1
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. Coinfecting phages impede each other's entry into the cell. Curr Biol 2024; 34:2841-2853.e18. [PMID: 38878771 PMCID: PMC11233250 DOI: 10.1016/j.cub.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R Chemla
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. CO-INFECTING PHAGES IMPEDE EACH OTHER'S ENTRY INTO THE CELL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543643. [PMID: 37333217 PMCID: PMC10274716 DOI: 10.1101/2023.06.05.543643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Bacteriophage lambda tunes its propensity to lysogenize based on the number of viral genome copies inside the infected cell. Viral self-counting is believed to serve as a way of inferring the abundance of available hosts in the environment. This interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). However, here we show this premise to be untrue. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, followed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of individual phage entries decrease with MOI. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage landing, evidenced by compromised membrane integrity and loss of membrane potential. The dependence of phage entry dynamics on the surrounding medium is found to result in a strong impact of environmental conditions on the infection outcome, while the protracted entry of co-infecting phages increases the cell-to-cell variability in infection outcome at a given MOI. Our findings demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Jimmy T. Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R. Chemla
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
- Department of Microbiology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Chitboonthavisuk C, Luo CH, Huss P, Fernholz M, Raman S. Engineering a Dynamic Controllable Infectivity Switch in Bacteriophage T7. ACS Synth Biol 2022; 11:286-296. [PMID: 34985866 PMCID: PMC9059553 DOI: 10.1021/acssynbio.1c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transcriptional repressors play an important role in regulating phage life cycle. Here, we examine how synthetic transcription repressors can be used in bacteriophage T7 to create a dynamic, controllable infectivity switch. We engineered T7 phage by replacing a large region of the early phage genome with different combinations of ligand-responsive promoters and ribosome binding sites (RBS) designed to control the phage RNA polymerase, gp1. Phages with engineered infectivity switch are fully viable at levels comparable to wildtype T7, when not repressed, indicating the phage can be engineered without loss of fitness. The most effective switch used a TetR-responsive promoter and an attenuated RBS, resulting in a 2-fold increase in latent period and a 10-fold decrease in phage titer when repressed. Phage activity can be further tuned using different inducer concentrations. Our study provides a proof of concept for how a simple synthetic circuit introduced into the phage genome enables user control over phage infectivity.
Collapse
Affiliation(s)
- Chutikarn Chitboonthavisuk
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Chun Huai Luo
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Phil Huss
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Mikayla Fernholz
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Srivatsan Raman
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Chemical & Biological Eng., Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Res 2020; 293:198274. [PMID: 33359502 DOI: 10.1016/j.virusres.2020.198274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022]
Abstract
Phage therapy has been revitalized since antibiotic resistance in bacteria is increasing. Compared with antibiotics, phages can target specific bacteria precisely, which requires more understanding of phage-host interactions by investigating different phages. Escherichia coli is a common pathogen with very high diversity. Based on the O antigens, E. coli can be classified into at least 183 serotypes and existing phages are far from being able to lyse all E. coli. Therefore, a novel phage specific to E. coli, named DY1, was identified and characterized to enhance our understanding of the phages of E. coli and expand the phage library. Phage DY1 belongs to the family Autographiviridae which is derived from Podoviridae. The genome of DY1 was determined to be 39,817 bp and comprises 54 putative open reading frames. Comparative genome and phylogenetic analysis demonstrated that DY1 was highly similar to phages belonging to the genus Kayfunavirus; however, the highest average nucleotide identity (ANI) values of DY1 with known phages was 0.82 suggesting that DY1 was a novel phage. Through stability tests, DY1 was very stable at temperatures ranging from 20 to 50 °C and pH levels from 5 to 11. Taken together, we report that phage DY1 is a novel Kayfunavirus phage with the potential for phage therapy.
Collapse
|
6
|
Mutagenic Analysis of a DNA Translocating Tube's Interior Surface. Viruses 2020; 12:v12060670. [PMID: 32580341 PMCID: PMC7354561 DOI: 10.3390/v12060670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
Bacteriophage ϕX174 uses a decamer of DNA piloting proteins to penetrate its host. These proteins oligomerize into a cell wall-spanning tube, wide enough for genome passage. While the inner surface of the tube is primarily lined with inward-facing amino acid side chains containing amide and guanidinium groups, there is a 28 Å-long section near the tube’s C-terminus that does not exhibit this motif. The majority of the inward-facing residues in this region are conserved across the three ϕX174-like clades, suggesting that they play an important role during genome delivery. To test this hypothesis, and explore the general function of the tube’s inner surface, non-glutamine residues within this region were mutated to glutamine, while existing glutamine residues were changed to serine. Four of the resulting mutants had temperature-dependent phenotypes. Virion assembly, host attachment, and virion eclipse, defined as the cell’s ability to inactivate the virus, were not affected. Genome delivery, however, was inhibited. The results support a model in which a balance of forces governs genome delivery: potential energy provided by the densely packaged viral genome and/or an osmotic gradient move the genome into the cell, while the tube’s inward facing glutamine residues exert a frictional force, or drag, that controls genome release.
Collapse
|
7
|
Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME JOURNAL 2020; 14:2007-2018. [PMID: 32358533 DOI: 10.1038/s41396-020-0664-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/17/2023]
Abstract
Natural bacterial populations are subjected to constant predation pressure by bacteriophages. Bacteria use a variety of molecular mechanisms to defend themselves from phage predation. However, since phages are nonmotile, perhaps the simplest defense against phage is for bacteria to move faster than phages. In particular, chemotaxis, the active migration of bacteria up attractant gradients, may help the bacteria escape slowly diffusing phages. Here we study phage infection dynamics in migrating bacterial populations driven by chemotaxis through low viscosity agar plates. We find that expanding phage-bacteria populations supports two moving fronts, an outermost bacterial front driven by nutrient uptake and chemotaxis and an inner phage front at which the bacterial population collapses due to phage predation. We show that with increasing adsorption rate and initial phage population, the speed of the moving phage front increases, eventually overtaking the bacterial front and driving the system across a transition from a regime where bacterial front speed exceeds that of the phage front to one where bacteria must evolve phage resistance to survive. Our data support the claim that this process requires phage to hitchhike with moving bacteria. A deterministic model recapitulates the transition under the assumption that phage virulence declines with host growth rate which we confirm experimentally. Finally, near the transition between regimes we observe macroscopic fluctuations in bacterial densities at the phage front. Our work opens a new, spatio-temporal, line of investigation into the eco-evolutionary struggle between bacteria and phage.
Collapse
|
8
|
Jack BR, Boutz DR, Paff ML, Smith BL, Wilke CO. Transcript degradation and codon usage regulate gene expression in a lytic phage. Virus Evol 2019; 5:vez055. [PMID: 31908847 PMCID: PMC6938266 DOI: 10.1093/ve/vez055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many viral genomes are small, containing only single- or double-digit numbers of genes and relatively few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced interplay between transcription, translation, and transcript degradation. As our model system, we employ bacteriophage T7, whose genome of approximately sixty genes is well annotated and for which there is a long history of computational models of gene regulation. We expand upon prior modeling work by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases, ribosomes, and ribonucleases participating in the transcription, translation, and transcript-degradation processes occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage infection with high-throughput gene expression measurements of several strains of bacteriophage T7, evolved and engineered, we can show that both the dynamic interplay between transcription and transcript degradation, and between these two processes and translation, appear to be critical components of T7 gene regulation. Our results point to targeted degradation as a generic gene regulation strategy that may have evolved in many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the biological mechanisms at work in both evolved and engineered virus variants.
Collapse
Affiliation(s)
- Benjamin R Jack
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew L Paff
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Bartram L Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Corresponding author: E-mail:
| |
Collapse
|
9
|
Broeker NK, Roske Y, Valleriani A, Stephan MS, Andres D, Koetz J, Heinemann U, Barbirz S. Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail. J Biol Chem 2019; 294:11751-11761. [PMID: 31189652 PMCID: PMC6682738 DOI: 10.1074/jbc.ra119.008133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 Å resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an ϵ15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.
Collapse
Affiliation(s)
- Nina K Broeker
- Department of Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Yvette Roske
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Mareike S Stephan
- Department of Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Dorothee Andres
- Department of Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Joachim Koetz
- Kolloidchemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität, Takustrasse 6, 14195 Berlin, Germany
| | - Stefanie Barbirz
- Department of Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Wang Q, Zeng X, Yang Q, Yang C. Identification of a bacteriophage from an environmental multidrug-resistant E. coli isolate and its function in horizontal transfer of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:617-623. [PMID: 29803035 DOI: 10.1016/j.scitotenv.2018.05.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Horizontal transfer of ARGs was generally considered to be mediated by three methods - transformation, conjugation and transduction through phages - during which the contribution of bacteriophages to gene transfer in the environment is unclear or even questioned. In this study, a multiple-antibiotic-resistant Escherichia coli strain and its phage (YZ1) were isolated from a municipal wastewater treatment system. The results of the morphological and genomic analyses of phage YZ1 showed that it is a member of the T7 viral genus in the subfamily Autographivirinae. Its genome is similar to that of the E. coli phage K1F in both organization and sequence and does not encode ARGs. However, 28 paired reads in the raw sequencing data aligned to ARGs, including those promoting β-lactam, aminoglycoside, and fluoroquinolone resistance, among others. Quantitative PCR showed that ARGs were present in bacteriophage DNA (approximately 103 copies/mL) and were also detected in the bacterial host DNA. The results suggested that while infrequent, some ARG-carrying transducing phages were presumably generated by erroneous packaging during infection of antibiotic-resistant bacteria, which may create the possibility of horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Key Laboratory for Microorganisms and Functional Molecules (Henan Normal University), University of Henan Province, Xinxiang 453007, China
| | - Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Key Laboratory for Microorganisms and Functional Molecules (Henan Normal University), University of Henan Province, Xinxiang 453007, China.
| | - Chuanzhen Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Borkotoky S, Murali A. The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. Int J Biol Macromol 2018; 118:49-56. [DOI: 10.1016/j.ijbiomac.2018.05.198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/01/2022]
|
12
|
Garry DJ, Meyer AJ, Ellefson JW, Bull JJ, Ellington AD. Predicting Evolution of the Transcription Regulatory Network in a Bacteriophage. Genome Biol Evol 2018; 10:2614-2628. [PMID: 30184065 PMCID: PMC6171733 DOI: 10.1093/gbe/evy191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2018] [Indexed: 11/13/2022] Open
Abstract
Prediction of evolutionary trajectories has been an elusive goal, requiring a deep knowledge of underlying mechanisms that relate genotype to phenotype plus understanding how phenotype impacts organismal fitness. We tested our ability to predict molecular regulatory evolution in a bacteriophage (T7) whose RNA polymerase (RNAP) was altered to recognize a heterologous promoter differing by three nucleotides from the wild-type promoter. A mutant of wild-type T7 lacking its RNAP gene was passaged on a bacterial strain providing the novel RNAP in trans. Higher fitness rapidly evolved. Predicting the evolutionary trajectory of this adaptation used measured in vitro transcription rates of the novel RNAP on the six promoter sequences capturing all possible one-step pathways between the wild-type and the heterologous promoter sequences. The predictions captured some of the regulatory evolution but failed both in explaining 1) a set of T7 promoters that consistently failed to evolve and 2) some promoter evolution that fell outside the expected one-step pathways. Had a more comprehensive set of transcription assays been undertaken initially, all promoter evolution would have fallen within predicted bounds, but the lack of evolution in some promoters is unresolved. Overall, this study points toward the increasing feasibility of predicting evolution in well-characterized, simple systems.
Collapse
Affiliation(s)
- Daniel J Garry
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Adam J Meyer
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology
| | - Jared W Ellefson
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - James J Bull
- Center for Computational Biology and Bioinformatics, Department of Integrative Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin
| |
Collapse
|
13
|
Schuchman RM, Vancini R, Piper A, Breuer D, Ribeiro M, Ferreira D, Magliocca J, Emmerich V, Hernandez R, Brown DT. Role of the vacuolar ATPase in the Alphavirus replication cycle. Heliyon 2018; 4:e00701. [PMID: 30094371 PMCID: PMC6074608 DOI: 10.1016/j.heliyon.2018.e00701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
We have shown that Alphaviruses can enter cells by direct penetration at the plasma membrane (R. Vancini, G. Wang, D. Ferreira, R. Hernandez, and D. Brown, J Virol, 87:4352–4359, 2013). Direct penetration removes the requirement for receptor-mediated endocytosis exposure to low pH and membrane fusion in the process of RNA entry. Endosomal pH as well as the pH of the cell cytoplasm is maintained by the activity of the vacuolar ATPase (V-ATPase). Bafilomycin is a specific inhibitor of V-ATPase. To characterize the roll of the V-ATPase in viral replication we generated a Bafilomycin A1(BAF) resistant mutant of Sindbis virus (BRSV). BRSV produced mature virus and virus RNA in greater amounts than parent virus in BAF-treated cells. Sequence analysis revealed mutations in the E2 glycoprotein, T15I/Y18H, were responsible for the phenotype. These results show that a functional V-ATPase is required for efficient virus RNA synthesis and virus maturation in Alphavirus infection.
Collapse
Affiliation(s)
- Ryan M Schuchman
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Ricardo Vancini
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Amanda Piper
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Denitra Breuer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Mariana Ribeiro
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Davis Ferreira
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.,Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joseph Magliocca
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Veronica Emmerich
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Dennis T Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
14
|
Payne P, Geyrhofer L, Barton NH, Bollback JP. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife 2018; 7:e32035. [PMID: 29521625 PMCID: PMC5922976 DOI: 10.7554/elife.32035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/08/2018] [Indexed: 01/27/2023] Open
Abstract
Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity.
Collapse
Affiliation(s)
- Pavel Payne
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Lukas Geyrhofer
- Department of Chemical EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael
| | | | - Jonathan P Bollback
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
15
|
Late-Arriving Signals Contribute Less to Cell-Fate Decisions. Biophys J 2017; 113:2110-2120. [PMID: 29117533 DOI: 10.1016/j.bpj.2017.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
Gene regulatory networks are largely responsible for cellular decision-making. These networks sense diverse external signals and respond by adjusting gene expression, enabling cells to reach environment-dependent decisions crucial for their survival or reproduction. However, information-carrying signals may arrive at variable times. Besides the intrinsic strength of these signals, their arrival time (timing) may also carry information about the environment and can influence cellular decision-making in ways that are poorly understood. For example, it is unclear how the timing of individual phage infections affects the lysis-lysogeny decision of bacteriophage λ despite variable infection times being likely in the wild and even in laboratory conditions. In this work, we combine mathematical modeling with experimentation to address this question. We develop an experimentally testable theory, which reveals that late-infecting phages contribute less to cellular decision-making. This implies that infection delays lower the probability of lysogeny compared to simultaneous infections. Furthermore, we show that infection delays reduce lysogenization by providing insufficient CII for threshold crossing during the critical decision-making period. We find evidence for a cutoff time after which subsequent infections cannot influence the cellular decision. We derive an intuitive formula that approximates the probability of lysogeny for variable infection times by a time-weighted average of probabilities for simultaneous infections. We validate these theoretical predictions experimentally. Similar concepts and simplifying modeling approaches may help elucidate the mechanisms underlying other cellular decisions.
Collapse
|
16
|
Fernandes S, Labarde A, Baptista C, Jakutytè L, Tavares P, São-José C. A non-invasive method for studying viral DNA delivery to bacteria reveals key requirements for phage SPP1 DNA entry in Bacillus subtilis cells. Virology 2016; 495:79-91. [PMID: 27179995 DOI: 10.1016/j.virol.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022]
Abstract
Bacteriophages use most frequently a tail apparatus to create a channel across the entire bacterial cell envelope to transfer the viral genome to the host cell cytoplasm, initiating infection. Characterization of this critical step remains a major challenge due to the difficulty to monitor DNA entry in the bacterium and its requirements. In this work we developed a new method to study phage DNA entry that has the potential to be extended to many tailed phages. Its application to study genome delivery of bacteriophage SPP1 into Bacillus subtilis disclosed a key role of the host cell membrane potential in the DNA entry process. An energized B. subtilis membrane and a millimolar concentration of calcium ions are shown to be major requirements for SPP1 DNA entry following the irreversible binding of phage particles to the receptor YueB.
Collapse
Affiliation(s)
- Sofia Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Audrey Labarde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91198 Gif-sur-Yvette cedex, France; Unit of Molecular and Structural Virology (VMS), UPR3296 CNRS, Campus CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Catarina Baptista
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lina Jakutytè
- Unit of Molecular and Structural Virology (VMS), UPR3296 CNRS, Campus CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Paulo Tavares
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91198 Gif-sur-Yvette cedex, France; Unit of Molecular and Structural Virology (VMS), UPR3296 CNRS, Campus CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
17
|
Goldfain AM, Garmann RF, Jin Y, Lahini Y, Manoharan VN. Dynamic Measurements of the Position, Orientation, and DNA Content of Individual Unlabeled Bacteriophages. J Phys Chem B 2016; 120:6130-8. [DOI: 10.1021/acs.jpcb.6b02153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Yan Jin
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
18
|
The T7 ejection nanomachine components gp15-gp16 form a spiral ring complex that binds DNA and a lipid membrane. Virology 2015; 486:263-71. [PMID: 26476287 DOI: 10.1016/j.virol.2015.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
Abstract
Bacteriophage T7 initiates infection by ejecting several internal capsid proteins into the host cell; these proteins then assemble into a nanomachine that translocates the viral genome from the phage head into the cytoplasm. The ejected proteins are thought to partially unfold as they pass through the lumen of the portal and the short stubby T7 tail during their entry into the cell. In vivo, the internal proteins gp15 and gp16 assemble into a tubular structure that spans the periplasm and cytoplasmic membrane. We show here that purified gp15 and gp16 can refold from a partially denatured state in vitro, and that gp15 interacts with gp16 to form a spiral ring structure. Purified gp15 binds to DNA, whereas gp16 binds protein-free liposomes; the gp15-gp16 complex binds both DNA and liposomes. Limited proteolysis of the liposome-bound gp16 reveals that its C-terminal region is protected, suggesting a partial membrane insertion of the protein.
Collapse
|
19
|
Jin Y, Sdao SM, Dover JA, Porcek NB, Knobler CM, Gelbart WM, Parent KN. Bacteriophage P22 ejects all of its internal proteins before its genome. Virology 2015; 485:128-34. [PMID: 26245366 DOI: 10.1016/j.virol.2015.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022]
Abstract
Double-stranded DNA bacteriophages are highly pressurized, providing a force driving ejection of a significant fraction of the genome from its capsid. In P22-like Podoviridae, internal proteins ("E proteins") are packaged into the capsid along with the genome, and without them the virus is not infectious. However, little is known about how and when these proteins come out of the virus. We employed an in vitro osmotic suppression system with high-molecular-weight polyethylene glycol to study P22 E protein release. While slow ejection of the DNA can be triggered by lipopolysaccharide (LPS), the rate is significantly enhanced by the membrane protein OmpA from Salmonella. In contrast, E proteins are not ejected unless both OmpA and LPS are present and their ejection when OmpA is present is largely complete before any genome is ejected, suggesting that E proteins play a key role in the early stage of transferring P22 DNA into the host.
Collapse
Affiliation(s)
- Yan Jin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Sophia M Sdao
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - John A Dover
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Natalia B Porcek
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA; Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, MI 48824, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Kristin N Parent
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA.
| |
Collapse
|
20
|
Schmerer M, Molineux IJ, Bull JJ. Synergy as a rationale for phage therapy using phage cocktails. PeerJ 2014; 2:e590. [PMID: 25279269 PMCID: PMC4179555 DOI: 10.7717/peerj.590] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Where phages are used to treat bacterial contaminations and infections, multiple phages are typically applied at once as a cocktail. When two or more phages in the cocktail attack the same bacterium, the combination may produce better killing than any single phage (synergy) or the combination may be worse than the best single phage (interference). Synergy is of obvious utility, especially if it can be predicted a priori, but it remains poorly documented with few examples known. This study addresses synergy in which one phage improves adsorption by a second phage. It first presents evidence of synergy from an experimental system of two phages and a mucoid E. coli host. The synergy likely stems from a tailspike enzyme produced by one of the phages. We then offer mathematical models and simulations to understand the dynamics of synergy and the enhanced magnitude of bacterial control possible. The models and observations complement each other and suggest that synergy may be of widespread utility and may be predictable from easily observed phenotypes.
Collapse
Affiliation(s)
- Matthew Schmerer
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
| | - Ian J. Molineux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, USA
| | - James J. Bull
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, USA
- Department of Integrative Biology, The University of Texas at Austin, USA
| |
Collapse
|
21
|
Schmerer M, Molineux IJ, Ally D, Tyerman J, Cecchini N, Bull JJ. Challenges in predicting the evolutionary maintenance of a phage transgene. J Biol Eng 2014; 8:21. [PMID: 25126112 PMCID: PMC4128545 DOI: 10.1186/1754-1611-8-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/13/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In prior work, a phage engineered with a biofilm-degrading enzyme (dispersin B) cleared artificial, short-term biofilms more fully than the phage lacking the enzyme. An unresolved question is whether the transgene will be lost or maintained during phage growth - its loss would limit the utility of the engineering. Broadly supported evolutionary theory suggests that transgenes will be lost through a 'tragedy of the commons' mechanism unless the ecology of growth in biofilms meets specific requirements. We test that theory here. RESULTS Functional properties of the transgenic phage were identified. Consistent with the previous study, the dispersin phage was superior to unmodified phage at clearing short term biofilms grown in broth, shown here to be an effect attributable to free enzyme. However, the dispersin phage was only marginally better than control phages on short term biofilms in minimal media and was no better than control phages in clearing long term biofilms. There was little empirical support for the tragedy of the commons framework despite a strong theoretical foundation for its supposed relevance. The framework requires that the transgene imposes an intrinsic cost, yet the transgene was intrinsically neutral or beneficial when expressed from one part of the phage genome. Expressed from a different part of the genome, the transgene did behave as if intrinsically costly, but its maintenance did not benefit from spatially structured growth per se - violating the tragedy framework. CONCLUSIONS Overall, the transgene was beneficial under many conditions, but no insight to its maintenance was attributable to the established evolutionary framework. The failure likely resides in system details that would be used to parameterize the models. Our study cautions against naive applications of evolutionary theory to synthetic biology, even qualitatively.
Collapse
Affiliation(s)
- Matthew Schmerer
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
| | - Ian J Molineux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA ; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dilara Ally
- Bayer Crop Science - Biologics, 1540 Drew Ave, Unit 170, Davis, CA, USA
| | - Jabus Tyerman
- Total New Energies USA Inc., 5858 Horton Street, Suite 253, Emeryville, CA, USA
| | - Nicole Cecchini
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - James J Bull
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA ; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA ; Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J Virol 2014; 88:6483-91. [PMID: 24672042 DOI: 10.1128/jvi.00377-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The three subsets of virions that comprise the Brome mosaic virus (BMV) were previously thought to be indistinguishable. This work tested the hypothesis that distinct capsid-RNA interactions in the BMV virions allow different rates of viral RNA release. Several results support distinct interactions between the capsid and the BMV genomic RNAs. First, the deletion of the first eight residues of the BMV coat protein (CP) resulted in the RNA1-containing particles having altered morphologies, while those containing RNA2 were unaffected. Second, subsets of the BMV particles separated by density gradients into a pool enriched for RNA1 (B1) and for RNA2 and RNA3/4 (B2.3/4) were found to have different physiochemical properties. Compared to the B2.3/4 particles, the B1 particles were more sensitive to protease digestion and had greater resistivity to nanoindentation by atomic force microscopy and increased susceptibility to nuclease digestion. Mapping studies showed that portions of the arginine-rich N-terminal tail of the CP could interact with RNA1. Mutational analysis in the putative RNA1-contacting residues severely reduced encapsidation of BMV RNA1 without affecting the encapsidation of RNA2. Finally, during infection of plants, the more easily released RNA1 accumulated to higher levels early in the infection. IMPORTANCE Viruses with genomes packaged in distinct virions could theoretically release the genomes at different times to regulate the timing of gene expression. Using an RNA virus composed of three particles, we demonstrated that the RNA in one of the virions is released more easily than the other two in vitro. The differential RNA release is due to distinct interactions between the viral capsid protein and the RNAs. The ease of RNA release is also correlated with the more rapid accumulation of that RNA in infected plants. Our study identified a novel role for capsid-RNA interactions in the regulation of a viral infection.
Collapse
|
23
|
Mahalik JP, Hildebrandt B, Muthukumar M. Langevin dynamics simulation of DNA ejection from a phage. J Biol Phys 2013; 39:229-45. [PMID: 23860871 DOI: 10.1007/s10867-013-9316-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022] Open
Abstract
We have performed Langevin dynamics simulations of a coarse-grained model of ejection of dsDNA from Φ29 phage. Our simulation results show significant variations in the local ejection speed, consistent with experimental observations reported in the literature for both in vivo and in vitro systems. In efforts to understand the origin of such variations in the local speed of ejection, we have investigated the correlations between the local ejection kinetics and the packaged structures created at various motor forces and chain flexibility. At lower motor forces, the packaged DNA length is shorter with better organization. On the other hand, at higher motor forces typical of realistic situations, the DNA organization inside the capsid suffers from significant orientational disorder, but yet with long orientational correlation times. This in turn leads to lack of registry between the direction of the DNA segments just to be ejected and the direction of exit. As a result, a significant amount of momentum transfer is required locally for successful exit. Consequently, the DNA ejection temporarily slows down exhibiting pauses. This slowing down occurs at random times during the ejection process, completely determined by the particular starting conformation created by prescribed motor forces. In order to augment our inference, we have additionally investigated the ejection of chains with deliberately changed persistence length. For less inflexible chains, the demand on the occurrence of large momentum transfer for successful ejection is weaker, resulting in more uniform ejection kinetics. While being consistent with experimental observations, our results show the nonergodic nature of the ejection kinetics and call for better theoretical models to portray the kinetics of genome ejection from phages.
Collapse
Affiliation(s)
- J P Mahalik
- Department of Polymer Science and Engineering, Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
24
|
Sheppard C, James E, Barton G, Matthews S, Severinov K, Wigneshweraraj S. A non-bacterial transcription factor inhibits bacterial transcription by a multipronged mechanism. RNA Biol 2013; 10:495-501. [PMID: 23558648 DOI: 10.4161/rna.24283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The process of transcription initiation is the major target for regulation of gene expression in bacteria and is performed by a multi-subunit RNA polymerase enzyme (RNAp). A complex network of regulatory elements controls the activity of the RNAp to fine-tune transcriptional output. Thus, RNAp is a nexus for controlling bacterial gene expression at the transcription level. Many bacteriophages, viruses that infect bacteria, encode transcription factors that specifically target and modulate the activity of the host RNAp and, thereby, facilitate the acquisition of the host bacteria by the phage. Here, we describe the modus operandi of a T7 bacteriophage-encoded small protein called Gp2 and define Gp2 as a non-bacterial regulator of bacterial transcription.
Collapse
Affiliation(s)
- Carol Sheppard
- MRC Centre for Molecular Bacteriology and Infection, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
25
|
Petrov AS, Douglas SS, Harvey SC. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:115101. [PMID: 23399864 PMCID: PMC3705564 DOI: 10.1088/0953-8984/25/11/115101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage φ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage's capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent's viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.
Collapse
Affiliation(s)
- Anton S Petrov
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
26
|
Abstract
Sixty years after Hershey and Chase showed that nucleic acid is the major component of phage particles that is ejected into cells, we still do not fully understand how the process occurs. Advances in electron microscopy have revealed the structure of the condensed DNA confined in a phage capsid, and the mechanisms and energetics of packaging a phage genome are beginning to be better understood. Condensing DNA subjects it to high osmotic pressure, which has been suggested to provide the driving force for its ejection during infection. However, forces internal to a phage capsid cannot, alone, cause complete genome ejection into cells. Here, we describe the structure of the DNA inside mature phages and summarize the current models of genome ejection, both in vitro and in vivo.
Collapse
Affiliation(s)
- Ian J Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
27
|
Klimuk E, Akulenko N, Makarova KS, Ceyssens PJ, Volchenkov I, Lavigne R, Severinov K. Host RNA polymerase inhibitors encoded by ϕKMV-like phages of pseudomonas. Virology 2013; 436:67-74. [DOI: 10.1016/j.virol.2012.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/27/2012] [Accepted: 10/11/2012] [Indexed: 11/30/2022]
|
28
|
Hu B, Margolin W, Molineux IJ, Liu J. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 2013; 339:576-9. [PMID: 23306440 DOI: 10.1126/science.1231887] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adsorption and genome ejection are fundamental to the bacteriophage life cycle, yet their molecular mechanisms are not well understood. We used cryo-electron tomography to capture T7 virions at successive stages of infection of Escherichia coli minicells at ~4-nm resolution. The six phage tail fibers were folded against the capsid, extending and orienting symmetrically only after productive adsorption to the host cell surface. Receptor binding by the tail triggered conformational changes resulting in the insertion of an extended tail, which functions as the DNA ejection conduit into the cell cytoplasm. After ejection, the extended phage tail collapsed or disassembled, which allowed resealing of the infected cell membrane. These structural studies provide a detailed series of intermediates during phage infection.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Ortiz ME, Endy D. Engineered cell-cell communication via DNA messaging. J Biol Eng 2012; 6:16. [PMID: 22958599 PMCID: PMC3509006 DOI: 10.1186/1754-1611-6-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/01/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically "regulate transcription." RESULTS We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. CONCLUSIONS We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia.
Collapse
Affiliation(s)
- Monica E Ortiz
- Bioengineering Department, Stanford University, Y2E2 Room 269B, 473 Via Ortega, Stanford, CA, 94305-4201, USA
| | - Drew Endy
- Bioengineering Department, Stanford University, Y2E2 Room 269B, 473 Via Ortega, Stanford, CA, 94305-4201, USA
| |
Collapse
|
30
|
Van Valen D, Wu D, Chen YJ, Tuson H, Wiggins P, Phillips R. A single-molecule Hershey-Chase experiment. Curr Biol 2012; 22:1339-43. [PMID: 22727695 DOI: 10.1016/j.cub.2012.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/18/2012] [Accepted: 05/10/2012] [Indexed: 02/02/2023]
Abstract
Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery. Although bulk measurements have set a timescale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia coli cells. For bacteriophage λ, we establish a mean ejection time of roughly 5 min with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections are more uniform and finish within 10 s. Our data reveal that when plotted against the amount of DNA ejected, the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected. In contrast, in vitro DNA ejections are governed by the amount of DNA left inside the capsid. This analysis provides evidence against a purely intrastrand repulsion-based mechanism and suggests that cell-internal processes dominate. This provides a picture of the early stages of phage infection and sheds light on the problem of polymer translocation.
Collapse
Affiliation(s)
- David Van Valen
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
31
|
Butcher SJ, Manole V, Karhu NJ. Lipid-containing viruses: bacteriophage PRD1 assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:365-77. [PMID: 22297522 DOI: 10.1007/978-1-4614-0980-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PRD1 is a tailless icosahedrally symmetric virus containing an internal lipid membrane beneath the protein capsid. Its linear dsDNA genome and covalently attached terminal proteins are delivered into the cell where replication occurs via a protein-primed mechanism. Extensive studies have been carried out to decipher the roles of the 37 viral proteins in PRD1 assembly, their association in virus particles and lately, especially the functioning of the unique packaging machinery that translocates the genome into the procapsid. These issues will be addressed in this chapter especially in the context of the structure of PRD1. We will also discuss the major challenges still to be addressed in PRD1 assembly.
Collapse
Affiliation(s)
- Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
32
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
33
|
Abstract
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ∼500 mg ml(-1). This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many--though often isolated and/or contradictory--aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.
Collapse
Affiliation(s)
- Debabrata Panja
- Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands.
| | | |
Collapse
|
34
|
Zhu J, Rao X, Tan Y, Xiong K, Hu Z, Chen Z, Jin X, Li S, Chen Y, Hu F. Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii. Genomics 2010; 96:167-72. [DOI: 10.1016/j.ygeno.2010.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
35
|
Savalia D, Robins W, Nechaev S, Molineux I, Severinov K. The role of the T7 Gp2 inhibitor of host RNA polymerase in phage development. J Mol Biol 2010; 402:118-26. [PMID: 20650282 DOI: 10.1016/j.jmb.2010.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
Bacteriophage T7 relies on its own RNA polymerase (RNAp) to transcribe its middle and late genes. Early genes, which include the viral RNAp gene, are transcribed by the host RNAp from three closely spaced strong promoters-A1, A2, and A3. One middle T7 gene product, gp2, is a strong inhibitor of the host RNAp. Gp2 is essential and is required late in infection, during phage DNA packaging. Here, we explore the role of gp2 in controlling host RNAp transcription during T7 infection. We demonstrate that in the absence of gp2, early viral transcripts continue to accumulate throughout the infection. Decreasing transcription from early promoter A3 is sufficient to make gp2 dispensable for phage infection. Gp2 also becomes dispensable when an antiterminating element boxA, located downstream of early promoters, is deleted. The results thus suggest that antiterminated transcription by host RNAp from the A3 promoter is interfering with phage development and that the only essential role for gp2 is to prevent this transcription.
Collapse
Affiliation(s)
- Dhruti Savalia
- Waksman Institute for Microbiology, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
36
|
Endy D, Kong D, Yin J. Intracellular kinetics of a growing virus: a genetically structured simulation for bacteriophage T7. Biotechnol Bioeng 2010; 55:375-89. [PMID: 18636496 DOI: 10.1002/(sici)1097-0290(19970720)55:2<375::aid-bit15>3.0.co;2-g] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Viruses have evolved to efficiently direct the resources of their hosts toward their own reproduction. A quantitative understanding of viral growth will help researchers develop antiviral strategies, design metabolic pathways, construct vectors for gene therapy, and engineer molecular systems that self-assemble. As a model system we examine here the growth of bacteriophage T7 in Escherichia coli using a chemical-kinetic framework. Data published over the last three decades on the genetics, physiology, and biophysics of phage T7 are incorporated into a genetically structured simulation that accounts for entry of the T7 genome into its host, expression of T7 genes, replication of T7 DNA, assembly of T7 procapsids, and packaging of T7 DNA to finally produce intact T7 progeny. Good agreement is found between the simulated behavior and experimental observations for the shift in transcription capacity from the host to the phage, the initiation times of phage protein synthesis, and the intracellular assembly of both wild-type phage and a fast-growing deletion mutant. The simulation is utilized to predict the effect of antisense molecules targeted to different T7 mRNA. Further, a postulated mechanism for the down regulation of T7 transcription in vivo is quantitatively examined and shown to agree with available data. The simulation is found to be a useful tool for exploring and understanding the dynamics of virus growth at the molecular level. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 375-389, 1997.
Collapse
Affiliation(s)
- D Endy
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000, USA
| | | | | |
Collapse
|
37
|
Chang CY, Kemp P, Molineux IJ. Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 2009; 398:176-86. [PMID: 20036409 DOI: 10.1016/j.virol.2009.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 10/16/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Loss of up to four amino acids from the C terminus of the 1318 residue bacteriophage T7 gp16 allows plaque formation at normal efficiencies. Loss of five residues results in non-infective virions, and loss of twelve prevents assembly of stable particles. However, replacing the C-terminal seven with nineteen non-native residues allows assembly of non-infective virions. The latter adsorb and eject internal core proteins into the cell envelope but no phage DNA enters the cytoplasm. Extragenic suppressors of the defective gene 16 lie in gene 15; the mutant gp15 proteins not only re-establish infectivity, they fully restore the kinetics of genome internalization to those exhibited by wild-type phage. After ejection from the infecting particle, gp15 and gp16 thus function together in ratcheting the leading end of the T7 genome into the cytoplasm of the infected cell.
Collapse
Affiliation(s)
- Chung-Yu Chang
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
38
|
Prinsen P, Fang LT, Yoffe AM, Knobler CM, Gelbart WM. The force acting on a polymer partially confined in a tube. J Phys Chem B 2009; 113:3873-9. [PMID: 19296704 DOI: 10.1021/jp808047u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We consider the force acting on a polymer part of whose length is configurationally confined in a tube and the rest of which is free. This situation arises in many different physical contexts, including a flexible synthetic polymer partially confined in a nanopore and a stiff viral genome partially ejected from its capsid. In both cases the force acting to pull the chain molecule out of its confinement is argued to be constant once a few persistence lengths are "free"/"outside". We present Brownian dynamics simulations that confirm the constancy of the force for different chain lengths and illustrate the dependence of the force on the strength of tube confinement. Experimental results are reported for genome ejection from viral capsids, from which we estimate the pulling force to be a few tenths of a piconewton.
Collapse
Affiliation(s)
- Peter Prinsen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
39
|
Roucourt B, Lavigne R. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol 2009; 11:2789-805. [PMID: 19691505 DOI: 10.1111/j.1462-2920.2009.02029.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
Collapse
Affiliation(s)
- Bart Roucourt
- Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | | |
Collapse
|
40
|
Abstract
Although a great deal is known about the life cycle of bacteriophage P22, the mechanism of phage DNA transport into Salmonella is poorly understood. P22 DNA is initially ejected into the periplasmic space and subsequently transported into the host cytoplasm. Three phage-encoded proteins (gp16, gp20, and gp7) are coejected with the DNA. To test the hypothesis that one or more of these proteins mediate transport of the DNA across the cytoplasmic membrane, we purified gp16, gp20, and gp7 and analyzed their ability to associate with membranes and to facilitate DNA uptake into membrane vesicles in vitro. Membrane association experiments revealed that gp16 partitioned into the membrane fraction, while gp20 and gp7 remained in the soluble fraction. Moreover, the addition of gp16, but not gp7 or gp20, to liposomes preloaded with a fluorescent dye promoted release of the dye. Transport of (32)P-labeled DNA into liposomes occurred only in the presence of gp16 and an artificially created membrane potential. Taken together, these results suggest that gp16 partitions into the cytoplasmic membrane and mediates the active transport of P22 DNA across the cytoplasmic membrane of Salmonella.
Collapse
|
41
|
Kosuri S, Kelly JR, Endy D. TABASCO: A single molecule, base-pair resolved gene expression simulator. BMC Bioinformatics 2007; 8:480. [PMID: 18093293 PMCID: PMC2242808 DOI: 10.1186/1471-2105-8-480] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 12/19/2007] [Indexed: 11/16/2022] Open
Abstract
Background Experimental studies of gene expression have identified some of the individual molecular components and elementary reactions that comprise and control cellular behavior. Given our current understanding of gene expression, and the goals of biotechnology research, both scientists and engineers would benefit from detailed simulators that can explicitly compute genome-wide expression levels as a function of individual molecular events, including the activities and interactions of molecules on DNA at single base pair resolution. However, for practical reasons including computational tractability, available simulators have not been able to represent genome-scale models of gene expression at this level of detail. Results Here we develop a simulator, TABASCO , which enables the precise representation of individual molecules and events in gene expression for genome-scale systems. We use a single molecule computational engine to track individual molecules interacting with and along nucleic acid polymers at single base resolution. Tabasco uses logical rules to automatically update and delimit the set of species and reactions that comprise a system during simulation, thereby avoiding the need for a priori specification of all possible combinations of molecules and reaction events. We confirm that single molecule, base-pair resolved simulation using TABASCO (Tabasco) can accurately compute gene expression dynamics and, moving beyond previous simulators, provide for the direct representation of intermolecular events such as polymerase collisions and promoter occlusion. We demonstrate the computational capacity of Tabasco by simulating the entirety of gene expression during bacteriophage T7 infection; for reference, the 39,937 base pair T7 genome encodes 56 genes that are transcribed by two types of RNA polymerases active across 22 promoters. Conclusion Tabasco enables genome-scale simulation of transcription and translation at individual molecule and single base-pair resolution. By directly representing the position and activity of individual molecules on DNA, Tabasco can directly test the effects of detailed molecular processes on system-wide gene expression. Tabasco would also be useful for studying the complex regulatory mechanisms controlling eukaryotic gene expression. The computational engine underlying Tabasco could also be adapted to represent other types of processive systems in which individual reaction events are organized across a single spatial dimension (e.g., polysaccharide synthesis).
Collapse
Affiliation(s)
- Sriram Kosuri
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave,, Cambridge, MA 02139 USA.
| | | | | |
Collapse
|
42
|
Grayson P, Han L, Winther T, Phillips R. Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc Natl Acad Sci U S A 2007; 104:14652-7. [PMID: 17804798 PMCID: PMC1976217 DOI: 10.1073/pnas.0703274104] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Indexed: 11/18/2022] Open
Abstract
The physical, chemical, and structural features of bacteriophage genome release have been the subject of much recent attention. Many theoretical and experimental studies have centered on the internal forces driving the ejection process. Recently, Mangenot et al. [Mangenot S, Hochrein M, Rädler J, Letellier L (2005) Curr Biol 15:430-435.] reported fluorescence microscopy of phage T5 ejections, which proceeded stepwise between DNA nicks, reaching a translocation speed of 75 kbp/s or higher. It is still unknown how high the speed actually is. This paper reports real-time measurements of ejection from phage lambda, revealing how the speed depends on key physical parameters such as genome length and ionic state of the buffer. Except for a pause before DNA is finally released, the entire 48.5-kbp genome is translocated in approximately 1.5 s without interruption, reaching a speed of 60 kbp/s. The process gives insights particularly into the effects of two parameters: a shorter genome length results in lower speed but a shorter total time, and the presence of divalent magnesium ions (replacing sodium) reduces the pressure, increasing ejection time to 8-11 s. Pressure caused by DNA-DNA interactions within the head affects the initiation of ejection, but the close packing is also the dominant source of friction: more tightly packed phages initiate ejection earlier, but with a lower initial speed. The details of ejection revealed in this study are probably generic features of DNA translocation in bacteriophages and have implications for the dynamics of DNA in other biological systems.
Collapse
Affiliation(s)
| | - Lin Han
- Applied Physics, California Institute of Technology, Pasadena, CA 91125
| | - Tabita Winther
- Applied Physics, California Institute of Technology, Pasadena, CA 91125
| | - Rob Phillips
- Applied Physics, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
43
|
Roos WH, Ivanovska IL, Evilevitch A, Wuite GJL. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 2007; 64:1484-97. [PMID: 17440680 PMCID: PMC2771126 DOI: 10.1007/s00018-007-6451-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its consequent confinement within the capsid. It is proposed that this pressure helps driving the genome into the host, but other mechanisms also seem to play an important role in ejection. DNA packaging and ejection strategies are obviously dependent on the mechanical properties of the capsid. This review focuses on the mechanical properties of viral capsids in general and the elucidation of the biophysical aspects of genome packaging mechanisms and genome delivery processes of double-stranded DNA bacteriophages in particular.
Collapse
Affiliation(s)
- W. H. Roos
- Fysica van complexe systemen, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - I. L. Ivanovska
- Fysica van complexe systemen, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - A. Evilevitch
- Department of Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - G. J. L. Wuite
- Fysica van complexe systemen, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
44
|
Grayson P, Molineux IJ. Is phage DNA 'injected' into cells--biologists and physicists can agree. Curr Opin Microbiol 2007; 10:401-9. [PMID: 17714979 PMCID: PMC2064038 DOI: 10.1016/j.mib.2007.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 12/31/2022]
Abstract
The double-stranded DNA inside bacteriophages is packaged at a density of approximately 500 mg/ml and exerts an osmotic pressure of tens of atmospheres. This pressure is commonly assumed to cause genome ejection during infection. Indeed, by the addition of their natural receptors, some phages can be induced in vitro to completely expel their genome from the virion. However, the osmotic pressure of the bacterial cytoplasm exerts an opposing force, making it impossible for the pressure of packaged DNA to cause complete genome ejection in vivo. Various processes for complete genome ejection are discussed, but we focus on a novel proposal suggesting that the osmotic gradient between the extracellular environment and the cytoplasm results in fluid flow through the phage virion at the initiation of infection. The phage genome is thereby sucked into the cell by hydrodynamic drag.
Collapse
Affiliation(s)
- Paul Grayson
- Department of Physics, California Institute of Technology, Pasadena, CA 91125
| | - Ian J. Molineux
- Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
- * Corresponding author. Phone: 512–471–3143
| |
Collapse
|
45
|
Sloan S, Rutkai E, King RA, Velikodvorskaya T, Weisberg RA. Protection of antiterminator RNA by the transcript elongation complex. Mol Microbiol 2007; 63:1197-208. [PMID: 17238921 DOI: 10.1111/j.1365-2958.2006.05579.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nascent transcripts encoded by the putL and putR sites of phage HK022 bind the transcript elongation complex and suppress termination at downstream transcription terminators. We report here that the chemical stability of putL RNA is considerably greater than that of the typical Escherichia coli message because the elongation complex protects this RNA from degradation. When binding to the elongation complex was prevented by mutation of either putL or RNA polymerase, RNA stability decreased more than 50-fold. The functional modification conferred by putL RNA on the elongation complex is also long-lived: the efficiency of terminator suppression remained high for at least 10 kb from the putL site. We find that RNase III rapidly and efficiently cleaved the transcript just downstream of the putL sequences, but such cleavage changed neither the stability of putL RNA nor the efficiency of antitermination. These results argue that the continuity of the RNA that connects put sequences to the growing point is not required for persistence of the antiterminating modification in vivo.
Collapse
Affiliation(s)
- Sieghild Sloan
- Section on Microbial Genetics, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, MD 20892-2785, USA
| | | | | | | | | |
Collapse
|
46
|
Thomason LC, Costantino N, Shaw DV, Court DL. Multicopy plasmid modification with phage lambda Red recombineering. Plasmid 2007; 58:148-58. [PMID: 17434584 PMCID: PMC2706537 DOI: 10.1016/j.plasmid.2007.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/28/2007] [Indexed: 12/01/2022]
Abstract
Recombineering, in vivo genetic engineering using the bacteriophage lambda Red generalized recombination system, was used to create various modifications of a multicopy plasmid derived from pBR322. All genetic modifications possible on the Escherichia coli chromosome and on bacterial artificial chromosomes (BACs) are also possible on multicopy plasmids and are obtained with similar frequencies to their chromosomal counterparts, including creation of point mutations (5-10% unselected frequency), deletions and substitutions. Parental and recombinant plasmids are nearly always present as a mixture following recombination, and circular multimeric plasmid molecules are often generated during the recombineering.
Collapse
Affiliation(s)
- Lynn C Thomason
- Gene Regulation and Chromosome Biology Laboratory, Building 539, Room 243, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
47
|
Garcia HG, Grayson P, Han L, Inamdar M, Kondev J, Nelson PC, Phillips R, Widom J, Wiggins PA. Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 2007; 85:115-30. [PMID: 17103419 PMCID: PMC3496788 DOI: 10.1002/bip.20627] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence length. Similarly, eukaryotic DNA is packed in DNA-protein complexes (nucleosomes), in which DNA is tightly bent around protein spools. DNA is also tightly bent by many proteins that regulate transcription, resulting in a variation in gene expression that is amenable to quantitative analysis. In these cases, DNA loops are formed with lengths that are comparable to or smaller than the DNA persistence length. The aim of this review is to describe the physical forces associated with tightly bent DNA in all of these settings and to explore the biological consequences of such bending, as increasingly accessible by single-molecule techniques.
Collapse
Affiliation(s)
- Hernan G. Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125
| | - Paul Grayson
- Department of Physics, California Institute of Technology, Pasadena, CA 91125
| | - Lin Han
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Mandar Inamdar
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Jané Kondev
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Philip C. Nelson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Rob Phillips
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Paul A. Wiggins
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| |
Collapse
|
48
|
Lim KI, Lang T, Lam V, Yin J. Model-based design of growth-attenuated viruses. PLoS Comput Biol 2006; 2:e116. [PMID: 16948530 PMCID: PMC1557587 DOI: 10.1371/journal.pcbi.0020116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 07/24/2006] [Indexed: 11/18/2022] Open
Abstract
Live-virus vaccines activate both humoral and cell-mediated immunity, require only a single boosting, and generally provide longer immune protection than killed or subunit vaccines. However, growth of live-virus vaccines must be attenuated to minimize their potential pathogenic effects, and mechanisms of attenuation by conventional serial-transfer viral adaptation are not well-understood. New methods of attenuation based on rational engineering of viral genomes may offer a potentially greater control if one can link defined genetic modifications to changes in virus growth. To begin to establish such links between genotype and growth phenotype, we developed a computer model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied, nonsegmented, negative-stranded RNA virus. Our model incorporated established regulatory mechanisms of VSV while integrating key wild-type infection steps: hijacking of host resources, transcription, translation, and replication, followed by assembly and release of progeny VSV particles. Generalization of the wild-type model to allow for genome rearrangements matched the experimentally observed attenuation ranking for recombinant VSV strains that altered the genome position of their nucleocapsid gene. Finally, our simulations captured previously reported experimental results showing how altering the positions of other VSV genes has the potential to attenuate the VSV growth while overexpressing the immunogenic VSV surface glycoprotein. Such models will facilitate the engineering of new live-virus vaccines by linking genomic manipulations to controlled changes in virus gene-expression and growth.
Collapse
Affiliation(s)
- Kwang-il Lim
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Tobias Lang
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Vy Lam
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Grayson P, Evilevitch A, Inamdar MM, Purohit PK, Gelbart WM, Knobler CM, Phillips R. The effect of genome length on ejection forces in bacteriophage lambda. Virology 2006; 348:430-6. [PMID: 16469346 PMCID: PMC3178461 DOI: 10.1016/j.virol.2006.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/07/2005] [Accepted: 01/03/2006] [Indexed: 11/16/2022]
Abstract
A variety of viruses tightly pack their genetic material into protein capsids that are barely large enough to enclose the genome. In particular, in bacteriophages, forces as high as 60 pN are encountered during packaging and ejection, produced by DNA bending elasticity and self-interactions. The high forces are believed to be important for the ejection process, though the extent of their involvement is not yet clear. As a result, there is a need for quantitative models and experiments that reveal the nature of the forces relevant to DNA ejection. Here, we report measurements of the ejection forces for two different mutants of bacteriophage lambda, lambdab221cI26 and lambdacI60, which differ in genome length by approximately 30%. As expected for a force-driven ejection mechanism, the osmotic pressure at which DNA release is completely inhibited varies with the genome length: we find inhibition pressures of 15 atm and 25 atm, for the short and long genomes, respectively, values that are in agreement with our theoretical calculations.
Collapse
Affiliation(s)
- Paul Grayson
- Department of Physics, California Institute of Technology, Pasadena, 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kuzmanovic DA, Elashvili I, Wick C, O'Connell C, Krueger S. The MS2 Coat Protein Shell is Likely Assembled Under Tension: A Novel Role for the MS2 Bacteriophage A Protein as Revealed by Small-angle Neutron Scattering. J Mol Biol 2006; 355:1095-111. [PMID: 16359706 DOI: 10.1016/j.jmb.2005.11.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/08/2005] [Accepted: 11/12/2005] [Indexed: 02/02/2023]
Abstract
Recombinant forms of the bacteriophage MS2 and its RNA-free (empty) MS2 capsid were analyzed in solution to determine if RNA content and/or the A (or maturation) protein play a role in the global arrangement of the virus protein shell. Analysis of the (coat) protein shell of recombinant versions of MS2 that lack the A protein revealed dramatic differences compared to wild-type MS2 in solution. Specifically, A protein-deficient virus particles form a protein shell of between 31(+/-1) A and 37(+/-1) A. This is considerably thicker than the protein shell formed by either the wild-type MS2 or the RNA-free MS2 capsid, whose protein shells have a thickness of 21(+/-1) A and 25(+/-1) A, respectively. Since the A protein is known to separate from the intact MS2 protein shell after infection, the thin shell form of MS2 represents the pre-infection state, while the post-infection state is thick. Interestingly, these A protein-dependent differences in the virus protein shell are not seen using crystallography, as the crystallization process seems to artificially compact the wild-type MS2 virion. Furthermore, when the A protein is absent from the virus shell (post-infection), the process of crystallization exerts sufficient force to convert the protein shell from the post-infection (thick) state to the pre-infection (thin) conformation. In summary, the data are consistent with the idea that RNA content or amount does not affect the structure of the MS2 virus shell. Rather, the A protein influences the global arrangement of the virus coat dramatically, possibly by mediating the storage of energy or tension within the protein shell during virus assembly. This tension may later be used to eject the MS2 genomic RNA and A protein fragments into the host during infection.
Collapse
Affiliation(s)
- Deborah A Kuzmanovic
- Biotechnology Division, NIST, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | | | | | | | |
Collapse
|