collapse
Affiliation(s)
- Seema Mattoo
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1747, USA
| | | | | | | |
Collapse
|
28
|
Jonsson IM, Arvidson S, Foster S, Tarkowski A. Sigma factor B and RsbU are required for virulence in Staphylococcus aureus-induced arthritis and sepsis. Infect Immun 2004; 72:6106-11. [PMID: 15385515 PMCID: PMC517536 DOI: 10.1128/iai.72.10.6106-6111.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prototype Staphylococcus aureus strain 8325-4 produces high levels of hemolysins and proteases. Recently it has been shown that this property depends on a deficiency of sigma factor B (SigB) activity controlling the activation of regulatory genes such as agr and sarA. SigB deficiency is in turn due to a mutation in the rsbU gene, which is required for posttranslational activation of SigB. The rsbU defect of strain 8325-4 has recently been repaired, and we used this strain (SH1000), along with its isogenic sigB-negative mutant, to investigate the contributions of RsbU and SigB in a murine model of septic arthritis. Intravenous inoculation with the rsbU-repaired isogenic strain SH1000 resulted in significantly more severe arthritis, weight decrease, and mortality compared to those of the parental strain 8325-4 (rsbU-negative) or the isogenic sigB-negative mutant (MJH502). SH1000 also persisted more in kidneys and joints of infected mice. Our data strongly suggest that RsbU and SigB regulate important virulence factors, thereby contributing significantly to the outcome of staphylococcal infection.
Collapse
Affiliation(s)
- Ing-Marie Jonsson
- Department of Rheumatology and Inflammation Research, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
29
|
Delumeau O, Dutta S, Brigulla M, Kuhnke G, Hardwick SW, Völker U, Yudkin MD, Lewis RJ. Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C. J Biol Chem 2004; 279:40927-37. [PMID: 15263010 DOI: 10.1074/jbc.m405464200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RsbU is a positive regulator of the activity of sigmaB, the general stress-response sigma factor of Gram+ microorganisms. The N-terminal domain of this protein has no significant sequence homology with proteins of known function, whereas the C-terminal domain is similar to the catalytic domains of PP2C-type phosphatases. The phosphatase activity of RsbU is stimulated greatly during the response to stress by associating with a kinase, RsbT. This association leads to the induction of sigmaB activity. Here we present data on the activation process and demonstrate in vivo that truncations in the N-terminal region of RsbU are deleterious for the activation of RsbU. This conclusion is supported by comparisons of the phosphatase activities of full-length and a truncated form of RsbU in vitro. Our determination of the crystal structure of the N-terminal domain of RsbU from Bacillus subtilis reveals structural similarities to the regulatory domains from ubiquitous protein phosphatases and a conserved domain of sigma-factors, illuminating the activation processes of phosphatases and the evolution of "partner switching." Finally, the molecular basis of kinase recruitment by the RsbU phosphatase is discussed by comparing RsbU sequences from bacteria that either possess or lack RsbT.
Collapse
Affiliation(s)
- Olivier Delumeau
- Microbiology Unit and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Woodbury RL, Luo T, Grant L, Haldenwang WG. Mutational analysis of RsbT, an activator of the Bacillus subtilis stress response transcription factor, sigmaB. J Bacteriol 2004; 186:2789-97. [PMID: 15090521 PMCID: PMC387813 DOI: 10.1128/jb.186.9.2789-2797.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SigmaB, the stress-activated sigma factor of Bacillus subtilis, requires the RsbT protein as an essential positive regulator of its physical stress pathway. Stress triggers RsbT to both inactivate the principal negative regulator of the physical stress pathway (RsbS) by phosphorylation and activate a phosphatase (RsbU) required for sigmaB induction. Neither the regions of RsbT that are involved in responding to stress signaling nor those required for downstream events have been established. We used alanine scanning mutagenesis to examine the contributions of RsbT's charged amino acids to the protein's stability and activities. Eleven of eighteen rsbT mutations blocked sigmaB induction by stress. The carboxy terminus of RsbT proved to be particularly important for accumulation in Bacillus subtilis. Four of the five most carboxy-terminal mutations yielded rsbT alleles whose products were undetectable in B. subtilis extracts. Charged amino acids in the central region of RsbT were less critical, with four of the five substitutions in this region having no measurable effect on RsbT accumulation or activity. Only when the substitutions extended into a region of kinase homology was sigmaB induction affected. Six other RsbT variants, although present at levels adequate for activity, failed to activate sigmaB and displayed significant changes in their ability to interact with RsbT's normal binding partners in a yeast dihybrid assay. These changes either dramatically altered the proteins' tertiary structure without affecting their stability or defined regions of RsbT that are involved in multiple interactions.
Collapse
Affiliation(s)
- Robyn L Woodbury
- Department of Microbiology and Immunology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
31
|
Zhang S, Haldenwang WG. RelA is a component of the nutritional stress activation pathway of the Bacillus subtilis transcription factor sigma B. J Bacteriol 2003; 185:5714-21. [PMID: 13129942 PMCID: PMC193951 DOI: 10.1128/jb.185.19.5714-5721.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general stress regulon of Bacillus subtilis is induced by the activation of the sigma(B) transcription factor. Activation of sigma(B) occurs when one of two phosphatases (RsbU and RsbP), each responding to a unique type of stress, actuates a positive regulator of sigma(B) by dephosphorylation. Nutritional stress triggers the RsbP phosphatase. The mechanism by which RsbP becomes active is unknown; however, its activation coincides with culture conditions that are likely to reduce the cell's levels of high-energy nucleotides. We now present evidence that RelA, a (p)ppGpp synthetase and the key enzyme of the stringent response, plays a role in nutritional stress activation of sigma(B). An insertion mutation that disrupts relA blocks the activation of sigma(B) in response to PO(4) or glucose limitation and inhibits the drop in ATP/GTP levels that normally accompanies sigma(B) induction under these conditions. In contrast, the activation of sigma(B) by physical stress (e.g., ethanol treatment) is not affected by the loss of RelA. RelA's role in sigma(B) activation appears to be distinct from its participation in the stringent response. Amino acid analogs which induce the stringent response and RelA-dependent (p)ppGpp synthesis do not trigger sigma(B) activity. In addition, neither a missense mutation in relA (relA240GE) nor a null mutation in rplK (rplK54), either of which is sufficient to inhibit the stringent response and RelA-dependent (p)ppGpp synthesis, fails to block sigma(B) activation by PO(4) or glucose limitation.
Collapse
Affiliation(s)
- Shuyu Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
32
|
Mostertz J, Hecker M. Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells. Mol Genet Genomics 2003; 269:640-8. [PMID: 12845527 DOI: 10.1007/s00438-003-0877-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 06/01/2003] [Indexed: 10/26/2022]
Abstract
Oxidative stress causes damage to nucleic acids, membrane lipids and proteins. One striking effect is the metal-catalyzed, site-specific carbonylation of proteins. In the gram-positive soil bacterium Bacillus subtilis, the PerR-dependent specific stress response and the sigmaB-dependent general stress response act together to make cells more resistant to oxidative stress. In this study, we analyzed the carbonylation of cytoplasmic proteins in response to hydrogen peroxide stress in B. subtilis. Furthermore, we asked whether the sigmaB-dependent response to oxidative stress also confers protection against protein carbonylation. To monitor the amount and specificity of protein damage, carbonyls were derivatized with 2,4-dinitrophenylhydrazine, and the resulting stable hydrazones were detected by immunoanalysis of proteins separated by one- or two-dimensional gel electrophoresis. The overall level of protein carbonylation increased strongly in cells treated with hydrogen peroxide. Several proteins, including the elongation factors EF-G, TufA and EF-Ts, were found to be highly carbonylated. Induction of the peroxide specific stress response by treatment with sub-lethal peroxide concentrations, prior to exposure to otherwise lethal levels of peroxide, markedly reduced the degree of protein carbonylation. Cells starved for glucose also showed only minor amounts of peroxide-mediated protein carbonylation compared to exponentially growing cells. We could not detect any differences between wild-type and deltasigB cells starved for glucose or preadapted by heat treatment with respect to the amount or specificity of protein damage incurred upon subsequent exposure to peroxide stress. However, artificial preloading with proteins that are normally induced by sigmaB-dependent mechanisms resulted in a lower level of protein carbonylation when cells were later subjected to oxidative stress.
Collapse
Affiliation(s)
- J Mostertz
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahnstr. 15, 17489 Greifswald, Germany
| | | |
Collapse
|
33
|
Palma M, Cheung AL. sigma(B) activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect Immun 2001; 69:7858-65. [PMID: 11705968 PMCID: PMC98882 DOI: 10.1128/iai.69.12.7858-7865.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Accepted: 09/05/2001] [Indexed: 11/20/2022] Open
Abstract
Two genes of the sigB operon, rsbU and rsbV, were deleted in an rsbU(+) strain (FDA486) to evaluate the contribution of these two genes to sigma(B) activity in Staphylococcus aureus. The sigma(B) protein level and the transcription of two sigma(B)-dependent promoters (sigB and sarA P3 transcripts) were analyzed in the constructed mutants. A deletion of the first gene (rsbU) within the sigB operon led only to a partial reduction in sigma(beta) activity. A deletion of the second gene (rsbV) resulted in a more dramatic reduction in the sigma(B) protein level and its activity than did the deletion of rsbU, thus indicating that RsbV can be activated independent of RsbU. In the parental strain, the sigma(B)-dependent transcript initiated upstream of rsbV was 28-fold higher than the sigma(A)-dependent transcript originating from the rsbU promoter. The level of the sigma(B)-dependent transcript decreased up to 50% in the rsbU mutant and up to 90% in the rsbV mutant compared with the transcript in the wild type. The yellow pigment of S. aureus colonies, a sigma(B)-dependent phenotype, was partially reduced in the rsbU and rsbV mutants, whereas alpha-hemolysin was increased. Additionally, the sarA P3 promoter activity of the parental strain was induced to a higher level in response to pH 5.5 than was that of the rsbU or rsbV mutant, indicating that RsbU is the major activator of the sigma(B) response to acid stress. Using a tetracycline-inducible system to modulate the expression of RsbW, we progressively repressed pigment production, presumably by reducing the free sigma(B) level. Collectively, our data indicated that RsbU and RsbV in S. aureus contributed to different levels of sigma(B) protein expression and varying sigma(B) activities. Although RsbV can activate sigma(B) independent of RsbU, RsbU remains the major activator of sigma(B) during acid stress.
Collapse
Affiliation(s)
- M Palma
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
34
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
35
|
Zhang S, Scott JM, Haldenwang WG. Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor sigma(B). J Bacteriol 2001; 183:2316-21. [PMID: 11244072 PMCID: PMC95139 DOI: 10.1128/jb.183.7.2316-2321.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when the cell's energy levels decline or the bacterium is exposed to environmental stress (e.g., heat shock, ethanol). Physical stress activates sigma(B) through a collection of regulatory kinases and phosphatases (the Rsb proteins) which catalyze the release of sigma(B) from an anti-sigma(B) factor inhibitor. The means by which diverse stresses communicate with the Rsb proteins is unknown; however, a role for the ribosome in this process was suggested when several of the upstream members of the sigma(B) stress activation cascade (RsbR, -S, and -T) were found to cofractionate with ribosomes in crude B. subtilis extracts. We now present evidence for the involvement of a ribosome-mediated process in the stress activation of sigma(B). B. subtilis strains resistant to the antibiotic thiostrepton, due to the loss of ribosomal protein L11 (RplK), were found to be blocked in the stress activation of sigma(B). Neither the energy-responsive activation of sigma(B) nor stress-dependent chaperone gene induction (a sigma(B)-independent stress response) was inhibited by the loss of L11. The Rsb proteins required for stress activation of sigma(B) are shown to be active in the RplK(-) strain but fail to be triggered by stress. The data demonstrate that the B. subtilis ribosomes provide an essential input for the stress activation of sigma(B) and suggest that the ribosomes may themselves be the sensors for stress in this system.
Collapse
Affiliation(s)
- S Zhang
- Department of Microbiology, MC 7758, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
36
|
Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 2001; 183:2624-33. [PMID: 11274123 PMCID: PMC95180 DOI: 10.1128/jb.183.8.2624-2633.2001] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 01/04/2001] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.
Collapse
Affiliation(s)
- J K Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Akbar S, Gaidenko TA, Kang CM, O'Reilly M, Devine KM, Price CW. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol 2001; 183:1329-38. [PMID: 11157946 PMCID: PMC95007 DOI: 10.1128/jb.183.4.1329-1338.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the general stress regulon of Bacillus subtilis is controlled by the alternative transcription factor sigma(B), which is activated when cells encounter growth-limiting energy or environmental stresses. The RsbT serine-threonine kinase is required to convey environmental stress signals to sigma(B), and this kinase activity is magnified in vitro by the RsbR protein, a positive regulator important for full in vivo response to salt or heat stress. Previous genetic analysis suggested that RsbR function is redundant with other unidentified regulators. A search of the translated B. subtilis genome found six paralogous proteins with significant similarity to RsbR: YetI, YezB, YkoB, YojH, YqhA, and YtvA. Their possible regulatory roles were investigated using three different approaches. First, genetic analysis found that null mutations in four of the six paralogous genes have marked effects on the sigma(B) environmental signaling pathway, either singly or in combination. The two exceptions were yetI and yezB, adjacent genes which appear to encode a split paralog. Second, biochemical analysis found that YkoB, YojH, and YqhA are specifically phosphorylated in vitro by the RsbT environmental signaling kinase, as had been previously shown for RsbR, which is phosphorylated on two threonine residues in its C-terminal region. Both residues are conserved in the three phosphorylated paralogs but are absent in the ones that were not substrates of RsbT: YetI and YezB, each of which bears only one of the conserved residues; and YtvA, which lacks both residues and instead possesses an N-terminal PAS domain. Third, analysis in the yeast two-hybrid system suggested that all six paralogs interact with each other and with the RsbR and RsbS environmental regulators. Our data indicate that (i) RsbR, YkoB, YojH, YqhA, and YtvA function in the environmental stress signaling pathway; (ii) YtvA acts as a positive regulator; and (iii) RsbR, YkoB, YojH, and YqhA collectively act as potent negative regulators whose loss increases sigma(B) activity more than 400-fold in unstressed cells.
Collapse
Affiliation(s)
- S Akbar
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
38
|
Huckauf J, Nomura C, Forchhammer K, Hagemann M. Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2877-2889. [PMID: 11065366 DOI: 10.1099/00221287-146-11-2877] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the complete genome sequence of the cyanobacterium SYNECHOCYSTIS: sp. strain PCC 6803 [Kaneko et al. (1996 ). DNA Res 3, 109-136] genes were identified encoding putative group 3 sigma-factors SigH (Sll-0856), SigG (Slr-1545) and SigF (Slr-1564) and the regulatory protein RsbU (Slr-2031). Mutations in these genes were generated by interposon mutagenesis to study their importance in stress acclimation. For the genes sigH, sigF and rsbU, the loci segregated completely. However, attempts to mutagenize the sigG locus resulted in merodiploids. Under standard growth conditions only minor differences were detected between the mutants and wild-type. However, cells of the RsbU mutant showed a clear defect in regenerating growth after a nitrogen- and sulphur-starvation-induced stationary phase. After applying salt, heat and high-light shocks, stress protein synthesis was analysed by means of one- and two-dimensional electrophoresis. Cells of the SigF mutant showed a severe defect in the induction of salt stress proteins. Although the acclimation to moderate salt stress up to 684 mM NaCl was not significantly changed in this mutant, its ability to acclimate to higher concentrations of NaCl was reduced. Northern blot experiments showed a constitutive expression of the rsbU and sigF genes. The expression of the sigH gene was found to be stress-stimulated, particularly in heat-shocked cells, whilst that of sigG was transiently decreased under stress conditions. Possible functions of these regulatory proteins in stress acclimation of Synechocystis cells are discussed.
Collapse
Affiliation(s)
- Jana Huckauf
- Universität Rostock, FB Biologie, Institut für Molekulare Physiologie und Biotechnologie, Doberaner Str. 143,D-18051 Rostock, Germany1
| | - Chris Nomura
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA2
| | - Karl Forchhammer
- Justus-Liebig-Universität Giessen, Institut für Mikrobiologie und Molekularbiologie, Frankfurter Str. 107,D-35392 Giessen, Germany3
| | - Martin Hagemann
- Universität Rostock, FB Biologie, Institut für Molekulare Physiologie und Biotechnologie, Doberaner Str. 143,D-18051 Rostock, Germany1
| |
Collapse
|
39
|
Fouet A, Namy O, Lambert G. Characterization of the operon encoding the alternative sigma(B) factor from Bacillus anthracis and its role in virulence. J Bacteriol 2000; 182:5036-45. [PMID: 10960085 PMCID: PMC94649 DOI: 10.1128/jb.182.18.5036-5045.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 06/19/2000] [Indexed: 11/20/2022] Open
Abstract
The operon encoding the general stress transcription factor sigma(B) and two proteins of its regulatory network, RsbV and RsbW, was cloned from the gram-positive bacterium Bacillus anthracis by PCR amplification of chromosomal DNA with degenerate primers, by inverse PCR, and by direct cloning. The gene cluster was very similar to the Bacillus subtilis sigB operon both in the primary sequences of the gene products and in the order of its three genes. However, the deduced products of sequences upstream and downstream from this operon showed no similarity to other proteins encoded by the B. subtilis sigB operon. Therefore, the B. anthracis sigB operon contains three genes rather than eight as in B. subtilis. The B. anthracis operon is preceded by a sigma(B)-like promoter sequence, the expression of which depends on an intact sigma(B) transcription factor in B. subtilis. It is followed by another open reading frame that is also preceded by a promoter sequence similarly dependent on B. subtilis sigma(B). We found that in B. anthracis, both these promoters were induced during the stationary phase and induction required an intact sigB gene. The sigB operon was induced by heat shock. Mutants from which sigB was deleted were constructed in a toxinogenic and a plasmidless strain. These mutants differed from the parental strains in terms of morphology. The toxinogenic sigB mutant strain was also less virulent than the parental strain in the mouse model. B. anthracis sigma(B) may therefore be a minor virulence factor.
Collapse
Affiliation(s)
- A Fouet
- Toxines et Pathogénie Bactériennes (URA 1858, CNRS), Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
40
|
Scott JM, Ju J, Mitchell T, Haldenwang WG. The Bacillus subtilis GTP binding protein obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes. J Bacteriol 2000; 182:2771-7. [PMID: 10781545 PMCID: PMC101985 DOI: 10.1128/jb.182.10.2771-2777.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of the sigma(B) transcription factor. We investigated Obg's cellular associations by differential centrifugation of crude B. subtilis extracts, using an anti-Obg antibody as a probe to monitor Obg during the fractionation, and by fluorescent microscopy of a B. subtilis strain in which Obg was fused to green fluorescent protein. The results indicated that Obg is part of a large cytoplasmic complex. In subsequent analyses, Obg coeluted with ribosomal subunits during gel filtration of B. subtilis lysates on Sephacryl S-400 and specifically bound to ribosomal protein L13 in an affinity blot assay. Probing the gel filtration fractions with antibodies specific for sigma(B) and its coexpressed regulators (Rsb proteins) revealed coincident elution of the upstream components of the sigma(B) stress activation pathway (RsbR, -S, and -T) with Obg and the ribosomal subunits. The data implicate ribosome function as a possible mediator of the activity of Obg and the stress induction of sigma(B).
Collapse
Affiliation(s)
- J M Scott
- Department of Microbiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
41
|
Yuk MH, Harvill ET, Cotter PA, Miller JF. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol 2000; 35:991-1004. [PMID: 10712682 DOI: 10.1046/j.1365-2958.2000.01785.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella bronchiseptica establishes respiratory tract infections in laboratory animals with high efficiency. Colonization persists for the life of the animal and infection is usually asymptomatic in immunocompetent hosts. We hypothesize that this reflects a balance between immunostimulatory events associated with infection and immunomodulatory events mediated by the bacteria. We have identified 15 loci that are part of a type III secretion apparatus in B. bronchiseptica and three secreted proteins. The functions of the type III secretion system were investigated by comparing the phenotypes of wild-type bacteria with two strains that are defective in type III secretion using in vivo and in vitro infection models. Type III secretion mutants were defective in long-term colonization of the trachea in immunocompetent mice. The mutants also elicited higher titres of anti-Bordetella antibodies upon infection compared with wild-type bacteria. Type III secretion mutants also showed increased lethal virulence in immunodeficient SCID-beige mice. These observations suggest that type III-secreted products of B. bronchiseptica interact with components of both innate and adaptive immune systems of the host. B. bronchiseptica induced apoptosis in macrophages in vitro and inflammatory cells in vivo and type III secretion was required for this process. Infection of an epithelial cell line with high numbers of wild type, but not type III deficient B. bronchiseptica resulted in rapid aggregation of NF-kappaB into large complexes in the cytoplasm. NF-kappaB aggregation was dependent on type III secretion and aggregated NF-kappaB did not respond to TNFalpha activation, suggesting B. bronchiseptica may modulate host immunity by inactivating NF-kappaB. Based on these in vivo and in vitro results, we hypothesize that the Bordetella type III secretion system functions to modulate host immune responses during infection.
Collapse
Affiliation(s)
- M H Yuk
- Department of Microbiology and Immunology and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095-1747, USA
| | | | | | | |
Collapse
|
42
|
Scott JM, Mitchell T, Haldenwang WG. Stress triggers a process that limits activation of the Bacillus subtilis stress transcription factor sigma(B). J Bacteriol 2000; 182:1452-6. [PMID: 10671474 PMCID: PMC94439 DOI: 10.1128/jb.182.5.1452-1456.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress-induced activation of the Bacillus subtilis transcription factor sigma(B) is transitory. To determine whether the process that limits sigma(B) activation is itself triggered by stress, B. subtilis strains in which the stress pathway was artificially activated by the induced expression of a positive regulatory protein (RsbT) were exposed to ethanol stress and were monitored for the persistence of sigma(B) activity. Without ethanol treatment, the induced cultures displayed continuously high sigma(B) activity. Ethanol treatment restricted ongoing sigma(B) activity, but only in strains with intact rsbX and -S genes. The loss of other gene products (RsbR and Obg) known to participate in the stress activation pathway had little influence in blocking the ethanol effect. The data argue that stress upregulates the activity of the RsbX-S regulatory pair to restrict sigma(B) induction following stress.
Collapse
Affiliation(s)
- J M Scott
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
43
|
Scott JM, Haldenwang WG. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B). J Bacteriol 1999; 181:4653-60. [PMID: 10419966 PMCID: PMC103599 DOI: 10.1128/jb.181.15.4653-4660.1999] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when intracellular ATP levels fall or the bacterium experiences environmental stress. Stress activates sigma(B) by means of a collection of regulatory kinases and phosphatases (the Rsb proteins), which catalyze the release of sigma(B) from an anti-sigma factor inhibitor. By using the yeast dihybrid selection system to identify B. subtilis proteins that could interact with Rsb proteins and act as mediators of stress signaling, we isolated the GTP binding protein, Obg, as an interactor with several of these regulators (RsbT, RsbW, and RsbX). B. subtilis depleted of Obg no longer activated sigma(B) in response to environmental stress, but it retained the ability to activate sigma(B) by the ATP responsive pathway. Stress pathway components activated sigma(B) in the absence of Obg if the pathway's most upstream effector (RsbT) was synthesized in excess to the inhibitor (RsbS) from which it is normally released after stress. Thus, the Rsb proteins can function in the absence of Obg but fail to be triggered by stress. The data demonstrate that Obg, or a process under its control, is necessary to induce the stress-dependent activation of sigma(B) and suggest that Obg may directly communicate with one or more sigma(B) regulators.
Collapse
Affiliation(s)
- J M Scott
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758, USA
| | | |
Collapse
|
44
|
Völker U, Maul B, Hecker M. Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 1999; 181:3942-8. [PMID: 10383961 PMCID: PMC93883 DOI: 10.1128/jb.181.13.3942-3948.1999] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor sigmaB of Bacillus subtilis is required for the induction of approximately 100 genes after the imposition of a whole range of stresses and energy limitation. In this study, we investigated the impact of a null mutation in sigB on the stress and starvation survival of B. subtilis. sigB mutants which failed to induce the regulon following stress displayed an at least 50- to 100-fold decrease in survival of severe heat (54 degrees C) or ethanol (9%) shock, salt (10%) stress, and acid (pH 4.3) stress, as well as freezing and desiccation, compared to the wild type. Preloading cells with sigmaB-dependent general stress proteins prior to growth-inhibiting stress conferred considerable protection against heat and salt. Exhaustion of glucose or phosphate induced the sigmaB response, but surprisingly, sigmaB did not seem to be required for starvation survival. Starved wild-type cells exhibited about 10-fold greater resistance to salt stress than exponentially growing cells. The data argue that the expression of sigmaB-dependent genes provides nonsporulated B. subtilis cells with a nonspecific multiple stress resistance that may be relevant for stress survival in the natural ecosystem.
Collapse
Affiliation(s)
- U Völker
- Laboratorium für Mikrobiologie und MPI für terrestrische Mikrobiologie, Philipps-Universität, 35043 Marburg, Germany
| | | | | |
Collapse
|
45
|
Scott JM, Smirnova N, Haldenwang WG. A Bacillus-specific factor is needed to trigger the stress-activated phosphatase/kinase cascade of sigmaB induction. Biochem Biophys Res Commun 1999; 257:106-10. [PMID: 10092518 DOI: 10.1006/bbrc.1999.0418] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The general stress regulon of Bacillus subtilis is controlled by the transcription factor sigmaB. Environmental stress activates sigmaB via a phosphatase/kinase cascade that triggers sigmaB's release from an anti sigma factor complex. To determine if the members of the phosphatase/kinase cascade are sufficient to detect environmental stress and activate sigmaB, we expressed sigmaB and its regulators in E. coli. In E. coli, as in B. subtilis, the intact collection of regulators silenced sigmaB, while allowing sigmaB to be active if the cascade's most upstream negative regulator was deleted. The regulators could not, however, activate sigmaB in response to ethanol treatment or heat shock. In other experiments, the GroEL and DnaK chaperones, known to be important in controlling stress sigma factors in E. coli, were found to be unimportant for sigmaB activity in B. subtilis. The findings argue that stress induction of sigmaB requires novel factors that are B. subtilis specific.
Collapse
Affiliation(s)
- J M Scott
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758, USA
| | | | | |
Collapse
|
46
|
Abstract
A mechanism for regulating gene expression at the level of transcription utilizes an antagonist of the sigma transcription factor known as the anti-sigma (anti-sigma) factor. The cytoplasmic class of anti-sigma factors has been well characterized. The class includes AsiA form bacteriophage T4, which inhibits Escherichia coli sigma 70; FlgM, present in both gram-positive and gram-negative bacteria, which inhibits the flagella sigma factor sigma 28; SpoIIAB, which inhibits the sporulation-specific sigma factor, sigma F and sigma G, of Bacillus subtilis; RbsW of B. subtilis, which inhibits stress response sigma factor sigma B; and DnaK, a general regulator of the heat shock response, which in bacteria inhibits the heat shock sigma factor sigma 32. In addition to this class of well-characterized cytoplasmic anti-sigma factors, a new class of homologous, inner-membrane-bound anti-sigma factors has recently been discovered in a variety of eubacteria. This new class of anti-sigma factors regulates the expression of so-called extracytoplasmic functions, and hence is known as the ECF subfamily of anti-sigma factors. The range of cell processes regulated by anti-sigma factors is highly varied and includes bacteriophage phage growth, sporulation, stress response, flagellar biosynthesis, pigment production, ion transport, and virulence.
Collapse
Affiliation(s)
- K T Hughes
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
47
|
Chan PF, Foster SJ, Ingham E, Clements MO. The Staphylococcus aureus alternative sigma factor sigmaB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 1998; 180:6082-9. [PMID: 9829915 PMCID: PMC107691 DOI: 10.1128/jb.180.23.6082-6089.1998] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of sigmaB, an alternative sigma factor of Staphylococcus aureus, has been characterized in response to environmental stress, starvation-survival and recovery, and pathogenicity. sigmaB was mainly expressed during the stationary phase of growth and was repressed by 1 M sodium chloride. A sigB insertionally inactivated mutant was created. In stress resistance studies, sigmaB was shown to be involved in recovery from heat shock at 54 degreesC and in acid and hydrogen peroxide resistance but not in resistance to ethanol or osmotic shock. Interestingly, S. aureus acquired increased acid resistance when preincubated at a sublethal pH 4 prior to exposure to a lethal pH 2. This acid-adaptive response resulting in tolerance was mediated via sigB. However, sigmaB was not vital for the starvation-survival or recovery mechanisms. sigmaB does not have a major role in the expression of the global regulator of virulence determinant biosynthesis, staphylococcal accessory regulator (sarA), the production of a number of representative virulence factors, and pathogenicity in a mouse subcutaneous abscess model. However, SarA upregulates sigB expression in a growth-phase-dependent manner. Thus, sigmaB expression is linked to the processes controlling virulence determinant production. The role of sigmaB as a major regulator of the stress response, but not of starvation-survival, is discussed.
Collapse
Affiliation(s)
- P F Chan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
48
|
Drzewiecki K, Eymann C, Mittenhuber G, Hecker M. The yvyD gene of Bacillus subtilis is under dual control of sigmaB and sigmaH. J Bacteriol 1998; 180:6674-80. [PMID: 9852014 PMCID: PMC107773 DOI: 10.1128/jb.180.24.6674-6680.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a search by computer-aided inspection of two-dimensional (2D) protein gels for sigmaB-dependent general stress proteins exhibiting atypical induction profiles, a protein initially called Hst23 was identified as a product of the yvyD gene of Bacillus subtilis. In addition to the typical sigmaB-dependent, stress- and starvation-inducible pattern, yvyD is also induced in response to amino acid depletion. By primer extension of RNA isolated from the wild-type strain and appropriate mutants carrying mutations in the sigB and/or spo0H gene, two promoters were mapped upstream of the yvyD gene. The sigmaB-dependent promoter drives expression of yvyD under stress conditions and after glucose starvation, whereas a sigmaH-dependent promoter is responsible for yvyD transcription following amino acid limitation. Analysis of Northern blots revealed that yvyD is transcribed monocistronically and confirmed the conclusions drawn from the primer extension experiments. The analysis of the protein synthesis pattern in amino acid-starved wild-type and relA mutant cells showed that the YvyD protein is not synthesized in the relA mutant background. It was concluded that the stringent response plays a role in the activation of sigmaH. The yvyD gene product is homologous to a protein which might modify the activity of sigma54 in gram-negative bacteria. The expression of a sigmaL-dependent (sigmaL is the equivalent of sigma54 in B. subtilis) levD-lacZ fusion is upregulated twofold in a yvyD mutant. This indicates that the yvyD gene product, being a member of both the sigmaB and sigmaH regulons, might negatively regulate the activity of the sigmaL regulon. We conclude that (i) systematic, computer-aided analysis of 2D protein gels is appropriate for the identification of genes regulated by multiple transcription factors and that (ii) YvyD might form a junction between the sigmaB and sigmaH regulons on one side and the sigmaL regulon on the other.
Collapse
Affiliation(s)
- K Drzewiecki
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
49
|
Vagner V, Dervyn E, Ehrlich SD. A vector for systematic gene inactivation in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3097-3104. [PMID: 9846745 DOI: 10.1099/00221287-144-11-3097] [Citation(s) in RCA: 548] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study the functions of the uncharacterized open reading frames identified in the Bacillus subtilis genome, several vectors were constructed to perform insertional mutagenesis in the chromosome. All the pMUTIN plasmids carry a lacZ reporter gene and an inducible Pspac promoter, which is tightly regulated and can be induced about 1000-fold. The integration of a pMUTIN vector into the target gene has three consequences: (1) the target gene is inactivated; (2) lacZ becomes transcriptionally fused to the gene, allowing its expression pattern to be monitored; (3) the Pspac promoter controls the transcription of downstream genes in an IPTG-dependent fashion. This last feature is important because B. subtilis genes are often organized in operons. The potential polar effects generated by the integration of the vectors can be alleviated by addition of IPTG. Also, conditional mutants of essential genes can be obtained by integrating pMUTIN vectors upstream of the target gene. The vectors are currently being used for systematic inactivation of genes without known function within the B. subtilis European consortium. pMUTIN characteristics and the inactivation of eight genes in the resA-serA region of the chromosome are presented.
Collapse
Affiliation(s)
- Valerie Vagner
- Genetique Microbienne, lnstitut National de la Recherche Ag ronom ique,Domaine de Vilvefl, 78352 Jouy-en-Josas cedex,France
| | - Etienne Dervyn
- Genetique Microbienne, lnstitut National de la Recherche Ag ronom ique,Domaine de Vilvefl, 78352 Jouy-en-Josas cedex,France
| | - S Dusko Ehrlich
- Genetique Microbienne, lnstitut National de la Recherche Ag ronom ique,Domaine de Vilvefl, 78352 Jouy-en-Josas cedex,France
| |
Collapse
|
50
|
Becker LA, Cetin MS, Hutkins RW, Benson AK. Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 1998; 180:4547-54. [PMID: 9721294 PMCID: PMC107466 DOI: 10.1128/jb.180.17.4547-4554.1998] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/1998] [Accepted: 07/06/1998] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is well known for its robust physiology, which permits growth at low temperatures under conditions of high osmolarity and low pH. Although studies have provided insight into the mechanisms used by L. monocytogenes to allay the physiological consequences of these adverse environments, little is known about how these responses are coordinated. In the studies presented here, we have cloned the sigB gene and several rsb genes from L. monocytogenes, encoding homologs of the alternative sigma factor sigmaB and the RsbUVWX proteins, which govern transcription of a general stress regulon in the related bacterium Bacillus subtilis. The L. monocytogenes and B. subtilis sigB and rsb genes are similar in sequence and physical organization; however, we observed that the activity of sigmaB in L. monocytogenes was uniquely responsive to osmotic upshifting, temperature downshifting, and the presence of EDTA in the growth medium. The magnitude of the response was greatest after an osmotic upshift, suggesting a role for sigmaB in coordinating osmotic responses in L. monocytogenes. A null mutation in the sigB gene led to substantial defects in the ability of L. monocytogenes to use betaine and carnitine as osmoprotectants. Subsequent measurements of betaine transport confirmed that the absence of sigmaB reduced the ability of the cells to accumulate betaine. Thus, sigmaB coordinates responses to a variety of physical and chemical signals, and its function facilitates the growth of L. monocytogenes under conditions of high osmotic strength.
Collapse
Affiliation(s)
- L A Becker
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583-0919, USA
| | | | | | | |
Collapse
|