1
|
Chowdhury-Paul S, Martínez-Ortíz IC, Pando-Robles V, Moreno S, Espín G, Merino E, Núñez C. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach. PLoS One 2023; 18:e0286440. [PMID: 37967103 PMCID: PMC10651043 DOI: 10.1371/journal.pone.0286440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.
Collapse
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Iliana C. Martínez-Ortíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, Tao Z, Wang Q. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res 2023; 266:127220. [DOI: 10.1016/j.micres.2022.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
3
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Wang H, Yang Z, Swingle B, Kvitko BH. AlgU, a Conserved Sigma Factor Regulating Abiotic Stress Tolerance and Promoting Virulence in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:326-336. [PMID: 33264045 DOI: 10.1094/mpmi-09-20-0254-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven, in part, by immune defenses. Bacteria use a "just-in-time" strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, or behavior, singly or in combination, to improve chances of survival. The broadly conserved ECF sigma factor AlgU affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
| | - Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, U.S.A
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
- The Plant Center, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
5
|
Bouffartigues E, Si Hadj Mohand I, Maillot O, Tortuel D, Omnes J, David A, Tahrioui A, Duchesne R, Azuama CO, Nusser M, Brenner-Weiss G, Bazire A, Connil N, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P, Chevalier S. The Temperature-Regulation of Pseudomonas aeruginosa cmaX-cfrX-cmpX Operon Reveals an Intriguing Molecular Network Involving the Sigma Factors AlgU and SigX. Front Microbiol 2020; 11:579495. [PMID: 33193206 PMCID: PMC7641640 DOI: 10.3389/fmicb.2020.579495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable Gram-negative opportunistic pathogen, notably due to its large number of transcription regulators. The extracytoplasmic sigma factor (ECFσ) AlgU, responsible for alginate biosynthesis, is also involved in responses to cell wall stress and heat shock via the RpoH alternative σ factor. The SigX ECFσ emerged as a major regulator involved in the envelope stress response via membrane remodeling, virulence and biofilm formation. However, their functional interactions to coordinate the envelope homeostasis in response to environmental variations remain to be determined. The regulation of the putative cmaX-cfrX-cmpX operon located directly upstream sigX was investigated by applying sudden temperature shifts from 37°C. We identified a SigX- and an AlgU- dependent promoter region upstream of cfrX and cmaX, respectively. We show that cmaX expression is increased upon heat shock through an AlgU-dependent but RpoH independent mechanism. In addition, the ECFσ SigX is activated in response to valinomycin, an agent altering the membrane structure, and up-regulates cfrX-cmpX transcription in response to cold shock. Altogether, these data provide new insights into the regulation exerted by SigX and networks that are involved in maintaining envelope homeostasis.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ishac Si Hadj Mohand
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Jordane Omnes
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Audrey David
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Rachel Duchesne
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Cecil Onyedikachi Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| |
Collapse
|
6
|
Yu Z, Zhang J, Ding M, Wu S, Shuangjia Li, Zhang M, Yin J, Meng Q. SspA positively controls exopolysaccharides production and biofilm formation by up-regulating the algU expression in Pseudoalteromonas sp. R3. Biochem Biophys Res Commun 2020; 533:988-994. [PMID: 33010891 DOI: 10.1016/j.bbrc.2020.09.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Biofilm formation enhances the survival and persistence of microorganisms in response to environmental stresses. It has been revealed that stringent starvation protein A (SspA) can function as an important regulator dealing with environmental stresses for bacterial survival. However, the connection between SspA and biofilm formation is essentially unclear yet. In this study, we presented evidence showing SspA positively controls biofilm formation by up-regulating exopolysaccharides (EPS) production in marine bacterium Pseudoalteromonas sp. R3. Both qPCR and lacZ reporter system congruously revealed that SspA positively controls the expression of EPS biosynthesis gene cluster. Unlike generally accepted thought that SspA regulates bacterial physiology by inhibiting the expression of histone-like nucleotide structuring protein (H-NS) gene, the function of SspA on EPS production and biofilm formation in Pseudoalteromonas sp. R3 is H-NS-independent. Instead, SspA positively regulates the expression of sigma factor AlgU-encoding gene, thus affecting EPS biosynthesis and biofilm formation. In view of the important role of SspA in biofilm formation, we believe that the improvement of tolerance to marine environmental stresses could be related to tuning of SspA-involved biofilm formation.
Collapse
Affiliation(s)
- Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China.
| | - Jiadi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Mengdan Ding
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Shijun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Shuangjia Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Mengting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
7
|
Overproduction of the AlgT Sigma Factor Is Lethal to Mucoid Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00445-20. [PMID: 32747430 DOI: 10.1128/jb.00445-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa isolates from chronic lung infections often overproduce alginate, giving rise to the mucoid phenotype. Isolation of mucoid strains from chronic lung infections correlates with a poor patient outcome. The most common mutation that causes the mucoid phenotype is called mucA22 and results in a truncated form of the anti-sigma factor MucA that is continuously subjected to proteolysis. When a functional MucA is absent, the cognate sigma factor, AlgT, is no longer sequestered and continuously transcribes the alginate biosynthesis operon, leading to alginate overproduction. In this work, we report that in the absence of wild-type MucA, providing exogenous AlgT is toxic. This is intriguing, since mucoid strains endogenously possess high levels of AlgT. Furthermore, we show that suppressors of toxic AlgT production have mutations in mucP, a protease involved in MucA degradation, and provide the first atomistic model of MucP. Based on our findings, we speculate that mutations in mucP stabilize the truncated form of MucA22, rendering it functional and therefore able to reduce toxicity by properly sequestering AlgT.IMPORTANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen capable of causing chronic lung infections. Phenotypes important for the long-term persistence and adaption to this unique lung ecosystem are largely regulated by the AlgT sigma factor. Chronic infection isolates often contain mutations in the anti-sigma factor mucA, resulting in uncontrolled AlgT and continuous production of alginate in addition to the expression of ∼300 additional genes. Here, we report that in the absence of wild-type MucA, AlgT overproduction is lethal and that suppressors of toxic AlgT production have mutations in the MucA protease, MucP. Since AlgT contributes to the establishment of chronic infections, understanding how AlgT is regulated will provide vital information on how P. aeruginosa is capable of causing long-term infections.
Collapse
|
8
|
Luo J, Li X, Zhang J, Feng A, Xia M, Zhou M. Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs. Biosens Bioelectron 2020; 163:112269. [PMID: 32568691 DOI: 10.1016/j.bios.2020.112269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 01/24/2023]
Abstract
The electricigens with high-electroactivity is essential for resolving the low electricity power output (EPT) of microbial fuel cells (MFCs). However, the manipulation by single functional genes shows limitation because electroactivity is a complex phenotype controlled by multiple genes. Herein, global regulator engineering (GRE) was developed to optimize the electroactivity of an isolated strain (Pseudomonas aeruginosa P3-A-11) using an exogenous global regulator IrrE (ionizing radiation resistance E linkage group) as an object. The GRE was implemented through in vitro random mutagenesis by error-prone PCR and in vivo high-through screening comprised of cultures color assay, PYO measurement and MFCs operation. Four mutants with higher electroactivity were obtained, among which, the mutant 11/M2-59 not only displayed the maximal power density, but also exhibited stronger salt tolerance, consequently showing good performance of MFCs in the presence of salt. Apart from the reduced internal resistance, the increase in phenazines amounts primarily contributed to EPT improvement, which was realized by enhancing the core biosynthesis pathway and affecting other pathways (such as central metabolism pathway, quorum sensing system, regulatory network). Notably, IrrE exerted its positive effect on electroactivity even without native regulators (such as PmpR and RpoS). In addition, the significant fluctuations in expression levels of stress-responsive genes mediated by GRE were closely associated with the enhanced salt tolerance. This work demonstrated that GRE was an effective approach for simultaneously optimizing multiple phenotypes (such as electroactivity and stress tolerance), and thus would provide more opportunities to create high-efficiency electricigens and further promoted the practical application of MFCs.
Collapse
Affiliation(s)
- Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Xiao Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jingmei Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - An Feng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
9
|
Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs. Biosens Bioelectron 2018; 117:23-31. [PMID: 29879584 DOI: 10.1016/j.bios.2018.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/28/2018] [Accepted: 05/28/2018] [Indexed: 01/31/2023]
Abstract
Low electricity power output (EPT) is still the main bottleneck limited the industrial application of microbial fuel cells (MFCs). Herein, EPT enhancement by introducing an exogenous global regulator IrrE derived from Deinococcus radiodurans into electrochemically active bacteria (EAB) was explored using Pseudomonas aeruginosa PAO1 as a model strain, achieving a power density 71% higher than that of the control strain. Moreover, IrrE-expressing strain exhibited a remarkable increase in the total amount of electron shuttles (majorly phenazines compounds) and a little decrease in internal resistance, which should underlie the enhancement in extracellular electron transfer (EET) efficiency and EPT. Strikingly, IrrE significantly affected substrate utilization profiling, improved cell growth characterization and cell tolerance to various stresses. Further quantitative RT-PCR analysis revealed that IrrE led to many differentially expressed genes, which were responsible for phenazines core biosynthesis, biofilm formation, QS systems, transcriptional regulation, glucose metabolism and general stress response. The results substantiated that targeting cellular regulatory network by the introduction of exogenous global regulators could be a facile and promising approach for the enhancement of bioelectricity generation and cell multiple phenotypes, and thus would be of great potential application in the practical MFCs.
Collapse
|
10
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|
11
|
RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:7707-7712. [PMID: 28673999 DOI: 10.1073/pnas.1700286114] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a weapon of bacterial warfare and host cell subversion. The Gram-negative pathogen Pseudomonas aeruginosa has three T6SSs involved in colonization, competition, and full virulence. H1-T6SS is a molecular gun firing seven toxins, Tse1-Tse7, challenging survival of other bacteria and helping P. aeruginosa to prevail in specific niches. The H1-T6SS characterization was facilitated through studying a P. aeruginosa strain lacking the RetS sensor, which has a fully active H1-T6SS, in contrast to the parent. However, study of H2-T6SS and H3-T6SS has been neglected because of a poor understanding of the associated regulatory network. Here we performed a screen to identify H2-T6SS and H3-T6SS regulatory elements and found that the posttranscriptional regulator RsmA imposes a concerted repression on all three T6SS clusters. A higher level of complexity could be observed as we identified a transcriptional regulator, AmrZ, which acts as a negative regulator of H2-T6SS. Overall, although the level of T6SS transcripts is fine-tuned by AmrZ, all T6SS mRNAs are silenced by RsmA. We expanded this concept of global control by RsmA to VgrG spike and T6SS toxin transcripts whose genes are scattered on the chromosome. These observations triggered the characterization of a suite of H2-T6SS toxins and their implication in direct bacterial competition. Our study thus unveils a central mechanism that modulates the deployment of all T6SS weapons that may be simultaneously produced within a single cell.
Collapse
|
12
|
Barbier M, Boehm DT, Sen-Kilic E, Bonnin C, Pinheiro T, Hoffman C, Gray M, Hewlett E, Damron FH. Modulation of Pertussis and Adenylate Cyclase Toxins by Sigma Factor RpoE in Bordetella pertussis. Infect Immun 2017; 85:e00565-16. [PMID: 27849178 PMCID: PMC5203664 DOI: 10.1128/iai.00565-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022] Open
Abstract
Bordetella pertussis is a human pathogen that can infect the respiratory tract and cause the disease known as whooping cough. B. pertussis uses pertussis toxin (PT) and adenylate cyclase toxin (ACT) to kill and modulate host cells to allow the pathogen to survive and persist. B. pertussis encodes many uncharacterized transcription factors, and very little is known about their functions. RpoE is a sigma factor which, in other bacteria, responds to oxidative, heat, and other environmental stresses. RseA is a negative regulator of RpoE that sequesters the sigma factor to regulate gene expression based on conditions. In B. pertussis, deletion of the rseA gene results in high transcriptional activity of RpoE and large amounts of secretion of ACT. By comparing parental B. pertussis to an rseA gene deletion mutant (PM18), we sought to characterize the roles of RpoE in virulence and determine the regulon of genes controlled by RpoE. Despite high expression of ACT, the rseA mutant strain did not infect the murine airway as efficiently as the parental strain and PM18 was killed more readily when inside phagocytes. RNA sequencing analysis was performed and 263 genes were differentially regulated by RpoE, and surprisingly, the rseA mutant strain where RpoE activity was elevated expressed very little pertussis toxin. Western blots and proteomic analysis corroborated the inverse relationship of PT to ACT expression in the high-RpoE-activity rseA deletion strain. Our data suggest that RpoE can modulate PT and ACT expression indirectly through unidentified mechanisms in response to conditions.
Collapse
Affiliation(s)
- Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Claire Bonnin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Theo Pinheiro
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Casey Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Mary Gray
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Erik Hewlett
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Chan KG, Priya K, Chang CY, Abdul Rahman AY, Tee KK, Yin WF. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures. PeerJ 2016; 4:e2223. [PMID: 27547539 PMCID: PMC4957987 DOI: 10.7717/peerj.2223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023] Open
Abstract
Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.
Collapse
Affiliation(s)
- Kok-Gan Chan
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kumutha Priya
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Chien-Yi Chang
- School of Life Sciences, Heriot-Watt University , Edinburgh , United Kingdom
| | | | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
14
|
Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dötsch A, Hornischer K, Bruchmann S, Düvel J, Häussler S. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 2015; 11:e1004744. [PMID: 25780925 PMCID: PMC4362757 DOI: 10.1371/journal.ppat.1004744] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022] Open
Abstract
Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN. Pseudomonas aeruginosa is well known for its high adaptability to a large range of environmental conditions, including those encountered within the human host. Transcription initiation represents a major regulatory target which drives versatility, and enables bacterial adaptation to challenging conditions and expression of virulence and pathogenicity. In bacteria, this process is largely orchestrated by sigma factors. Here, we performed an integrative approach, and by the combined use of three global profiling technologies uncovered the networks of 10 alternative sigma factors in the opportunistic pathogen P. aeruginosa. We demonstrate that these networks largely represent self-contained functional modules which exhibit a limited but highly specific crosstalk to build up higher-level functions. Our results do not only give extensive information on sigma factor binding sites throughout the P. aeruginosa genome, but also advance the understanding of sigma factor network architecture which provides bacteria with a framework to function adequately in their environment.
Collapse
Affiliation(s)
- Sebastian Schulz
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Denitsa Eckweiler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata Bielecka
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Dötsch
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Hornischer
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Bruchmann
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Juliane Düvel
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
15
|
Scanlan PD, Hall AR, Blackshields G, Friman VP, Davis MR, Goldberg JB, Buckling A. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol 2015; 32:1425-35. [PMID: 25681383 DOI: 10.1093/molbev/msv032] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.
Collapse
Affiliation(s)
| | - Alex R Hall
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gordon Blackshields
- Central Pathology Laboratory, Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland
| | - Ville-P Friman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael R Davis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA
| | - Joanna B Goldberg
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA
| | - Angus Buckling
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Expression analysis of the Pseudomonas aeruginosa AlgZR two-component regulatory system. J Bacteriol 2014; 197:736-48. [PMID: 25488298 DOI: 10.1128/jb.02290-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa virulence components are subject to complex regulatory control primarily through two-component regulatory systems that allow for sensing and responding to environmental stimuli. In this study, the expression and regulation of the P. aeruginosa AlgZR two-component regulatory system were examined. Primer extension and S1 nuclease protection assays were used to identify two transcriptional initiation sites for algR within the algZ coding region, and two additional start sites were identified upstream of the algZ coding region. The two algR transcriptional start sites, RT1 and RT2, are directly regulated by AlgU, consistent with previous reports of increased algR expression in mucoid backgrounds, and RpoS additionally plays a role in algR transcription. The expression of the first algZ promoter, ZT1, is entirely dependent upon Vfr for expression, whereas Vfr, RpoS, or AlgU does not regulate the second algZ promoter, ZT2. Western blot, real-time quantitative PCR (RT-qPCR), and transcriptional fusion analyses show that algZR expression is Vfr dependent. The algZ and algR genes also are cotranscribed in both nonmucoid and mucoid backgrounds. Furthermore, algZR was found to be cotranscribed with hemCD by RT-PCR. RT-qPCR confirmed that hemC transcription in the PAO1 ΔalgZ mutant was 40% of the level of the wild-type strain. Taken together, these results indicate that algZR transcription involves multiple factors at multiple start sites that control individual gene expression as well as coexpression of this two-component system with heme biosynthetic genes.
Collapse
|
17
|
Park SH, Bao Z, Butcher BG, D'Amico K, Xu Y, Stodghill P, Schneider DJ, Cartinhour S, Filiatrault MJ. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2014; 160:941-953. [PMID: 24600027 DOI: 10.1099/mic.0.076497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae DC3000, spot 42 (now referred to as spf), was investigated. A putative RpoE binding site was identified upstream of spf in strain DC3000. RpoE is shown to regulate the expression of spf. Also, deletion of spf results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that spf plays a role in susceptibility to oxidative stress. Furthermore, expression of alg8 is shown to be influenced by spf, suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D'Amico
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yun Xu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Stodghill
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - David J Schneider
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samuel Cartinhour
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - M J Filiatrault
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Abstract
As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.
Collapse
|
19
|
Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:3264-72. [PMID: 23503314 DOI: 10.1128/aem.00460-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.
Collapse
|
20
|
Barchinger SE, Ades SE. Regulated proteolysis: control of the Escherichia coli σ(E)-dependent cell envelope stress response. Subcell Biochem 2013; 66:129-60. [PMID: 23479440 DOI: 10.1007/978-94-007-5940-4_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, regulatory proteolysis has emerged as a paradigm for transmembrane signal transduction in all organisms, from bacteria to humans. These conserved proteolytic pathways share a common design that involves the sequential proteolysis of a membrane-bound regulatory protein by two proteases. Proteolysis releases the regulator, which is inactive in its membrane-bound form, into the cytoplasm where it performs its cellular function. One of the best-characterized examples of signal transduction via regulatory proteolysis is the pathway governing the σ(E)-dependent cell envelope stress response in Escherichia coli. In unstressed cells, σ(E) is sequestered at the membrane by the transmembrane anti-sigma factor, RseA. Stresses that compromise the cell envelope and interfere with the proper folding of outer membrane proteins (OMPs) activate the proteolytic pathway. The C-terminal residues of unfolded OMPs bind to the inner membrane protease, DegS, to initiate the proteolytic cascade. DegS removes the periplasmic domain of RseA creating a substrate for the next protease in the pathway, RseP. RseP cleaves RseA in the periplasmic region in a process called regulated intramembrane proteolysis (RIP). The remaining fragment of RseA is released into the cytoplasm and fully degraded by the ATP-dependent protease, ClpXP, with the assistance of the adaptor protein, SspB, thereby freeing σ(E) to reprogram gene expression. A growing body of evidence indicates that the overall proteolytic framework that governs the σ(E) response is used to regulate similar anti-sigma factor/sigma factor pairs throughout the bacterial world and has been adapted to recognize a wide variety of signals and control systems as diverse as envelope stress responses, sporulation, virulence, and iron-siderophore uptake. In this chapter, we review the extensive physiological, biochemical, and structural studies on the σ(E) system that provide remarkable insights into the mechanistic underpinnings of this regulated proteolytic signal transduction pathway. These studies reveal design principles that are applicable to related proteases and regulatory proteolytic pathways in all domains of life.
Collapse
Affiliation(s)
- Sarah E Barchinger
- Graduate Program in BMMB, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
21
|
Park SH, Butcher BG, Anderson Z, Pellegrini N, Bao Z, D’Amico K, Filiatrault MJ. Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2012; 159:296-306. [PMID: 23258266 PMCID: PMC3709562 DOI: 10.1099/mic.0.063826-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae pv. tomato DC3000, P16, was investigated. We determined that RpoS regulates the expression of P16. We found that deletion of P16 results in increased sensitivity to hydrogen peroxide compared to the wild-type strain, suggesting that P16 plays a role in the bacteria’s susceptibility to oxidative stress. Additionally the P16 mutant displayed enhanced resistance to heat stress. Our findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G. Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zoe Anderson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nola Pellegrini
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D’Amico
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Melanie J. Filiatrault
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Damron FH, Davis MR, Withers TR, Ernst RK, Goldberg JB, Yu G, Yu HD. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1. Mol Microbiol 2011; 81:554-70. [PMID: 21631603 DOI: 10.1111/j.1365-2958.2011.07715.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.
Collapse
Affiliation(s)
- F Heath Damron
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Mishra MN, Kumar S, Gupta N, Kaur S, Gupta A, Tripathi AK. An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7. Microbiology (Reading) 2011; 157:988-999. [DOI: 10.1099/mic.0.046672-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azospirillum brasilense, a plant-growth-promoting rhizobacterium, is exposed to changes in its abiotic environment, including fluctuations in temperature, salinity, osmolarity, oxygen concentration and nutrient concentration, in the rhizosphere and in the soil. Since extra-cytoplasmic function (ECF) sigma factors play an important role in stress adaptation, we analysed the role of ECF sigma factor (also known as RpoE or σ
E) in abiotic stress tolerance in A. brasilense. An in-frame rpoE deletion mutant of A. brasilense Sp7 was carotenoidless and slow-growing, and was sensitive to salt, ethanol and methylene blue stress. Expression of rpoE in the rpoE deletion mutant complemented the defects in growth, carotenoid biosynthesis and sensitivity to different stresses. Based on data from reverse transcriptase-PCR, a two-hybrid assay and a pull-down assay, we present evidence that rpoE is cotranscribed with chrR and the proteins synthesized from these two overlapping genes interact with each other. Identification of the transcription start site by 5′ rapid amplification of cDNA ends showed that the rpoE–chrR operon was transcribed by two promoters. The proximal promoter was less active than the distal promoter, whose consensus sequence was characteristic of RpoE-dependent promoters found in alphaproteobacteria. Whereas the proximal promoter was RpoE-independent and constitutively expressed, the distal promoter was RpoE-dependent and strongly induced in response to stationary phase and elevated levels of ethanol, salt, heat and methylene blue. This study shows the involvement of RpoE in controlling carotenoid synthesis as well as in tolerance to some abiotic stresses in A. brasilense, which might be critical in the adaptation, survival and proliferation of this rhizobacterium in the soil and rhizosphere under stressful conditions.
Collapse
Affiliation(s)
- Mukti Nath Mishra
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Namrata Gupta
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Simarjot Kaur
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Ankush Gupta
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anil K. Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
24
|
Abstract
Gram-negative bacterial pathogens have evolved a number of virulence-promoting strategies including the production of extracellular polysaccharides such as alginate and the injection of effector proteins into host cells. The induction of these virulence mechanisms can be associated with concomitant downregulation of the abundance of proteins that trigger the host immune system, such as bacterial flagellin. In Pseudomonas syringae, we observed that bacterial motility and the abundance of flagellin were significantly reduced under conditions that induce the type III secretion system. To identify genes involved in this negative regulation, we conducted a forward genetic screen with P. syringae pv. maculicola ES4326 using motility as a screening phenotype. We identified the periplasmic protease AlgW as a key negative regulator of flagellin abundance that also positively regulates alginate biosynthesis and the type III secretion system. We also demonstrate that AlgW constitutes a major virulence determinant of P. syringae required to dampen plant immune responses. Our findings support the conclusion that P. syringae co-ordinately regulates virulence strategies through AlgW in order to effectively suppress host immunity.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | | |
Collapse
|
25
|
Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J Bacteriol 2010; 193:286-91. [PMID: 21036998 DOI: 10.1128/jb.01132-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate overproduction in Pseudomonas aeruginosa can be caused by the proteolysis of the anti-sigma factor MucA regulated by the AlgW protease. Here, we show that inactivation of MucD, an HtrA/DegP homolog and alginate regulator, can bypass AlgW, leading to an atypical proteolysis of MucA that is dependent on the MucP protease.
Collapse
|
26
|
Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 2010; 192:5709-17. [PMID: 20817772 DOI: 10.1128/jb.00526-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute, invasive infections in immunocompromised individuals and chronic, persistent respiratory infections in individuals with cystic fibrosis (CF). The differential progression of acute or chronic infections involves the production of distinct sets of virulence factors. P. aeruginosa strains isolated from patients with acute respiratory infection are generally nonencapsulated and express a variety of invasive virulence factors, including flagella, the type III secretion system (T3SS), type IV pili (TFP), and multiple secreted toxins and degradative enzymes. Strains isolated from chronically infected CF patients, however, typically lack expression of invasive virulence factors and have a mucoid phenotype due to the production of an alginate capsule. The mucoid phenotype results from loss-of-function mutations in mucA, which encodes an anti-sigma factor that normally prevents alginate synthesis. Here, we report that the cyclic AMP/Vfr-dependent signaling (CVS) pathway is defective in mucA mutants and that the defect occurs at the level of vfr expression. The CVS pathway regulates the expression of multiple invasive virulence factors, including T3SS, exotoxin A, protease IV, and TFP. We further demonstrate that mucA-dependent CVS inhibition involves the alternative sigma factor AlgU (AlgT) and the response regulator AlgR but does not depend on alginate production. Our findings show that a single naturally occurring mutation leads to inverse regulation of virulence factors involved in acute and persistent infections. These results suggest that mucoid conversion and inhibition of invasive virulence determinants may both confer a selective advantage to mucA mutant strains of P. aeruginosa in the CF lung.
Collapse
|
27
|
The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. J Bacteriol 2010; 192:3001-10. [PMID: 20348252 DOI: 10.1128/jb.01633-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extracytoplasmic function sigma factor AlgU of Pseudomonas aeruginosa is responsible for alginate overproduction, leading to mucoidy and chronic infections of cystic fibrosis patients. We investigated here the role of AlgU in the formation of nonmucoid biofilms. The algU mutant of P. aeruginosa PAO1 (PAOU) showed a dramatic impairment in biofilm formation under dynamic conditions. PAOU was defective both in cell attachment to glass and in development of robust, shear-resistant biofilms. This was explained by an impaired production of extracellular matrix, specifically of the exopolysaccharide Psl, as revealed by microscopy and enzyme-linked immunosorbent assay. Complementing the algU mutation with a plasmid-borne algU gene restored wild-type phenotypes. Compared with that in PAO1, expression of the psl operon was reduced in the PAOU strain, and the biofilm formation ability of this strain was partially restored by inducing the transcription of the psl operon. Furthermore, expression of the lectin-encoding lecA and lecB genes was reduced in the PAOU strain. In agreement with the requirement of LecB for type IV pilus biogenesis, PAOU displayed impaired twitching motility. Collectively, these genetic downregulation events explain the biofilm formation defect of the PAOU mutant. Promoter mapping indicated that AlgU is probably not directly responsible for transcription of the psl operon and the lec genes, but AlgU is involved in the expression of the ppyR gene, whose product was reported to positively control psl expression. Expressing the ppyR gene in PAOU partially restored the formation of robust biofilms.
Collapse
|
28
|
Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 2010; 12:1545-64. [PMID: 20236169 DOI: 10.1111/j.1462-2920.2010.02184.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immunocompromised astronauts during long-term missions. Therefore, insights into the behaviour of P. aeruginosa under spaceflight conditions were gained using two spaceflight-analogue culture systems: the rotating wall vessel (RWV) and the random position machine (RPM). Microarray analysis of P. aeruginosa PAO1 grown in the low shear modelled microgravity (LSMMG) environment of the RWV, compared with the normal gravity control (NG), revealed an apparent regulatory role for the alternative sigma factor AlgU (RpoE-like). Accordingly, P. aeruginosa cultured in LSMMG exhibited increased alginate production and upregulation of AlgU-controlled transcripts, including those encoding stress-related proteins. The LSMMG increased heat and oxidative stress resistance and caused a decrease in the oxygen transfer rate of the culture. This study also showed the involvement of the RNA-binding protein Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG and spaceflight response. The global transcriptional response of P. aeruginosa grown in the RPM was highly similar to that in NG. Fluid mixing was assessed in both systems and is believed to be a pivotal factor contributing to transcriptional differences between RWV- and RPM-grown P. aeruginosa. This study represents the first step towards the identification of virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections during spaceflight and in immunocompromised patients.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Li X, Nielsen L, Nolan C, Halverson LJ. Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment. Environ Microbiol 2010; 12:1578-90. [PMID: 20236161 DOI: 10.1111/j.1462-2920.2010.02186.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Under water-limiting conditions Pseudomonas putida produces the exopolysaccharide alginate, which influences biofilm development and facilitates maintaining a hydrated microenvironment. Since alginate is a minor biofilm matrix component it is important to determine whether alginate production occurs by all or a subset of residents, and when and to what extent cells contribute to alginate production. To address these questions we employed stable and unstable fluorescent reporters to measure alginate biosynthesis (algD) operon expression and metabolic activity in vivo quantitatively by flow cytometry and visually by microscopy. Here we report that during growth under water-limiting conditions and when biofilms become dehydrated most residents transiently express the alginate biosynthesis genes leading to distinct spatial patterns as the biofilm ages. Transient alginate gene expression was not a consequence of decreased metabolic activity, since metabolic reporters were still expressed, nor was it likely due to transient cytosolic availability of the alternative sigma factor AlgT, based on qRT-PCR. Our findings also indicate that one or more biofilm attribute, other than alginate, provides protection from desiccation stress. Collectively, our findings suggest that differentiated cells dedicated to alginate production are not part of the P. putida biofilm lifestyle under water-limiting conditions. Alternatively, P. putida biofilm cells may be responding to their own local environment, producing alginate because of the fitness advantage it confers under those particular conditions.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
30
|
Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 2009; 5:e1000651. [PMID: 19763168 PMCID: PMC2731931 DOI: 10.1371/journal.pgen.1000651] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response. Bacteria possess various signaling systems that sense and respond to environmental conditions. The bacterial envelope is at the front line for most external stress conditions; its components sense perturbations and transmit signals to induce transcriptional reprogramming, leading to an adaptive response. In Escherichia coli, at least five response pathways, called Bae, Cpx, Psp, Rcs, and σE, are induced in response to envelope stress. To date, these pathways have been studied mainly individually, and the interconnections and/or overlaps between them have not been extensively characterized. The present study establishes two important characteristics of stress response in E. coli: first, that a given stress solicits the combined responses of several pathways; second, that each individual pathway controls a discrete set of genes involved in the response, and shows little overlap with other pathways. Based on previous knowledge and the present data, we propose that an environmental stress probably impacts on the cell envelope by inducing numerous alterations, each of which may be perceived by different pathways of the stress response and contributes to adapting the cell to different aspects of the stress damage. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response.
Collapse
|
31
|
New plasmid tools for genetic analysis of Actinobacillus pleuropneumoniae and other pasteurellaceae. Appl Environ Microbiol 2009; 75:6124-31. [PMID: 19666733 DOI: 10.1128/aem.00809-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have generated a set of plasmids, based on the mobilizable shuttle vector pMIDG100, which can be used as tools for genetic manipulation of Actinobacillus pleuropneumoniae and other members of the Pasteurellaceae. A tandem reporter plasmid, pMC-Tandem, carrying promoterless xylE and gfpmut3 genes downstream of a multiple-cloning site (MCS), can be used for identification of transcriptional regulators and conditions which favor gene expression from different cloned promoters. The ability to detect transcriptional regulators using the tandem reporter system was validated in A. pleuropneumoniae using the cloned rpoE (sigma(E)) promoter (P). The resulting plasmid, pMCrpoEP, was used to identify a mutant defective in production of RseA, the negative regulator of sigma(E), among a bank of random transposon mutants, as well as to detect induction of sigma(E) following exposure of A. pleuropneumoniae to ethanol or heat shock. pMCsodCP, carrying the cloned sodC promoter of A. pleuropneumoniae, was functional in A. pleuropneumoniae, Haemophilus influenzae, Haemophilus parasuis, Mannheimia haemolytica, and Pasteurella multocida. Two general expression vectors, pMK-Express and pMC-Express, which differ in their antibiotic resistance markers (kanamycin and chloramphenicol, respectively), were constructed for the Pasteurellaceae. Both plasmids have the A. pleuropneumoniae sodC promoter upstream of the gfpmut3 gene and an extended MCS. Replacement of gfpmut3 with a gene of interest allows complementation and heterologous gene expression, as evidenced by expression of the Haemophilus ducreyi nadV gene in A. pleuropneumoniae, rendering the latter NAD independent.
Collapse
|
32
|
The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J Bacteriol 2009; 191:2285-95. [PMID: 19168621 DOI: 10.1128/jb.01490-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucoidy, or overproduction of the exopolysaccharide known as alginate, in Pseudomonas aeruginosa is a poor prognosticator for lung infections in cystic fibrosis. Mutation of the anti-sigma factor MucA is a well-accepted mechanism for mucoid conversion. However, certain clinical mucoid strains of P. aeruginosa have a wild-type (wt) mucA. Here, we describe a loss-of-function mutation in kinB that causes overproduction of alginate in the wt mucA strain PAO1. KinB is the cognate histidine kinase for the transcriptional activator AlgB. Increased alginate production due to inactivation of kinB was correlated with high expression at the alginate-related promoters P(algU) and P(algD). Deletion of alternative sigma factor RpoN (sigma(54)) or the response regulator AlgB in kinB mutants decreased alginate production to wt nonmucoid levels. Mucoidy was restored in the kinB algB double mutant by expression of wt AlgB or phosphorylation-defective AlgB.D59N, indicating that phosphorylation of AlgB was not required for alginate overproduction when kinB was inactivated. The inactivation of the DegS-like protease AlgW in the kinB mutant caused loss of alginate production and an accumulation of the hemagglutinin (HA)-tagged MucA. Furthermore, we observed that the kinB mutation increased the rate of HA-MucA degradation. Our results also indicate that AlgW-mediated MucA degradation required algB and rpoN in the kinB mutant. Collectively, these studies indicate that KinB is a negative regulator of alginate production in wt mucA strain PAO1.
Collapse
|
33
|
Yamanaka T, Furukawa T, Matsumoto-Mashimo C, Yamane K, Sugimori C, Nambu T, Mori N, Nishikawa H, Walker CB, Leung KP, Fukushima H. Gene expression profile and pathogenicity of biofilm-forming Prevotella intermedia strain 17. BMC Microbiol 2009; 9:11. [PMID: 19146705 PMCID: PMC2633007 DOI: 10.1186/1471-2180-9-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/16/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Prevotella intermedia (P. intermedia), a gram-negative, black-pigmented anaerobic rod, has been implicated in the development of chronic oral infection. P. intermedia strain 17 was isolated from a chronic periodontitis lesion in our laboratory and described as a viscous material producing strain. The stock cultures of this strain still maintain the ability to produce large amounts of viscous materials in the spent culture media and form biofilm-like structures. Chemical analyses of this viscous material showed that they were mainly composed of neutral sugars with mannose constituting 83% of the polysaccharides. To examine the biological effect of the extracellular viscous materials, we identified and obtained a naturally-occurring variant strain that lacked the ability to produce viscous materials in vitro from our stock culture collections of strain 17, designated as 17-2. We compared these two strains (strains 17 versus 17-2) in terms of their capacities to form biofilms and to induce abscess formation in mice as an indication of their pathogenicity. Further, gene expression profiles between these two strains in planktonic condition and gene expression patterns of strain 17 in solid and liquid cultures were also compared using microarray assays. RESULTS Strain 17 induced greater abscess formation in mice as compared to that of the variant. Strain 17, but not 17-2 showed an ability to interfere with the phagocytic activity of human neutrophils. Expression of several genes which including those for heat shock proteins (DnaJ, DnaK, ClpB, GroEL and GroES) were up-regulated two to four-fold with statistical significance in biofilm-forming strain 17 as compared to the variant strain 17-2. Strain 17 in solid culture condition exhibited more than eight-fold up-regulated expression levels of several genes which including those for levanase, extracytoplasmic function-subfamily sigma factor (sigmaE; putative) and polysialic acid transport protein (KpsD), as compared to those of strain 17 in liquid culture media. CONCLUSION These results demonstrate that the capacity to form biofilm in P. intermedia contribute to their resistance against host innate defence responses.
Collapse
Affiliation(s)
- Takeshi Yamanaka
- Department of Bacteriology, Osaka Dental University, Osaka, Japan
| | - Tomoyo Furukawa
- Department of Bacteriology, Osaka Dental University, Osaka, Japan
| | | | - Kazuyoshi Yamane
- Department of Bacteriology, Osaka Dental University, Osaka, Japan
| | - Chieko Sugimori
- Department of Bacteriology, Osaka Dental University, Osaka, Japan
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Osaka, Japan
| | - Naoki Mori
- Department of Bacteriology, Osaka Dental University, Osaka, Japan
| | | | - Clay B Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Kai-Poon Leung
- Microbiology Branch, U.S. Army Dental and Trauma Research Detachment, Walter Reed Army Institute of Research, Great Lakes, IL 60088, USA
| | | |
Collapse
|
34
|
|
35
|
Qiu D, Eisinger VM, Head NE, Pier GB, Yu HD. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2008; 154:2119-2130. [PMID: 18599839 DOI: 10.1099/mic.0.2008/017368-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Overproduction of the exopolysaccharide alginate and conversion to a mucoid phenotype in Pseudomonas aeruginosa are markers for the onset of chronic lung infection in cystic fibrosis (CF). Alginate production is regulated by the extracytoplasmic function (ECF) sigma factor AlgU/T and the cognate anti-sigma factor MucA. Many clinical mucoid isolates carry loss-of-function mutations in mucA. These mutations, including the most common mucA22 allele, cause C-terminal truncations in MucA, indicating that an inability to regulate AlgU activity by MucA is associated with conversion to the mucoid phenotype. Here we report that a mutation in a stable mucoid strain derived from the parental strain PAO1, designated PAO581, that does not contain the mucA22 allele, was due to a single-base deletion in mucA (DeltaT180), generating another type of C-terminal truncation. A global mariner transposon screen in PAO581 for non-mucoid isolates led to the identification of three regulators of alginate production, clpP (PA1801), clpX (PA1802), and a clpP paralogue (PA3326, designated clpP2). The PAO581 null mutants of clpP, clpX and clpP2 showed decreased AlgU transcriptional activity and an accumulation of haemagglutinin (HA)-tagged N-terminal MucA protein with an apparent molecular mass of 15 kDa. The clpP and clpX mutants of a CF mucoid isolate revert to the non-mucoid phenotype. The ClpXP and ClpP2 proteins appear to be part of a proteolytic network that degrades the cytoplasmic portion of truncated MucA proteins to release the sequestered AlgU, which drives alginate biosynthesis.
Collapse
Affiliation(s)
- Dongru Qiu
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | - Vonya M Eisinger
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | - Nathan E Head
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | - Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hongwei D Yu
- Department of Pediatrics, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25701-3655, USA.,Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| |
Collapse
|
36
|
Vanaporn M, Vattanaviboon P, Thongboonkerd V, Korbsrisate S. The rpoE operon regulates heat stress response in Burkholderia pseudomallei. FEMS Microbiol Lett 2008; 284:191-6. [PMID: 18507684 DOI: 10.1111/j.1574-6968.2008.01216.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Burkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress. The rpoE operon knockout mutant exhibited growth retardation and reduced survival when exposed to a high temperature. Expression analysis using rpoH promoter-lacZ fusion revealed that heat stress induction of rpoH, which encodes heat shock sigma factor (sigma(H)), was abolished in the B. pseudomallei rpoE mutant. Analysis of the rpoH promoter region revealed sequences sharing high homology to the consensus sequence of sigma(E)-dependent promoters. Moreover, the putative heat-induced sigma(H)-regulated heat shock proteins (i.e. GroEL and HtpG) were also absent in the rpoE operon mutant. Altogether, our data suggest that the rpoE operon regulates B. pseudomallei heat stress response through the function of rpoH.
Collapse
Affiliation(s)
- Muthita Vanaporn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
37
|
Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by algU. Appl Environ Microbiol 2007; 73:6748-56. [PMID: 17827317 PMCID: PMC2074953 DOI: 10.1128/aem.01232-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022] Open
Abstract
Many virulence genes in plant bacterial pathogens are coordinately regulated by "global" regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.
Collapse
Affiliation(s)
- Xiang Yang Shi
- Department of Plant Pathology and Microbiology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
38
|
Morici LA, Carterson AJ, Wagner VE, Frisk A, Schurr JR, Höner zu Bentrup K, Hassett DJ, Iglewski BH, Sauer K, Schurr MJ. Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 2007; 189:7752-64. [PMID: 17766417 PMCID: PMC2168728 DOI: 10.1128/jb.01797-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AlgR controls numerous virulence factors in Pseudomonas aeruginosa, including alginate, hydrogen cyanide production, and type IV pilus-mediated twitching motility. In this study, the role of AlgR in biofilms was examined in continuous-flow and static biofilm assays. Strain PSL317 (DeltaalgR) produced one-third the biofilm biomass of wild-type strain PAO1. Complementation with algR, but not fimTU-pilVWXY1Y2E, restored PSL317 to the wild-type biofilm phenotype. Comparisons of the transcriptional profiles of biofilm-grown PAO1 and PSL317 revealed that a number of quorum-sensing genes were upregulated in the algR deletion strain. Measurement of rhlA::lacZ and rhlI::lacZ promoter fusions confirmed the transcriptional profiling data when PSL317 was grown as a biofilm, but not planktonically. Increased amounts of rhamnolipids and N-butyryl homoserine lactone were detected in the biofilm effluent but not the planktonic supernatants of the algR mutant. Additionally, AlgR specifically bound to the rhlA and rhlI promoters in mobility shift assays. Moreover, PAO1 containing a chromosomal mutated AlgR binding site in its rhlI promoter formed biofilms and produced increased amounts of rhamnolipids similarly to the algR deletion strain. These observations indicate that AlgR specifically represses the Rhl quorum-sensing system during biofilm growth and that such repression is necessary for normal biofilm development. These data also suggest that AlgR may control transcription in a contact-dependent or biofilm-specific manner.
Collapse
Affiliation(s)
- Lisa A Morici
- Tulane University Health Sciences Center, Department of Microbiology and Immunology, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Muhammadi, Ahmed N. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 2007; 8:191-202. [PMID: 18645604 PMCID: PMC2435354 DOI: 10.2174/138920207780833810] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/22/2022] Open
Abstract
Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca(2+)-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca(2+)-dependent epimerization. A hierarchy of alginate genes expression under sigma(22)(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of sigma(22). These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nuzhat Ahmed
- Centre for Molecular Genetics, University of Karachi, Karachi-75270,
Pakistan
| |
Collapse
|
40
|
Ambrosi C, Tiburzi F, Imperi F, Putignani L, Visca P. Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1. J Bacteriol 2005; 187:5097-107. [PMID: 16030202 PMCID: PMC1196021 DOI: 10.1128/jb.187.15.5097-5107.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to iron limitation, Pseudomonas aeruginosa produces the fluorescent siderophore pyoverdine. Transcription of pyoverdine biosynthetic (pvd) genes is driven by the iron starvation sigma factor PvdS, which is negatively regulated by the Fur-Fe(II) holorepressor. We studied the effect of AlgQ, the Escherichia coli Rsd orthologue, on pyoverdine production by P. aeruginosa PAO1. AlgQ is a global regulatory protein which activates alginate, ppGpp, and inorganic polyphosphate synthesis through a cascade involving nucleoside diphosphate kinase (Ndk). AlgQ is also capable of interacting with region 4 of RpoD. In a reconstituted E. coli system, PvdS-dependent transcription from the pvdA promoter was doubled by the multicopy algQ gene. The P. aeruginosa DeltaalgQ mutant exhibited a moderate but reproducible reduction in pyoverdine production compared with wild-type PAO1, as a result of a decline in transcription of pvd genes. PvdS expression was not affected by the algQ mutation. Single-copy algQ fully restored pyoverdine production and expression of pvd genes in the DeltaalgQ mutant, while ndk did not. An increased intracellular concentration of RpoD mimicked the DeltaalgQ phenotype, whereas PvdS overexpression suppressed the algQ mutation. E. coli rsd could partially substitute for algQ in transcriptional modulation of pvd genes. We propose that AlgQ acts as an anti-sigma factor for RpoD, eliciting core RNA polymerase recruitment by PvdS and transcription initiation at pvd promoters. AlgQ provides a link between the pyoverdine and alginate regulatory networks. These systems have similarities in responsiveness and physiological function: both depend on alternative sigma factors, respond to nutrient starvation, and act as virulence determinants for P. aeruginosa.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Dipartimento di Biologia, Università di Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy.
| | | | | | | | | |
Collapse
|
41
|
Duguay AR, Silhavy TJ. Quality control in the bacterial periplasm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:121-34. [PMID: 15546662 DOI: 10.1016/j.bbamcr.2004.04.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
Studies of the mechanisms that Gram-negative bacteria use to sense and respond to stress have led to a greater understanding of protein folding in both cytoplasmic and extracytoplasmic locations. In response to stressful conditions, bacteria induce a variety of stress response systems, examples of which are the sigma(E) and Cpx systems in Escherichia coli. Induction of these stress response systems results in upregulation of several gene targets that have been shown to be important for protein folding under normal conditions. Here we review the identification of stress response systems and their corresponding gene targets in E. coli. In addition, we discuss the apparent redundancy of the folding factors in the periplasm, and we consider the potential importance of the functional overlap that exists.
Collapse
Affiliation(s)
- Amy R Duguay
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
42
|
Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Høiby N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175-87. [PMID: 15047518 PMCID: PMC375275 DOI: 10.1128/aac.48.4.1175-1187.2004] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are commonly colonized with Pseudomonas aeruginosa biofilms. Chronic endobronchial P. aeruginosa infections are impossible to eradicate with antibiotics, but intensive suppressive antibiotic therapy is essential to maintain the lung function of CF patients. The treatment often includes beta-lactam antibiotics. How these antibiotics influence gene expression in the surviving biofilm population of P. aeruginosa is not clear. Thus, we used the microarray technology to study the effects of subinhibitory concentrations of a beta-lactam antibiotic, imipenem, on gene expression in biofilm populations. Many genes showed small but statistically significant differential expression in response to imipenem. We identified 34 genes that were induced or repressed in biofilms exposed to imipenem more than fivefold compared to the levels of induction or repression for the controls. As expected, the most strongly induced gene was ampC, which codes for chromosomal beta-lactamase. We also found that genes coding for alginate biosynthesis were induced by exposure to imipenem. Alginate production is correlated to the development of impaired lung function, and P. aeruginosa strains isolated from chronically colonized lungs of CF patients are nearly always mucoid due to the overproduction of alginate. Exposure to subinhibitory concentrations of imipenem caused structural changes in the biofilm, e.g., an increased biofilm volume. Increased levels of alginate production may be an unintended adverse consequence of imipenem treatment in CF patients.
Collapse
Affiliation(s)
- Niels Bagge
- Department of Clinical Microbiology, Rigshospitalet, and Department of Bacteriology, Institute for Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
43
|
Soler CP, Gidenne S, Saint-Blancard P, Kerleguer A, Gerome P. [Recovery method of serotypable character in non serotypable pseudomonas aeruginosa strains]. ACTA ACUST UNITED AC 2004; 52:33-8. [PMID: 14761711 DOI: 10.1016/j.patbio.2003.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 09/03/2003] [Indexed: 11/26/2022]
Abstract
Serotyping is one of the most used techniques for typing Pseudomonas aeruginosa strains. During chronic infections, and especially in cystic fibrosis, the decrease of lipopolysaccharide production is responsible for difficulties in determining O antigens. The possibility of serotyping can be simply restored by using a primary culture broth containing amikacin (1/6 of the strain MIC for this antibiotic); this is due to the ability of this antibiotic to inhibit alginate production. This technique allowed us to determine the serotype of 108 non-serotypable strains of P. aeruginosa isolated in 14 different hospitals. Among these isolates, serotype O:1 and O:13, had a high prevalence; the origin is a deficiency in D-glucose and L-rhamnose, required for the synthesis of lipopolysaccharide. In contrast, these sugars are not present in lipopolysaccharide of O:12, and these strains are always serotypable. The main protein is Alg C; this bifunctional enzyme is required in the exopolysaccharide and lipopolysaccharide production, according stress conditions in the bacterial-cells' environment. Determination of the serotype, as Antibiogram, is essential for genotypic inquiries.
Collapse
Affiliation(s)
- C P Soler
- Service de biologie, hôpital Bégin, 69, avenue de Paris, 94160 Saint-Mandé, France.
| | | | | | | | | |
Collapse
|
44
|
Browning DF, Whitworth DE, Hodgson DA. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol Microbiol 2003; 48:237-51. [PMID: 12657058 DOI: 10.1046/j.1365-2958.2003.03431.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Illumination of dark-grown Myxococcus xanthus with blue light leads to the induction of carotenoid synthesis. Central to this response is the activation of the light-inducible promoter, PcarQRS, and the transcription of three downstream genes, carQ, carR and carS. Sequence analysis predicted that CarQ is a member of the ECF (extracytoplasmic function) subfamily of RNA polymerase sigma factors, and that CarR is an inner membrane protein. Genetic analysis strongly implied that CarR is an antisigma factor that sequesters CarQ in a transcriptionally inactive complex. Using in vitro transcription run-off assays, we present biochemical evidence that CarQ functions as a bacterial sigma factor and is responsible for transcription initiation at PcarQRS. Similar experiments using the crtI promoter failed to implicate CarQ in direct transcription of the crtI gene. Experiments using the yeast two-hybrid system demonstrated a protein-protein interaction between CarQ and CarR, providing evidence of a CarQ-CarR complex. The yeast two-hybrid system data also indicated that CarR is capable of oligomerization. Fractionation of M. xanthus membranes with the detergent sarkosyl showed that CarR was associated with the inner membrane. Furthermore, CarR was found to be unstable in illuminated stationary phase cells, providing a possible mechanism by which the CarR-CarQ complex is disrupted.
Collapse
Affiliation(s)
- Douglas F Browning
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
45
|
Abstract
Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor sigma(E). Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P < or = 10(-4)) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5' end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF.
Collapse
Affiliation(s)
- Aaron M Firoved
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
46
|
Lizewski SE, Lundberg DS, Schurr MJ. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 2002; 70:6083-93. [PMID: 12379685 PMCID: PMC130412 DOI: 10.1128/iai.70.11.6083-6093.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. One P. aeruginosa virulence factor unique to CF isolates is overproduction of alginate, phenotypically termed mucoidy. Mucoidy is the result of increased transcription from the algD gene and is activated by the transcriptional regulator AlgR. Mutations in algR result in a nonmucoid phenotype and loss of twitching motility. Additionally, AlgR controls transcription of algC, encoding a dual-function enzyme necessary for both lipopolysaccharide (LPS) and alginate production. Therefore, to determine the effect of algR on P. aeruginosa virulence, an algR mutant was examined for sensitivity to reactive oxygen intermediates, killing by phagocytes, systemic virulence, and the ability to maintain a murine lung infection. We found that P. aeruginosa PAO700 (algR::Gm(r)) was less lethal than PAO1, as tested in an acute septicemia infection mouse model, and was cleared more efficiently in a mouse pneumonia model. Additionally, the algR mutant (PAO700) was more sensitive to hypochlorite. However, PAO700 was more resistant to hydrogen peroxide and killed less readily in an acellular myeloperoxidase assay than PAO1. There was little difference in killing between PAO1 and PAO700 with macrophage-like J774 cells and human polymorhonuclear leukocytes. Two-dimensional gel analysis of P. aeruginosa algR mutant and wild-type protein extracts revealed 47 differentially regulated proteins, suggesting that AlgR plays both a positive role and a negative role in gene expression. Together, these results imply that AlgR is necessary for virulence and regulates genes in addition to the genes associated with alginate and LPS production and pilus function.
Collapse
Affiliation(s)
- Stephen E Lizewski
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | |
Collapse
|
47
|
Bao Q, Tian Y, Li W, Xu Z, Xuan Z, Hu S, Dong W, Yang J, Chen Y, Xue Y, Xu Y, Lai X, Huang L, Dong X, Ma Y, Ling L, Tan H, Chen R, Wang J, Yu J, Yang H. A complete sequence of the T. tengcongensis genome. Genome Res 2002; 12:689-700. [PMID: 11997336 PMCID: PMC186588 DOI: 10.1101/gr.219302] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thermoanaerobacter tengcongensis is a rod-shaped, gram-negative, anaerobic eubacterium that was isolated from a freshwater hot spring in Tengchong, China. Using a whole-genome-shotgun method, we sequenced its 2,689,445-bp genome from an isolate, MB4(T) (Genbank accession no. AE008691). The genome encodes 2588 predicted coding sequences (CDS). Among them, 1764 (68.2%) are classified according to homology to other documented proteins, and the rest, 824 CDS (31.8%), are functionally unknown. One of the interesting features of the T. tengcongensis genome is that 86.7% of its genes are encoded on the leading strand of DNA replication. Based on protein sequence similarity, the T. tengcongensis genome is most similar to that of Bacillus halodurans, a mesophilic eubacterium, among all fully sequenced prokaryotic genomes up to date. Computational analysis on genes involved in basic metabolic pathways supports the experimental discovery that T. tengcongensis metabolizes sugars as principal energy and carbon source and utilizes thiosulfate and element sulfur, but not sulfate, as electron acceptors. T. tengcongensis, as a gram-negative rod by empirical definitions (such as staining), shares many genes that are characteristics of gram-positive bacteria whereas it is missing molecular components unique to gram-negative bacteria. A strong correlation between the G + C content of tDNA and rDNA genes and the optimal growth temperature is found among the sequenced thermophiles. It is concluded that thermophiles are a biologically and phylogenetically divergent group of prokaryotes that have converged to sustain extreme environmental conditions over evolutionary timescale.
Collapse
Affiliation(s)
- Qiyu Bao
- Beijing Genomics Institute/Genomics and Bioinformatics Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA. Mechanisms of bacterial pathogenicity. Postgrad Med J 2002; 78:216-24. [PMID: 11930024 PMCID: PMC1742320 DOI: 10.1136/pmj.78.918.216] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic bacteria utilise a number of mechanisms to cause disease in human hosts. Bacterial pathogens express a wide range of molecules that bind host cell targets to facilitate a variety of different host responses. The molecular strategies used by bacteria to interact with the host can be unique to specific pathogens or conserved across several different species. A key to fighting bacterial disease is the identification and characterisation of all these different strategies. The availability of complete genome sequences for several bacterial pathogens coupled with bioinformatics will lead to significant advances toward this goal.
Collapse
Affiliation(s)
- J W Wilson
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
49
|
Firoved AM, Boucher JC, Deretic V. Global genomic analysis of AlgU (sigma(E))-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 2002; 184:1057-64. [PMID: 11807066 PMCID: PMC134789 DOI: 10.1128/jb.184.4.1057-1064.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conversion of Pseudomonas aeruginosa to the mucoid phenotype coincides with the establishment of chronic respiratory infections in cystic fibrosis (CF). A major pathway of conversion to mucoidy in clinical strains of P. aeruginosa is dependent upon activation of the alternative sigma factor AlgU (P. aeruginosa sigma(E)). Here we initiated studies of AlgU-dependent global expression patterns in P. aeruginosa in order to assess whether additional genes, other than those involved in the production of the mucoid exopolysaccharide alginate, are turned on during conversion to mucoidy. Using genomic information and the consensus AlgU promoter sequence, we identified 35 potential AlgU (sigma(E)) promoter sites on the P. aeruginosa chromosome. Each candidate promoter was individually tested by reverse transcription and mRNA 5'-end mapping using RNA isolated from algU(+) and algU::Tc(r) mutant cells. A total of 10 new AlgU-dependent promoters were identified, and the corresponding mRNA start sites were mapped. Two of the 10 newly identified AlgU promoters were upstream of predicted lipoprotein genes. Since bacterial lipoproteins have been implicated as inducers of inflammatory pathways, we tested whether lipopeptides corresponding to the products of the newly identified AlgU-dependent lipoprotein genes, lptA and lptB, had proinflammatory activity. In human peripheral blood monocyte-derived macrophages the peptides caused production of interleukin-8, a proinflammatory chemokine typically present at excessively high levels in the CF lung. Our studies show how genomic information can be used to uncover on a global scale the genes controlled by a given sigma factor (collectively termed here sigmulon) using conventional molecular tools. In addition, our data suggest the existence of a previously unknown connection between conversion to mucoidy and expression of lipoproteins with potential proinflammatory activity. This link may be of significance for infections and inflammatory processes in CF.
Collapse
Affiliation(s)
- Aaron M Firoved
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, Michigan 48109-0620, USA
| | | | | |
Collapse
|
50
|
Aramaki H, Hirata T, Hara C, Fujita M, Sagara Y. Transcription analysis of rpoH in Pseudomonas putida. FEMS Microbiol Lett 2001; 205:165-9. [PMID: 11750797 DOI: 10.1111/j.1574-6968.2001.tb10942.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We previously determined the complete DNA sequence of the rpoH gene encoding the heat-shock sigma factor (sigmaH) of Pseudomonas putida. In the present study, the transcriptional start sites of rpoH were determined to be 41 nucleotides (T1), 153 nucleotides (T2) and 157 nucleotides (T3) upstream from the translational start codon (AUG) of rpoH by rapid amplification of cDNA 5'-ends. Based on the locations of T2 and T3, a sigma70-type promoter (P2) was determined to be located in the open reading frame region of upstream ftsX in addition to the sigmaE-type promoter (P1; DNA Res. 6 (1999) 241). In the in vitro transcription assay with reconstituted RNA polymerases (Esigma70, EsigmaE, EsigmaH and EsigmaS) of Pseudomonas aeruginosa, EsigmaE transcribed rpoH from T1 and Esigma(70) transcribed it from T2 and T3. In both cases, the level of transcription was higher at 42 degrees C than at 30 degrees C. No transcript was detected when EsigmaH or EsigmaS was used. These results indicate that EsigmaE and Esigma70 recognize P1 promoter and P2 promoter, respectively, and also prove that the synthesis of rpoH mRNA is inducible upon heat shock.
Collapse
Affiliation(s)
- H Aramaki
- Department of Molecular Biology, Daiichi College of Pharmaceutical Sciences, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|