1
|
Wu Z, Zhang Y, Wang L, Mei M, Qiu Y, Liu Y, Fu S, Xiong J, Lu Q, Guo P. Genomic and transcriptomics analysis reveal putative secreted proteins expressed of Pasteurella multocida during 18β-glycyrrhetinic acid treatment. Front Vet Sci 2024; 11:1495924. [PMID: 39575438 PMCID: PMC11578946 DOI: 10.3389/fvets.2024.1495924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Pasteurella multocida is a gram-negative opportunistic pathogen that can infect both domestic animals and humans, leading to large economic losses to the livestock industry. 18β-Glycyrrhetinic acid, the main active component of Glycyrrhiza glabra L., has antibacterial properties. However, the virulence factors (especially the secreted proteins with eukaryotic-like domains) and pathogenesis of P. multocida and the regulatory effect of 18β-glycyrrhetinic acid have not been fully elucidated. This study focused on predicting secreted proteins with eukaryotic-like domains in P. multocida and examining the antibacterial effects of 18β-glycyrrhetinic acid on P. multocida. We combined transcriptomics analysis and in silico approaches to explore virulence factors in the P. multocida HB03 genome and identified 40 secreted proteins with eukaryotic-like domains regulated by 18β-glycyrrhetinic acid. Quantitative real-time polymerase chain reaction (qPCR) showed that compared with the P. multocida group, 18β-glycyrrhetinic acid significantly reduced the expression of aceF, gdhA, hpaG, and sel1L and increased the expression of galT and xynC, which was consistent with the transcriptomic data. Combining these qPCR results with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotation results showed that 18β-glycyrrhetinic acid interfered with bacterial energy metabolism and host interactions by regulating the expression of virulence factors in P. multocida. Moreover, molecular docking revealed that 18β-glycyrrhetinic acid had the potential to target aceF and hpaG, thus regulating the activity of secreted proteins. Our findings indicate that predicting the secreted proteins with eukaryotic-like domains in P. multocida and elucidating the regulatory effect of 18β-glycyrrhetinic acid provides a theoretical basis for the prevention and control of P. multocida infection and the development of alternative antibiotic therapies.
Collapse
Affiliation(s)
- Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuhan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Luyao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Sun P, Xu S, Tian Y, Chen P, Wu D, Zheng P. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. Int J Mol Sci 2024; 25:1222. [PMID: 38279222 PMCID: PMC10816480 DOI: 10.3390/ijms25021222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H) is a long-known class of two-component flavin-dependent monooxygenases from bacteria, including an oxygenase component (EC 1.14.14.9) and a reductase component (EC 1.5.1.36), with the latter being accountable for delivering the cofactor (reduced flavin) essential for o-hydroxylation. 4HPA3H has a broad substrate spectrum involved in key biological processes, including cellular catabolism, detoxification, and the biosynthesis of bioactive molecules. Additionally, it specifically hydroxylates the o-position of the C4 position of the benzene ring in phenolic compounds, generating high-value polyhydroxyphenols. As a non-P450 o-hydroxylase, 4HPA3H offers a viable alternative for the de novo synthesis of valuable natural products. The enzyme holds the potential to replace plant-derived P450s in the o-hydroxylation of plant polyphenols, addressing the current significant challenge in engineering specific microbial strains with P450s. This review summarizes the source distribution, structural properties, and mechanism of 4HPA3Hs and their application in the biosynthesis of natural products in recent years. The potential industrial applications and prospects of 4HPA3H biocatalysts are also presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (P.S.); (Y.T.); (P.C.); (D.W.)
| |
Collapse
|
3
|
Wasendorf C, Schmitz-Esser S, Eischeid CJ, Leyhe MJ, Nelson EN, Rahic-Seggerman FM, Sullivan KE, Peters NT. Genome analysis of Erwinia persicina reveals implications for soft rot pathogenicity in plants. Front Microbiol 2022; 13:1001139. [DOI: 10.3389/fmicb.2022.1001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Soft rot disease causes devastating losses to crop plants all over the world, with up to 90% loss in tropical climates. To better understand this economically important disease, we isolated four soft rot-causing Erwinia persicina strains from rotted vegetables. Notably, E. persicina has only recently been identified as a soft rot pathogen and a comprehensive genomic analysis and comparison has yet to be conducted. Here, we provide the first genomic analysis of E. persicina, compared to Pectobacterium carotovorum, P. carotovorum, and associated Erwinia plant pathogens. We found that E. persicina shares common genomic features with other Erwinia species and P. carotovorum, while having its own unique characteristics as well. The E. persicina strains examined here lack Type II and Type III secretion systems, commonly used to secrete pectolytic enzymes and evade the host immune response, respectively. E. persicina contains fewer putative pectolytic enzymes than P. carotovorum and lacks the Out cluster of the Type II secretion system while harboring a siderophore that causes a unique pink pigmentation during soft rot infections. Interestingly, a putative phenolic acid decarboxylase is present in the E. persicina strains and some soft rot pathogens, but absent in other Erwinia species, thus potentially providing an important factor for soft rot. All four E. persicina isolates obtained here and many other E. persicina genomes contain plasmids larger than 100 kbp that encode proteins likely important for adaptation to plant hosts. This research provides new insights into the possible mechanisms of soft rot disease by E. persicina and potential targets for diagnostic tools and control measures.
Collapse
|
4
|
Nozawa D, Matsuyama A, Furuya T. Biocatalytic synthesis and evaluation of antioxidant and antibacterial activities of hydroxyequols. Bioorg Med Chem Lett 2022; 73:128908. [PMID: 35902062 DOI: 10.1016/j.bmcl.2022.128908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Hydroxyequols are promising analogues of the biologically active flavonoid, equol. We recently found that the flavin-dependent monooxygenase HpaBro-3 of Rhodococcus opacus regioselectively synthesizes 3'-hydroxyequol from equol, whereas HpaBpl-1 of Photorhabdus luminescens synthesizes 6-hydroxyequol. In this study, we investigated the cascade synthesis of a dihydroxyequol compound from equol using these two enzymes. When Escherichia coli cells expressing HpaBro-3 and cells expressing HpaBpl-1 were simultaneously incubated with equol, the cells efficiently synthesized 6,3'-dihydroxyequol (8.7 mM, 2.4 g/L) via 3'- and 6-hydroxyequols in one pot. The antioxidant activity of the equol derivatives increased with an increase in the number of hydroxyl groups on the equol scaffold. 6,3'-Dihydroxyequol exhibited potent antioxidant activity. In addition, 6-hydroxyequol significantly inhibited the growth of E. coli. Cell survival studies suggested that 6-hydroxyequol is a bactericidal rather than bacteriostatic compound. To our knowledge, this is the first report describing the antibacterial activity of hydroxyequols.
Collapse
Affiliation(s)
- Daiki Nozawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
5
|
Ndoye B, Shafiei R, Sanaei NS, Cleenwerck I, Somda MK, Dicko MH, Tounkara LS, Guiro AT, Delvigne F, Thonart P. Acetobacter senegalensis Isolated from Mango Fruits: Its Polyphasic Characterization and Adaptation to Protect against Stressors in the Industrial Production of Vinegar: A Review. J Appl Microbiol 2022; 132:4130-4149. [PMID: 35182093 DOI: 10.1111/jam.15495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
It has been more than a decade since Acetobacter senegalensis was isolated, identified, and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological, and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate features that could give this strain significant diverse bioindustrial applications. For instance, its application in cocoa bean fermentation has made it a more suitable acetic acid bacterium for the making of chocolate than Acetobacter pasteurianus. Therefore, in this paper, we present a review that summarizes the current research on A. senegalensis at its microbial and genomic levels and also its specific bioindustrial applications, which can provide economic opportunities for African agribusiness.
Collapse
Affiliation(s)
- Bassirou Ndoye
- University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN), BP, Kaolack, Senegal.,Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| | - Rasoul Shafiei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Shah Sanaei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marius K Somda
- Biochemistry, Biotechnology, Food Technology and Nutrition Laboratory, University Pr Joseph Ki Zerbo, PO, Ouagadougou, Burkina Faso
| | - Mamoudou Hama Dicko
- Biochemistry, Biotechnology, Food Technology and Nutrition Laboratory, University Pr Joseph Ki Zerbo, PO, Ouagadougou, Burkina Faso
| | | | - Amadou Tidiane Guiro
- University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN), BP, Kaolack, Senegal
| | - Frank Delvigne
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| | - Philippe Thonart
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| |
Collapse
|
6
|
Permsirivisarn P, Yuenyao A, Pramanpol N, Charoenwattanasatien R, Suginta W, Chaiyen P, Pakotiprapha D. Mechanism of transcription regulation by Acinetobacter baumannii HpaR in the catabolism of p-hydroxyphenylacetate. FEBS J 2021; 289:3217-3240. [PMID: 34967505 DOI: 10.1111/febs.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
HpaR is a transcription regulator in the MarR family that controls the expression of the gene cluster responsible for conversion of p-hydroxyphenylacetate to pyruvate and succinate for cellular metabolism. Here, we report the biochemical and structural characterization of Acinetobacter baumannii HpaR (AbHpaR) and its complex with cognate DNA. Our study revealed that AbHpaR binds upstream of the divergently transcribed hpaA gene and the meta-cleavage operon, as well as the hpaR gene, thereby repressing their transcription by blocking access of RNA polymerase. Structural analysis of AbHpaR-DNA complex revealed that the DNA binding specificity can be achieved via a combination of both direct and indirect DNA sequence readouts. DNA binding of AbHpaR is weakened by 3,4-dihydroxyphenylacetate (DHPA), which is the substrate of the meta-cleavage reactions; this likely leads to expression of the target genes. Based on our findings, we propose a model for how A. baumannii controls transcription of HPA-metabolizing genes, which highlights the independence of global catabolite repression and could be beneficial for metabolic engineering towards bioremediation applications.
Collapse
Affiliation(s)
- Permkun Permsirivisarn
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Yuenyao
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttawan Pramanpol
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | | | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
Zhou Y, Ke Z, Ye H, Hong M, Xu Y, Zhang M, Jiang W, Hong Q. Hydrolase CehA and a Novel Two-Component 1-Naphthol Hydroxylase CehC1C2 are Responsible for the Two Initial Steps of Carbaryl Degradation in Rhizobium sp. X9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14739-14747. [PMID: 33264024 DOI: 10.1021/acs.jafc.0c03845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbaryl is a widely used carbamate pesticide in agriculture. The strain Rhizobium sp. X9 possesses the typical carbaryl degradation pathway in which carbaryl is mineralized via 1-naphthol, salicylate, and gentisate. In this study, we cloned a carbaryl hydrolase gene cehA and a novel two-component 1-naphthol hydroxylase gene cehC1C2. CehA mediates carbaryl hydrolysis to 1-naphthol and CehC1, an FMNH2 or FADH2-dependent monooxygenase belonging to the HpaB superfamily, and hydroxylates 1-naphthol in the presence of reduced nicotinamide-adenine dinucleotide (FMN)/flavin adenine dinucleotide (FAD), and the reductase CehC2. CehC1 has the highest amino acid similarity (58%) with the oxygenase component of a two-component 4-nitrophenol 2-monooxygenase, while CehC2 has the highest amino acid similarity (46%) with its reductase component. CehC1C2 could utilize both FAD and FMN as the cofactor during the hydroxylation, although higher catalytic activity was observed with FAD as the cofactor. The optimal molar ratio of CehC1 to CehC2 was 2:1. The Km and Kcat/Km values of CehC1 for 1-naphthol were 74.71 ± 16.07 μM and (8.29 ± 2.44) × 10-4 s-1·μM-1, respectively. Moreover, the enzyme activities and substrate spectrum between CehC1C2 and previously reported 1-naphthol hydroxylase McbC were compared. The results suggested that McbC had a higher 1-naphthol hydroxylation activity, while CehC1C2 had a broader substrate spectrum.
Collapse
Affiliation(s)
- Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hangting Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengting Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yifei Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
8
|
Kim H, Kim S, Kim D, Yoon SH. A single amino acid substitution in aromatic hydroxylase (HpaB) of Escherichia coli alters substrate specificity of the structural isomers of hydroxyphenylacetate. BMC Microbiol 2020; 20:109. [PMID: 32375644 PMCID: PMC7201708 DOI: 10.1186/s12866-020-01798-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/22/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND A broad range of aromatic compounds can be degraded by enteric bacteria, and hydroxyphenylacetic acid (HPA) degrading bacteria are the most widespread. Majority of Escherichia coli strains can use both the structural isomers of HPA, 3HPA and 4HPA, as the sole carbon source, which are catabolized by the same pathway whose associated enzymes are encoded by hpa gene cluster. Previously, we observed that E. coli B REL606 grew only on 4HPA, while E. coli B BL21(DE3) grew on 3HPA as well as 4HPA. RESULTS In this study, we report that a single amino acid in 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of E. coli determines the substrate specificity of HPA isomers. Alignment of protein sequences encoded in hpa gene clusters of BL21(DE3) and REL606 showed that there was a difference of only one amino acid (position 379 in HpaB) between the two, viz., Arg in BL21(DE3) and Cys in REL606. REL606 cells expressing HpaB having Arg379 could grow on 3HPA, whereas those expressing HpaB with Gly379 or Ser379 could not. Structural analysis suggested that the amino acid residue at position 379 of HpaB is located not in the active site, but in the vicinity of the 4HPA binding site, and that it plays an important role in mediating the entrance and stable binding of substrates to the active site. CONCLUSIONS The arginine residue at position 379 of HpaB is critical for 3HPA recognition. Information regarding the effect of amino acid residues on the substrate specificity of structural isomers can facilitate in designing hydoxylases with high catalytic efficiency and versatility.
Collapse
Affiliation(s)
- Hanseol Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sinyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
9
|
Wang Z, Wang T, Cui R, Zhang Z, Chen K, Li M, Hua Y, Gu H, Xu L, Wang Y, Yang Y, Shen X. HpaR, the Repressor of Aromatic Compound Metabolism, Positively Regulates the Expression of T6SS4 to Resist Oxidative Stress in Yersinia pseudotuberculosis. Front Microbiol 2020; 11:705. [PMID: 32362886 PMCID: PMC7180172 DOI: 10.3389/fmicb.2020.00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
HpaR, a MarR family transcriptional regulator, was first identified in Escherichia coli W for its regulation of the hpa-meta operon. Little else is known regarding its functionality. Here, we report that in Yersinia pseudotuberculosis, HpaR negatively regulates the hpa-meta operon similar to in E. coli W. To investigate additional functions of HpaR, RNA sequencing was performed for both the wild-type and the ΔhpaR mutant, which revealed that the type VI secretion system (T6SS) was positively regulated by HpaR. T6SS4 is important for bacteria resisting environmental stress, especially oxidative stress. We demonstrate that HpaR facilitates bacteria resist oxidative stress by upregulating the expression of T6SS4 in Y. pseudotuberculosis. HpaR is also involved in biofilm formation, antibiotic resistance, adhesion to eukaryotic cells, and virulence in mice. These results greatly expand our knowledge of the functionality of HpaR and reveal a new pathway that regulates T6SS4.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Rui Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhenxing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengyun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yueyue Hua
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Hong H, Seo H, Park W, Kim KJ. Sequence, structure and function-based classification of the broadly conserved FAH superfamily reveals two distinct fumarylpyruvate hydrolase subfamilies. Environ Microbiol 2019; 22:270-285. [PMID: 31657110 DOI: 10.1111/1462-2920.14844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
Abstract
Fumarylacetoacetate hydrolase (FAH) superfamily proteins are found ubiquitously in microbial pathways involved in the catabolism of aromatic substances. Although extensive bioinformatic data on these proteins have been acquired, confusion caused by problems with the annotation of these proteins hinders research into determining their physiological functions. Here we classify 606 FAH superfamily proteins using a maximum likelihood (ML) phylogenetic tree, comparative gene-neighbourhood patterns and in vitro enzyme assays. The FAH superfamily proteins used for the analyses are divided into five distinct subfamilies, and two of them, FPH-A and FPH-B, contain the majority of the proteins of undefined function. These subfamilies include clusters designated FPH-I and FPH-II, respectively, which include two distinct types of fumarylpyruvate hydrolase (FPH), an enzyme involved in the final step of the gentisate pathway. We determined the crystal structures of these FPH enzymes at 2.0 Å resolutions and investigate the substrate binding mode by which these types of enzymes can accommodate fumarylpyruvate as a substrate. Consequentially, we identify the molecular signatures of the two types of FPH enzymes among the broadly conserved FAH superfamily proteins. Our studies allowed us to predict the relationship of unknown FAH superfamily proteins using their sequence information.
Collapse
Affiliation(s)
- Hwaseok Hong
- Structural and Molecular Biology Laboratory, School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702701, Republic of Korea.,KNU Institute for Microorganisms, Kyungpook National University, Daegu, 702701, Republic of Korea
| | - Hogyun Seo
- Structural and Molecular Biology Laboratory, School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702701, Republic of Korea.,KNU Institute for Microorganisms, Kyungpook National University, Daegu, 702701, Republic of Korea
| | - Woojin Park
- Structural and Molecular Biology Laboratory, School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702701, Republic of Korea.,KNU Institute for Microorganisms, Kyungpook National University, Daegu, 702701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702701, Republic of Korea.,KNU Institute for Microorganisms, Kyungpook National University, Daegu, 702701, Republic of Korea
| |
Collapse
|
11
|
Shin SK, Ko YJ, Hyeon JE, Han SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. BIORESOURCE TECHNOLOGY 2019; 289:121728. [PMID: 31277889 DOI: 10.1016/j.biortech.2019.121728] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Lignin is a robust material that is considered useless because it has an inhibitory effect on microbes and acts as a physical barrier for cellulose degradation. Therefore, it has been removed from cellulosic biomass to produce high-value materials. However, lignin monomers can be converted to value-added chemicals such as biodegradable plastics and food additives by appropriately engineered microbes. Lignin degradation through peroxidase, laccase and other proteins with auxiliary activity is the first step in lignin valorization. Metabolic engineering of microorganisms for increased tolerance and production yield is the second step for lignin valorization. Here, this review offers a summary of current biotechnologies using various enzymatic activities, synergistic enzyme mixtures and metabolic engineering for lignin valorization in biorefinery.
Collapse
Affiliation(s)
- Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019; 25:968-976. [PMID: 31171880 DOI: 10.1038/s41591-019-0458-7] [Citation(s) in RCA: 789] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
In most cases of sporadic colorectal cancers, tumorigenesis is a multistep process, involving genomic alterations in parallel with morphologic changes. In addition, accumulating evidence suggests that the human gut microbiome is linked to the development of colorectal cancer. Here we performed fecal metagenomic and metabolomic studies on samples from a large cohort of 616 participants who underwent colonoscopy to assess taxonomic and functional characteristics of gut microbiota and metabolites. Microbiome and metabolome shifts were apparent in cases of multiple polypoid adenomas and intramucosal carcinomas, in addition to more advanced lesions. We found two distinct patterns of microbiome elevations. First, the relative abundance of Fusobacterium nucleatum spp. was significantly (P < 0.005) elevated continuously from intramucosal carcinoma to more advanced stages. Second, Atopobium parvulum and Actinomyces odontolyticus, which co-occurred in intramucosal carcinomas, were significantly (P < 0.005) increased only in multiple polypoid adenomas and/or intramucosal carcinomas. Metabolome analyses showed that branched-chain amino acids and phenylalanine were significantly (P < 0.005) increased in intramucosal carcinomas and bile acids, including deoxycholate, were significantly (P < 0.005) elevated in multiple polypoid adenomas and/or intramucosal carcinomas. We identified metagenomic and metabolomic markers to discriminate cases of intramucosal carcinoma from the healthy controls. Our large-cohort multi-omics data indicate that shifts in the microbiome and metabolome occur from the very early stages of the development of colorectal cancer, which is of possible etiological and diagnostic importance.
Collapse
|
13
|
Whole-genome-based phylogeny of Bacillus cytotoxicus reveals different clades within the species and provides clues on ecology and evolution. Sci Rep 2019; 9:1984. [PMID: 30760727 PMCID: PMC6374410 DOI: 10.1038/s41598-018-36254-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Bacillus cytotoxicus is a member of the Bacillus cereus group linked to fatal cases of diarrheal disease. Information on B. cytotoxicus is very limited; in particular comprehensive genomic data is lacking. Thus, we applied a genomic approach to characterize B. cytotoxicus and decipher its population structure. To this end, complete genomes of ten B. cytotoxicus were sequenced and compared to the four publicly available full B. cytotoxicus genomes and genomes of other B. cereus group members. Average nucleotide identity, core genome, and pan genome clustering resulted in clear distinction of B. cytotoxicus strains from other strains of the B. cereus group. Genomic content analyses showed that a hydroxyphenylalanine operon is present in B. cytotoxicus, but absent in all other members of the B. cereus group. It enables degradation of aromatic compounds to succinate and pyruvate and was likely acquired from another Bacillus species. It allows for utilization of tyrosine and might have given a B. cytotoxicus ancestor an evolutionary advantage resulting in species differentiation. Plasmid content showed that B. cytotoxicus is flexible in exchanging genes, allowing for quick adaptation to the environment. Genome-based phylogenetic analyses divided the B. cytotoxicus strains into four clades that also differed in virulence gene content.
Collapse
|
14
|
Biodegradation of 7-Hydroxycoumarin in Pseudomonas mandelii 7HK4 via ipso-Hydroxylation of 3-(2,4-Dihydroxyphenyl)-propionic Acid. Molecules 2018; 23:molecules23102613. [PMID: 30321993 PMCID: PMC6222606 DOI: 10.3390/molecules23102613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
A gene cluster, denoted as hcdABC, required for the degradation of 3-(2,4-dihydroxyphenyl)-propionic acid has been cloned from 7-hydroxycoumarin-degrading Pseudomonas mandelii 7HK4 (DSM 107615), and sequenced. Bioinformatic analysis shows that the operon hcdABC encodes a flavin-binding hydroxylase (HcdA), an extradiol dioxygenase (HcdB), and a putative hydroxymuconic semialdehyde hydrolase (HcdC). The analysis of the recombinant HcdA activity in vitro confirms that this enzyme belongs to the group of ipso-hydroxylases. The activity of the proteins HcdB and HcdC has been analyzed by using recombinant Escherichia coli cells. Identification of intermediate metabolites allowed us to confirm the predicted enzyme functions and to reconstruct the catabolic pathway of 3-(2,4-dihydroxyphenyl)-propionic acid. HcdA catalyzes the conversion of 3-(2,4-dihydroxyphenyl)-propionic acid to 3-(2,3,5-trihydroxyphenyl)-propionic acid through an ipso-hydroxylation followed by an internal (1,2-C,C)-shift of the alkyl moiety. Then, in the presence of HcdB, a subsequent oxidative meta-cleavage of the aromatic ring occurs, resulting in the corresponding linear product (2E,4E)-2,4-dihydroxy-6-oxonona-2,4-dienedioic acid. Here, we describe a Pseudomonas mandelii strain 7HK4 capable of degrading 7-hydroxycoumarin via 3-(2,4-dihydroxyphenyl)-propionic acid pathway.
Collapse
|
15
|
Phonbuppha J, Maenpuen S, Munkajohnpong P, Chaiyen P, Tinikul R. Selective determination of the catalytic cysteine pK a of two-cysteine succinic semialdehyde dehydrogenase from Acinetobacter baumannii using burst kinetics and enzyme adduct formation. FEBS J 2018; 285:2504-2519. [PMID: 29734522 DOI: 10.1111/febs.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 11/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) from Acinetobacter baumannii (Ab) catalyzes the oxidation of succinic semialdehyde (SSA). This enzyme has two conserved cysteines (Cys289 and Cys291) and preferentially uses NADP+ over NAD+ as a hydride acceptor. Steady-state kinetic analysis showed that AbSSADH has the highest catalytic turnover (137 s-1 ) and can tolerate SSA inhibition the most (< 500 μm) among all SSADHs reported. Alanine substitutions of the two conserved cysteines indicated that Cys291Ala has ~ 65% activity compared with the wild-type enzyme while Cys289Ala is inactive, suggesting that Cys289 is the active residue participating in catalysis. Pre-steady-state kinetics showed for the first time burst kinetics for NADPH formation in SSADH, indicating that the rate-limiting step is associated with steps that occur after the hydride transfer. As the magnitude of burst kinetics represents the amount of NADPH formed during the first turnover, it is directly dependent on the amount of the deprotonated form of cysteine. The pKa of Cys289 was calculated from a plot of the burst magnitude vs pH as 7.4 ± 0.2. The Cys289 pKa was also measured based on the ability of AbSSADH to form an NADP-cysteine adduct, which can be detected by the increase of absorbance at ~ 330 nm as 7.9 ± 0.2. The lowering of the catalytic cysteine pKa by 0.6-1 unit renders the catalytic thiol more nucleophilic, which facilitates AbSSADH catalysis under physiological conditions. The methods established herein can specifically measure the active site cysteine pKa without interference from other cysteines. These techniques may be useful for studying ionization state of other cysteine-containing aldehyde dehydrogenases. ENZYME Succinic semialdehyde dehydrogenase, EC1.2.1.24.
Collapse
Affiliation(s)
- Jittima Phonbuppha
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pobthum Munkajohnpong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Mahidol University, Nakhonsawan, Thailand
| |
Collapse
|
16
|
Chu HY, Sprouffske K, Wagner A. Assessing the benefits of horizontal gene transfer by laboratory evolution and genome sequencing. BMC Evol Biol 2018; 18:54. [PMID: 29673327 PMCID: PMC5909237 DOI: 10.1186/s12862-018-1164-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recombination is widespread across the tree of life, because it helps purge deleterious mutations and creates novel adaptive traits. In prokaryotes, it often takes the form of horizontal gene transfer from a donor to a recipient bacterium. While such transfer is widespread in natural communities, its immediate fitness benefits are usually unknown. We asked whether any such benefits depend on the environment, and on the identity of donor and recipient strains. To this end, we adapted Escherichia coli to two novel carbon sources over several hundred generations of laboratory evolution, exposing evolving populations to various DNA donors. RESULTS At the end of these experiments, we measured fitness and sequenced the genomes of 65 clones from 34 replicate populations to study the genetic changes associated with adaptive evolution. Furthermore, we identified candidate de novo beneficial mutations. During adaptive evolution on the first carbon source, 4-Hydroxyphenylacetic acid (HPA), recombining populations adapted better, which was likely mediated by acquiring the hpa operon from the donor. In contrast, recombining populations did not adapt better to the second carbon source, butyric acid, even though they suffered fewer extinctions than non-recombining populations. The amount of DNA transferred, but not its benefit, strongly depended on the donor-recipient strain combination. CONCLUSIONS To our knowledge, our study is the first to investigate the genomic consequences of prokaryotic recombination and horizontal gene transfer during laboratory evolution. It shows that the benefits of recombination strongly depend on the environment and the foreign DNA donor.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kathleen Sprouffske
- The Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, 1015 Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, 1015 Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico USA
| |
Collapse
|
17
|
Efficient synthesis of β-lactam antibiotics with very low product hydrolysis by a mutant Providencia rettgeri penicillin G acylase. Appl Microbiol Biotechnol 2018; 102:1749-1758. [PMID: 29306966 DOI: 10.1007/s00253-017-8692-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Penicillin G acylase (PGA) was isolated from Providencia rettgeri PX04 (PrPGApx04) and utilized for the kinetically controlled synthesis of β-lactam antibiotics. Site-directed mutagenesis was performed to increase the process efficiency. Molecular docking was carried out to speculate the key mutant positions corresponding with synthetic activity, which resulted in the achievement of an efficient mutant, βF24G. It yielded higher conversions than the wild-type enzyme in the synthesis of amoxicillin (95 versus 17.2%) and cefadroxil (95.4 versus 43.2%). The reaction time for achieving the maximum conversion decreased from 14 to 16 h to 2-2.5 h. Furthermore, the secondary hydrolysis of produced antibiotics was hardly observed. Kinetic analysis showed that the (kcat/Km)AD value for the activated acyl donor D-hydroxyphenylglycine methyl ester (D-HPGME) increased up to 41 times. In contrast, the (kcat/Km)Ps values for the products amoxicillin and cefadroxil decreased 6.5 and 21 times, respectively. Consequently, the α value (kcat/Km)Ps/(kcat/Km)AD, which reflected the relative hydrolytic specificity of PGA for produced antibiotics with respect to the activated acyl donor, were only 0.028 and 0.043, respectively. The extremely low hydrolytic activity for the products of the βF24G mutant enabled greater product accumulation to occur during synthesis, which made it a promising enzyme for industrial applications.
Collapse
|
18
|
Orellana R, Chaput G, Markillie LM, Mitchell H, Gaffrey M, Orr G, DeAngelis KM. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium. PLoS One 2017; 12:e0186440. [PMID: 29049419 PMCID: PMC5648182 DOI: 10.1371/journal.pone.0186440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.
Collapse
Affiliation(s)
- Roberto Orellana
- Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Gina Chaput
- Microbiology Department, University of Massachusetts Amherst, Amherst, United States of America
| | - Lye Meng Markillie
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Hugh Mitchell
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matt Gaffrey
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Galya Orr
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kristen M. DeAngelis
- Microbiology Department, University of Massachusetts Amherst, Amherst, United States of America
- * E-mail:
| |
Collapse
|
19
|
Biogenetic Relationships of Bioactive Sponge Merotriterpenoids. Mar Drugs 2017; 15:md15090285. [PMID: 28891968 PMCID: PMC5618424 DOI: 10.3390/md15090285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/01/2023] Open
Abstract
Hydroquinone meroterpenoids, especially those derived from marine sponges, display a wide range of biological activities. However, use of these compounds is limited by their inaccessibility; there is no sustainable supply of these compounds. Furthermore, our knowledge of their metabolic origin remains completely unstudied. In this review, an in depth structural analysis of sponge merotriterpenoids, including the adociasulfate family of kinesin motor protein inhibitors, provides insight into their biosynthesis. Several key structural features provide clues to the relationships between compounds. All adociasulfates appear to be derived from only four different hydroquinone hexaprenyl diphosphate precursors, each varying in the number and position of epoxidations. Proton-initiated cyclization of these precursors can lead to all carbon skeletons observed amongst sponge merotriterpenoids. Consideration of the enzymes involved in the proposed biosynthetic route suggests a bacterial source, and a hypothetical gene cluster was constructed that may facilitate discovery of the authentic pathway from the sponge metagenome. A similar rationale can be extended to other sponge meroterpenoids, for which no biosynthetic pathways have yet been identified.
Collapse
|
20
|
Thotsaporn K, Tinikul R, Maenpuen S, Phonbuppha J, Watthaisong P, Chenprakhon P, Chaiyen P. Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M, Stinear TP, Bode HB. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537. [PMID: 27488257 PMCID: PMC4971723 DOI: 10.1186/s12864-016-2862-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. Results Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. Conclusions Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2862-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Bagdevi Mishra
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Deepak K Gupta
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Functional Metagenomics of a Biostimulated Petroleum-Contaminated Soil Reveals an Extraordinary Diversity of Extradiol Dioxygenases. Appl Environ Microbiol 2016; 82:2467-2478. [PMID: 26896130 DOI: 10.1128/aem.03811-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
A metagenomic library of a petroleum-contaminated soil was constructed in a fosmid vector that allowed heterologous expression of metagenomic DNA. The library, consisting of 6.5 Gb of metagenomic DNA, was screened for extradiol dioxygenase (Edo) activity using catechol and 2,3-dihydroxybiphenyl as the substrates. Fifty-eight independent clones encoding extradiol dioxygenase activity were identified. Forty-one different Edo-encoding genes were identified. The population of Edo genes was not dominated by a particular gene or by highly similar genes; rather, the genes had an even distribution and high diversity. Phylogenetic analyses revealed that most of the genes could not be ascribed to previously defined subfamilies of Edos. Rather, the Edo genes led to the definition of 10 new subfamilies of type I Edos. Phylogenetic analysis of type II enzymes defined 7 families, 2 of which harbored the type II Edos that were found in this work. Particularly striking was the diversity found in family I.3 Edos; 15 out of the 17 sequences assigned to this family belonged to 7 newly defined subfamilies. A strong bias was found that depended on the substrate used for the screening: catechol mainly led to the detection of Edos belonging to the I.2 family, while 2,3-dihydroxybiphenyl led to the detection of most other Edos. Members of the I.2 family showed a clear substrate preference for monocyclic substrates, while those from the I.3 family showed a broader substrate range and high activity toward 2,3-dihydroxybiphenyl. This metagenomic analysis has substantially increased our knowledge of the existing biodiversity of Edos.
Collapse
|
23
|
Mazurkewich S, Brott AS, Kimber MS, Seah SYK. Structural and Kinetic Characterization of the 4-Carboxy-2-hydroxymuconate Hydratase from the Gallate and Protocatechuate 4,5-Cleavage Pathways of Pseudomonas putida KT2440. J Biol Chem 2016; 291:7669-86. [PMID: 26867578 PMCID: PMC4817193 DOI: 10.1074/jbc.m115.682054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/03/2016] [Indexed: 11/06/2022] Open
Abstract
The bacterial catabolism of lignin and its breakdown products is of interest for applications in industrial processing of ligno-biomass. The gallate degradation pathway ofPseudomonas putidaKT2440 requires a 4-carboxy-2-hydroxymuconate (CHM) hydratase (GalB), which has a 12% sequence identity to a previously identified CHM hydratase (LigJ) fromSphingomonassp. SYK-6. The structure of GalB was determined and found to be a member of the PIG-LN-acetylglucosamine deacetylase family; GalB is structurally distinct from the amidohydrolase fold of LigJ. LigJ has the same stereospecificity as GalB, providing an example of convergent evolution for catalytic conversion of a common metabolite in bacterial aromatic degradation pathways. Purified GalB contains a bound Zn(2+)cofactor; however the enzyme is capable of using Fe(2+)and Co(2+)with similar efficiency. The general base aspartate in the PIG-L deacetylases is an alanine in GalB; replacement of the alanine with aspartate decreased the GalB catalytic efficiency for CHM by 9.5 × 10(4)-fold, and the variant enzyme did not have any detectable hydrolase activity. Kinetic analyses and pH dependence studies of the wild type and variant enzymes suggested roles for Glu-48 and His-164 in the catalytic mechanism. A comparison with the PIG-L deacetylases led to a proposed mechanism for GalB wherein Glu-48 positions and activates the metal-ligated water for the hydration reaction and His-164 acts as a catalytic acid.
Collapse
Affiliation(s)
- Scott Mazurkewich
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashley S Brott
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stephen Y K Seah
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
24
|
Illeghems K, Pelicaen R, De Vuyst L, Weckx S. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol 2016; 58:68-78. [PMID: 27217361 DOI: 10.1016/j.fm.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems.
Collapse
Affiliation(s)
- Koen Illeghems
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Rudy Pelicaen
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
25
|
Martínez I, Mohamed MES, Rozas D, García JL, Díaz E. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab Eng 2016; 35:46-54. [PMID: 26802977 DOI: 10.1016/j.ymben.2016.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/27/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023]
Abstract
The 4S pathway is the most studied bioprocess for the removal of the recalcitrant sulfur of aromatic heterocycles present in fuels. It consists of three sequential functional units, encoded by the dszABCD genes, through which the model compound dibenzothiophene (DBT) is transformed into the sulfur-free 2-hydroxybiphenyl (2HBP) molecule. In this work, a set of synthetic dsz cassettes were implanted in Pseudomonas putida KT2440, a model bacterial "chassis" for metabolic engineering studies. The complete dszB1A1C1-D1 cassette behaved as an attractive alternative - to the previously constructed recombinant dsz cassettes - for the conversion of DBT into 2HBP. Refactoring the 4S pathway by the use of synthetic dsz modules encoding individual 4S pathway reactions revealed unanticipated traits, e.g., the 4S intermediate 2HBP-sulfinate (HBPS) behaves as an inhibitor of the Dsz monooxygenases, and once secreted from the cells it cannot be further taken up. That issue should be addressed for the rational design of more efficient biocatalysts for DBT bioconversions. In this sense, the construction of synthetic bacterial consortia to compartmentalize the 4S pathway into different cell factories for individual optimization was shown to enhance the conversion of DBT into 2HBP, overcome the inhibition of the Dsz enzymes by the 4S intermediates, and enable efficient production of unattainable high added value intermediates, e.g., HBPS, that are difficult to obtain using the current monocultures.
Collapse
Affiliation(s)
- Igor Martínez
- Environmental Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | - Daniel Rozas
- Environmental Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - José Luis García
- Environmental Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | - Eduardo Díaz
- Environmental Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Jaakkola K, Somervuo P, Korkeala H. Comparative Genomic Hybridization Analysis of Yersinia enterocolitica and Yersinia pseudotuberculosis Identifies Genetic Traits to Elucidate Their Different Ecologies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:760494. [PMID: 26605338 PMCID: PMC4641178 DOI: 10.1155/2015/760494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
Enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis are both etiological agents for intestinal infection known as yersiniosis, but their epidemiology and ecology bear many differences. Swine are the only known reservoir for Y. enterocolitica 4/O:3 strains, which are the most common cause of human disease, while Y. pseudotuberculosis has been isolated from a variety of sources, including vegetables and wild animals. Infections caused by Y. enterocolitica mainly originate from swine, but fresh produce has been the source for widespread Y. pseudotuberculosis outbreaks within recent decades. A comparative genomic hybridization analysis with a DNA microarray based on three Yersinia enterocolitica and four Yersinia pseudotuberculosis genomes was conducted to shed light on the genomic differences between enteropathogenic Yersinia. The hybridization results identified Y. pseudotuberculosis strains to carry operons linked with the uptake and utilization of substances not found in living animal tissues but present in soil, plants, and rotting flesh. Y. pseudotuberculosis also harbors a selection of type VI secretion systems targeting other bacteria and eukaryotic cells. These genetic traits are not found in Y. enterocolitica, and it appears that while Y. pseudotuberculosis has many tools beneficial for survival in varied environments, the Y. enterocolitica genome is more streamlined and adapted to their preferred animal reservoir.
Collapse
Affiliation(s)
- Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
27
|
Chand D, Varshney N, Ramasamy S, Panigrahi P, Brannigan JA, Wilkinson AJ, Suresh CG. Structure mediation in substrate binding and post-translational processing of penicillin acylases: Information from mutant structures of Kluyvera citrophila penicillin G acylase. Protein Sci 2015; 24:1660-70. [PMID: 26243007 DOI: 10.1002/pro.2761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 11/07/2022]
Abstract
Penicillin acylases are industrially important enzymes for the production of 6-APA, which is used extensively in the synthesis of secondary antibiotics. The enzyme translates into an inactive single chain precursor that subsequently gets processed by the removal of a spacer peptide connecting the chains of the mature active heterodimer. We have cloned the penicillin G acylase from Kluyvera citrophila (KcPGA) and prepared two mutants by site-directed mutagenesis. Replacement of N-terminal serine of the β-subunit with cysteine (Serβ1Cys) resulted in a fully processed but inactive enzyme. The second mutant in which this serine is replaced by glycine (Serβ1Gly) remained in the unprocessed and inactive form. The crystals of both mutants belonged to space group P1 with four molecules in the asymmetric unit. The three-dimensional structures of these mutants were refined at resolutions 2.8 and 2.5 Å, respectively. Comparison of these structures with similar structures of Escherichia coli PGA (EcPGA) revealed various conformational changes that lead to autocatalytic processing and consequent removal of the spacer peptide. The large displacements of residues such as Arg168 and Arg477 toward the N-terminal cleavage site of the spacer peptide or the conformational changes of Arg145 and Phe146 near the active site in these structures suggested probable steps in the processing dynamics. A comparison between the structures of the processed Serβ1Cys mutant and that of the processed form of EcPGA showed conformational differences in residues Argα145, Pheα146, and Pheβ24 at the substrate binding pocket. Three conformational transitions of Argα145 and Pheα146 residues were seen when processed and unprocessed forms of KcPGA were compared with the substrate bound structure of EcPGA. Structure mediation in activity difference between KcPGA and EcPGA toward acyl homoserine lactone (AHL) is elucidated.
Collapse
Affiliation(s)
- Deepak Chand
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - NishantKumar Varshney
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Priyabrata Panigrahi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - James A Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, Heslington, United Kingdom
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, Heslington, United Kingdom
| | - C G Suresh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
28
|
Dierckx S, Van Puyvelde S, Venken L, Eberle W, Vanderleyden J. Design and Construction of a Whole Cell Bacterial 4-Hydroxyphenylacetic Acid and 2-Phenylacetic Acid Bioassay. Front Bioeng Biotechnol 2015; 3:88. [PMID: 26137458 PMCID: PMC4468947 DOI: 10.3389/fbioe.2015.00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Auxins are hormones that regulate plant growth and development. To accurately quantify the low levels of auxins present in plant and soil samples, sensitive detection methods are needed. In this study, the design and construction of two different whole cell auxin bioassays is illustrated. Both use the auxin responsive element HpaA as an input module but differ in output module. The first bioassay incorporates the gfp gene to produce a fluorescent bioassay. Whereas the second one utilizes the genes phzM and phzS to produce a pyocyanin producing bioassay whose product can be measured electrochemically. RESULTS The fluorescent bioassay is able to detect 4-hydroxyphenylacetic acid (4-HPA) and 2-phenylacetic acid (PAA) concentrations from 60 μM to 3 mM in a dose-responsive manner. The pyocyanin producing bioassay can detect 4-HPA concentrations from 1.9 to 15.625 μM and PAA concentrations from 15.625 to 125 μM, both in a dose-responsive manner. CONCLUSION A fluorescent whole cell auxin bioassay and an electrochemical whole cell auxin bioassay were constructed and tested. Both are able to detect 4-HPA and PAA at concentrations that are environmentally relevant to plant growth.
Collapse
Affiliation(s)
- Seppe Dierckx
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Diagnostic Bacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lyn Venken
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Avinash VS, Pundle AV, Ramasamy S, Suresh CG. Penicillin acylases revisited: importance beyond their industrial utility. Crit Rev Biotechnol 2014; 36:303-16. [PMID: 25430891 DOI: 10.3109/07388551.2014.960359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is of great importance to study the physiological roles of enzymes in nature; however, in some cases, it is not easily apparent. Penicillin acylases are pharmaceutically important enzymes that cleave the acyl side chains of penicillins, thus paving the way for production of newer semi-synthetic antibiotics. They are classified according to the type of penicillin (G or V) that they preferentially hydrolyze. Penicillin acylases are also used in the resolution of racemic mixtures and peptide synthesis. However, it is rather unfortunate that the focus on the use of penicillin acylases for industrial applications has stolen the spotlight from the study of the importance of these enzymes in natural metabolism. The penicillin acylases, so far characterized from different organisms, show differences in their structural nature and substrate spectrum. These enzymes are also closely related to the bacterial signalling phenomenon, quorum sensing, as detailed in this review. This review details studies on biochemical and structural characteristics of recently discovered penicillin acylases. We also attempt to organize the available insights into the possible in vivo role of penicillin acylases and related enzymes and emphasize the need to refocus research efforts in this direction.
Collapse
Affiliation(s)
- Vellore Sunder Avinash
- a Division of Biochemical Sciences, CSIR-National , National Chemical Laboratory , Pune , India
| | - Archana Vishnu Pundle
- a Division of Biochemical Sciences, CSIR-National , National Chemical Laboratory , Pune , India
| | - Sureshkumar Ramasamy
- a Division of Biochemical Sciences, CSIR-National , National Chemical Laboratory , Pune , India
| | | |
Collapse
|
30
|
Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci U S A 2013; 110:20338-43. [PMID: 24277855 DOI: 10.1073/pnas.1307797110] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genome-scale models (GEMs) of metabolism were constructed for 55 fully sequenced Escherichia coli and Shigella strains. The GEMs enable a systems approach to characterizing the pan and core metabolic capabilities of the E. coli species. The majority of pan metabolic content was found to consist of alternate catabolic pathways for unique nutrient sources. The GEMs were then used to systematically analyze growth capabilities in more than 650 different growth-supporting environments. The results show that unique strain-specific metabolic capabilities correspond to pathotypes and environmental niches. Twelve of the GEMs were used to predict growth on six differentiating nutrients, and the predictions were found to agree with 80% of experimental outcomes. Additionally, GEMs were used to predict strain-specific auxotrophies. Twelve of the strains modeled were predicted to be auxotrophic for vitamins niacin (vitamin B3), thiamin (vitamin B1), or folate (vitamin B9). Six of the strains modeled have lost biosynthetic pathways for essential amino acids methionine, tryptophan, or leucine. Genome-scale analysis of multiple strains of a species can thus be used to define the metabolic essence of a microbial species and delineate growth differences that shed light on the adaptation process to a particular microenvironment.
Collapse
|
31
|
Percudani R, Carnevali D, Puggioni V. Ureidoglycolate hydrolase, amidohydrolase, lyase: how errors in biological databases are incorporated in scientific papers and vice versa. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat071. [PMID: 24107613 PMCID: PMC3793230 DOI: 10.1093/database/bat071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An opaque biochemical definition, an insufficient functional characterization, an interpolated database description, and a beautiful 3D structure with a wrong reaction. All these are elements of an exemplar case of misannotation in biological databases and confusion in the scientific literature concerning genes and enzymes acting on ureidoglycolate, an intermediate of purine catabolism. Here we show biochemical evidence for the relocation of genes assigned to EC 3.5.3.19 (ureidoglycolate hydrolase, releasing ammonia), such as allA of Escherichia coli or DAL3 of Saccharomyces cerevisiae, to EC 4.3.2.3 (ureidoglycolate lyase, releasing urea). The EC 3.5.3.19 should be more appropriately named ureidoglycolate amidohydrolase and include genes equivalent to UAH of Arabidopsis thaliana. The distinction between ammonia- or urea-releasing activities from ureidoglycolate is relevant for the understanding of nitrogen metabolism in various organisms and of virulence factors in certain pathogens rather than a nomenclature problem. We trace the original fault in database annotation and provide a rationale for its incorporation and persistence in the scientific literature. Notwithstanding the technological distance, yet not surprising for the constancy of human nature, error categories and mechanisms established in the study of the work of amanuensis monks still apply to the modern curation of biological databases.
Collapse
Affiliation(s)
- Riccardo Percudani
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, Italy
| | | | | |
Collapse
|
32
|
Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, Nicora C, Norbeck AD, Taylor RC, Aldrich JT, Robinson EW. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 2013; 4:280. [PMID: 24065962 PMCID: PMC3777014 DOI: 10.3389/fmicb.2013.00280] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.
Collapse
Affiliation(s)
- Kristen M Deangelis
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Furuya T, Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Appl Microbiol Biotechnol 2013; 98:1145-54. [PMID: 23666444 DOI: 10.1007/s00253-013-4958-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/28/2022]
Abstract
4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.
Collapse
Affiliation(s)
- Toshiki Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan,
| | | |
Collapse
|
34
|
Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 2012; 78:6203-16. [PMID: 22752168 DOI: 10.1128/aem.01148-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli was metabolically engineered by expanding the shikimate pathway to generate strains capable of producing six kinds of aromatic compounds, phenyllactic acid, 4-hydroxyphenyllactic acid, phenylacetic acid, 4-hydroxyphenylacetic acid, 2-phenylethanol, and 2-(4-hydroxyphenyl)ethanol, which are used in several fields of industries including pharmaceutical, agrochemical, antibiotic, flavor industries, etc. To generate strains that produce phenyllactic acid and 4-hydroxyphenyllactic acid, the lactate dehydrogenase gene (ldhA) from Cupriavidus necator was introduced into the chromosomes of phenylalanine and tyrosine overproducers, respectively. Both the phenylpyruvate decarboxylase gene (ipdC) from Azospirillum brasilense and the phenylacetaldehyde dehydrogenase gene (feaB) from E. coli were introduced into the chromosomes of phenylalanine and tyrosine overproducers to generate phenylacetic acid and 4-hydroxyphenylacetic acid producers, respectively, whereas ipdC and the alcohol dehydrogenase gene (adhC) from Lactobacillus brevis were introduced to generate 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, respectively. Expression of the respective introduced genes was controlled by the T7 promoter. While generating the 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, we found that produced phenylacetaldehyde and 4-hydroxyphenylacetaldehyde were automatically reduced to 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol by endogenous aldehyde reductases in E. coli encoded by the yqhD, yjgB, and yahK genes. Cointroduction and cooverexpression of each gene with ipdC in the phenylalanine and tyrosine overproducers enhanced the production of 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol from glucose. Introduction of the yahK gene yielded the most efficient production of both aromatic alcohols. During the production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, phenylacetic acid, and 4-hydroxyphenylacetic acid, accumulation of some by-products were observed. Deletion of feaB, pheA, and/or tyrA genes from the chromosomes of the constructed strains resulted in increased desired aromatic compounds with decreased by-products. Finally, each of the six constructed strains was able to successfully produce a different aromatic compound as a major product. We show here that six aromatic compounds are able to be produced from renewable resources without supplementing with expensive precursors.
Collapse
|
35
|
Escapa IF, del Cerro C, García JL, Prieto MA. The role of GlpR repressor inPseudomonas putidaKT2440 growth and PHA production from glycerol. Environ Microbiol 2012; 15:93-110. [DOI: 10.1111/j.1462-2920.2012.02790.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Li Y, Wu J, Wang W, Ding P, Feng L. Proteomics analysis of aromatic catabolic pathways in thermophilic Geobacillus thermodenitrificans NG80-2. J Proteomics 2012; 75:1201-10. [DOI: 10.1016/j.jprot.2011.10.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/13/2011] [Accepted: 10/30/2011] [Indexed: 11/29/2022]
|
37
|
Easom CA, Clarke DJ. HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Environ Microbiol 2011; 14:953-66. [DOI: 10.1111/j.1462-2920.2011.02669.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Baker P, Carere J, Seah SYK. Probing the Molecular Basis of Substrate Specificity, Stereospecificity, and Catalysis in the Class II Pyruvate Aldolase, BphI. Biochemistry 2011; 50:3559-69. [DOI: 10.1021/bi101947g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jason Carere
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Méndez V, Agulló L, González M, Seeger M. The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400. PLoS One 2011; 6:e17583. [PMID: 21423751 PMCID: PMC3053370 DOI: 10.1371/journal.pone.0017583] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/05/2011] [Indexed: 11/24/2022] Open
Abstract
Background Genome characterization of the model PCB-degrading bacterium Burkholderia xenovorans LB400 revealed the presence of eleven central pathways for aromatic compounds degradation, among them, the homogentisate and the homoprotocatechuate pathways. However, the functionality of these central pathways in strain LB400 has not been assessed and related peripheral pathways has not been described. Methodology/Principal Findings The aims of this study were to determine the functionality of the homogentisate and homoprotocatechuate central pathways in B. xenovorans LB400 and to establish their role in 3-hydroxyphenylacetate (3-HPA) and 4-hydroxyphenylacetate (4-HPA) catabolism. Strain LB400 was able to grow using 3-HPA and 4-HPA as sole carbon source. A genomic search in LB400 suggested the presence of mhaAB and hpaBC genes clusters encoding proteins of the 3-hydroxyphenylacetate and 4-hydroxyphenylacetate peripheral pathways. LB400 cells grown with 3-HPA and 4-HPA degraded homogentisate and homoprotocatechuate and showed homogentisate 1,2-dioxygenase and homoprotocatechuate 2,3-dioxygenase activities. Transcriptional analyses by RT-PCR showed the expression of two chromosomally-encoded homogentisate dioxygenases (BxeA2725 and BxeA3900) and the hpaD gene encoding the homoprotocatechuate 2,3-dioxygenase during 3-HPA and 4-HPA degradation. The proteome analyses by two-dimensional polyacrilamide gel electrophoresis of B. xenovorans LB400 grown in 3-HPA and 4-HPA showed the induction of fumarylacetoacetate hydrolase HmgB (BxeA3899). Conclusions/Significance This study revealed that strain LB400 used both homogentisate and homoprotocatechuate ring-cleavage pathways for 3- hydroxyphenylacetate and 4-hydroxyphenylacetate catabolism and that these four catabolic routes are functional, confirming the metabolic versatility of B. xenovorans LB400.
Collapse
Affiliation(s)
- Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Loreine Agulló
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Myriam González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
40
|
An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J Bacteriol 2011; 193:1710-7. [PMID: 21296962 DOI: 10.1128/jb.01218-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.
Collapse
|
41
|
Wang W, Baker P, Seah SYK. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling. Biochemistry 2010; 49:3774-82. [PMID: 20364820 DOI: 10.1021/bi100251u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HpaI and BphI are two pyruvate class II aldolases found in aromatic meta-cleavage degradation pathways that catalyze similar reactions but are not related in sequence. Steady-state kinetic analysis of the aldol addition reactions and product inhibition assays showed that HpaI exhibits a rapid equilibrium random order mechanism while BphI exhibits a compulsory order mechanism, with pyruvate binding first. Both aldolases are able to utilize aldehyde acceptors two to five carbons in length; however, HpaI showed broader specificity and had a preference for aldehydes containing longer linear alkyl chains or C2-OH substitutions. Both enzymes were able to bind 2-keto acids larger than pyruvate, but only HpaI was able to utilize both pyruvate and 2-ketobutanoate as carbonyl donors in the aldol addition reaction. HpaI lacks stereospecific control producing racemic mixtures of 4-hydroxy-2-oxopentanoate (HOPA) from pyruvate and acetaldehyde while BphI synthesizes only (4S)-HOPA. BphI is also able to utilize acetaldehyde produced by the reduction of acetyl-CoA catalyzed by the associated aldehyde dehydrogenase, BphJ. This aldehyde was directly channeled from the dehydrogenase to the aldolase active sites, with an efficiency of 84%. Furthermore, the BphJ reductive deacylation reaction increased 4-fold when BphI was catalyzing the aldol addition reaction. Therefore, the BphI-BphJ enzyme complex exhibits unique bidirectionality in substrate channeling and allosteric activation.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
42
|
Arcos M, Olivera ER, Arias S, Naharro G, Luengo JM. The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U. Environ Microbiol 2010; 12:1684-704. [PMID: 20482587 DOI: 10.1111/j.1462-2920.2010.02233.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Degradation of tyramine and dopamine by Pseudomonas putida U involves the participation of twenty one proteins organized in two coupled catabolic pathways, Tyn (tynABFEC tynG tynR tynD, 12 338 bp) and Hpa (hpaR hpaBC hpaHI hpaX hpaG1G2EDF hpaA hpaY, 12 722 bp). The Tyn pathway catalyses the conversion of tyramine and dopamine into 4-hydroxyphenylacetic acid (4HPA) and 3,4-dihydroxyphenylacetic acid (3,4HPA) respectively. Together, the Tyn and Hpa pathways constitute a complex catabolic unit (the 3,4HPA catabolon) in which 3,4HPA is the central intermediate. The genes encoding Tyn proteins are organized in four consecutive transcriptional units (tynABFEC, tynG, tynR and tynD), whereas those encoding Hpa proteins constitute consecutive operons (hpaBC, hpaG1G2EDF, hpaX, hpaHI) and three independent units (hpaA, hpaR and hpaY). Genetic engineering approaches were used to clone tyn and hpa genes and then express them, either individually or in tandem, in plasmids and/or bacterial chromosomes, resulting in recombinant bacterial strains able to eliminate tyramine and dopamine from different media. These results enlarge our biochemical and genetic knowledge of the microbial catabolic routes involved in the degradation of aromatic bioamines. Furthermore, they provide potent biotechnological tools to be used in food processing and fermentation as well as new strategies that could be used for pharmacological and gene therapeutic applications in the near future.
Collapse
Affiliation(s)
- Mario Arcos
- Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, 24007 León, España
| | | | | | | | | |
Collapse
|
43
|
Genomic analysis of the aromatic catabolic pathways fromSilicibacter pomeroyi DSS-3. ANN MICROBIOL 2009. [DOI: 10.1007/bf03179225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
44
|
Liebgott PP, Amouric A, Comte A, Tholozan JL, Lorquin J. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase. Res Microbiol 2009; 160:757-66. [PMID: 19837158 DOI: 10.1016/j.resmic.2009.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 09/19/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022]
Abstract
Hydroxytyrosol (HTyr) is a potent natural antioxidant found in olive mill wastewaters. Bacterial conversion of 4-tyrosol (2-(4-hydroxyphenyl)-ethanol) to HTyr was reported in a limited number of bacterial species including Pseudomonas aeruginosa. In this work, we studied this conversion, taking as a model the newly isolated Halomonas sp. strain HTB24. It was first hypothesized that the enzyme responsible for 4-tyrosol hydroxylation in HTyr was a 4-hydroxyphenylacetic acid 3-hydroxylase (HPAH, EC 1.14.13.3), previously known to convert 4-hydroxyphenylacetic acid (4-HPA) into 3,4-dihydroxyphenylacetic acid (3,4-DHPA) in P. aeruginosa. Cloning and expression of hpaB (oxygenase component) and hpaC (reductase component) genes from P. aeruginosa confirmed this hypothesis. Furthermore, using cultures of HTB24 containing 4-tyrosol, it was shown that 4-HPA accumulation preceded 4-tyrosol hydroxylation. We further demonstrated that the synthesis of HPAH activity was induced by 4-HPA, with the latter compound being formed from 4-tyrosol oxidation by aryl-dehydrogenases. Interestingly, similar results were obtained with other 4-HPA-induced bacteria, including P. aeruginosa, Serratia marcescens, Escherichia coli, Micrococcus luteus and other Halomonas, thus demonstrating general hydroxylating activity of 4-tyrosol by the HPAH enzyme. E. coli W did not have aryl-dehydrogenase activity and hence were unable to oxidize 4-tyrosol to 4-HPA and HTyr to 3,4-DHPA, making this bacterium a good candidate for achieving better HTyr production.
Collapse
Affiliation(s)
- Pierre-Pol Liebgott
- Institut de Recherche pour le Développement (IRD), Microbiologie et Biotechnologie des Environnements Extrêmes, UMR_D180, Universités de Provence et de la Méditerranée, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
| | | | | | | | | |
Collapse
|
45
|
AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD, Woodward MJ, Anjum MF. Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 2009; 284:29480-8. [PMID: 19690172 PMCID: PMC2785581 DOI: 10.1074/jbc.m109.005868] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/21/2009] [Indexed: 01/10/2023] Open
Abstract
Salmonella are closely related to commensal Escherichia coli but have gained virulence factors enabling them to behave as enteric pathogens. Less well studied are the similarities and differences that exist between the metabolic properties of these organisms that may contribute toward niche adaptation of Salmonella pathogens. To address this, we have constructed a genome scale Salmonella metabolic model (iMA945). The model comprises 945 open reading frames or genes, 1964 reactions, and 1036 metabolites. There was significant overlap with genes present in E. coli MG1655 model iAF1260. In silico growth predictions were simulated using the model on different carbon, nitrogen, phosphorous, and sulfur sources. These were compared with substrate utilization data gathered from high throughput phenotyping microarrays revealing good agreement. Of the compounds tested, the majority were utilizable by both Salmonella and E. coli. Nevertheless a number of differences were identified both between Salmonella and E. coli and also within the Salmonella strains included. These differences provide valuable insight into differences between a commensal and a closely related pathogen and within different pathogenic strains opening new avenues for future explorations.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Food and Environmental Safety, Veterinary Laboratories Agency (Weybridge), Addlestone, Surrey KT153NB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Liebgott PP, Labat M, Amouric A, Tholozan JL, Lorquin J. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents. J Appl Microbiol 2009; 105:2084-95. [PMID: 19120654 DOI: 10.1111/j.1365-2672.2008.03925.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. METHODS AND RESULTS A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2-(p-hydroxyphenyl)-ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4-hydroxyphenylacetic acid (HPA), which is then converted into HGA by an HPA 1-monooxygenase, while closest Halomonas species degrade tyrosol through 3,4-dihydroxyphenylacetic acid (DHPA). In the presence of transition metals, HGA underwent a pH-dependent abiotic conversion into benzoquinone acetic acid, then into 2,5-dihydroxybenzaldehyde (gentisaldehyde) and pyomelanin, by oxidative decarboxylation and polymerization, respectively. CONCLUSIONS Tyrosol degradation via HGA by the new Halomonas sp. strain TYRC17 was complete in the absence of trace elements. In their presence, HGA was abiotically converted into gentisaldehyde and pyomelanin. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on tyrosol degradation via the HGA pathway under hypersaline conditions and on the oxidative decarboxylation of HGA into gentisaldehyde. It underlines the importance of the Halomonas genus in the bioremediation of toxic-contaminated sites.
Collapse
Affiliation(s)
- P-P Liebgott
- Microbiologie et Biotechnologie des Environnements UMR D180, IRD, Universités de Provence et de la Méditerranée, Marseille Cedex, France
| | | | | | | | | |
Collapse
|
47
|
Saa L, Jaureguibeitia A, Largo E, Llama MJ, Serra JL. Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 2009; 86:201-11. [PMID: 19787347 DOI: 10.1007/s00253-009-2251-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 11/24/2022]
Abstract
Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids. The deduced amino acid sequences of both genes showed high homology with several two-component aromatic hydroxylases. The genes were cloned separately in cells of Escherichia coli M15 as hexahistidine-tagged proteins, and the recombinant proteins His(6)PheA1 and His(6)PheA2 were purified and its catalytic activity characterized. His(6)PheA1 exists as a homotetramer of four identical subunits of 62 kDa that has no phenol hydroxylase activity on its own. His(6)PheA2 is a homodimeric flavin reductase, consisting of two identical subunits of 22 kDa, that uses NAD(P)H in order to reduce flavin adenine dinucleotide (FAD), according to a random sequential kinetic mechanism. The reductase activity was strongly inhibited by thiol-blocking reagents. The hydroxylation of phenol in vitro requires the presence of both His(6)PheA1 and His(6)PheA2 components, in addition to NADH and FAD, but the physical interaction between the proteins is not necessary for the reaction.
Collapse
Affiliation(s)
- Laura Saa
- Enzyme and Cell Technology Group, Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
48
|
Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol 2008; 190:7367-74. [PMID: 18805976 DOI: 10.1128/jb.00742-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4-Nitrophenol (4-NP) is a toxic product of the hydrolysis of organophosphorus pesticides such as parathion in soil. Rhodococcus sp. strain PN1 degrades 4-NP via 4-nitrocatechol (4-NC) for use as the sole carbon, nitrogen, and energy source. A 5-kb EcoRI DNA fragment previously cloned from PN1 contained a gene cluster (nphRA1A2) involved in 4-NP oxidation. From sequence analysis, this gene cluster is expected to encode an AraC/XylS family regulatory protein (NphR) and a two-component 4-NP hydroxylase (NphA1 and NphA2). A transcriptional assay in a Rhodococcus strain revealed that the transcription of nphA1 is induced by only 4-NP (of several phenolic compounds tested) in the presence of nphR, which is constitutively expressed. Disruption of nphR abolished transcriptional activity, suggesting that nphR encodes a positive regulatory protein. The two proteins of the 4-NP hydroxylase, NphA1 and NphA2, were independently expressed in Escherichia coli and purified by ion-exchange chromatography or affinity chromatography. The purified NphA2 reduced flavin adenine dinucleotide (FAD) with the concomitant oxidation of NADH, while the purified NphA1 oxidized 4-NP into 4-NC almost quantitatively in the presence of FAD, NADH, and NphA2. This functional analysis, in addition to the sequence analysis, revealed that this enzyme system belongs to the two-component flavin-diffusible monooxygenase family. The 4-NP hydroxylase showed comparable oxidation activities for phenol and 4-chlorophenol to that for 4-NP and weaker activities for 3-NP and 4-NC.
Collapse
|
49
|
Galán B, Manso I, Kolb A, García JL, Prieto MA. The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon. MICROBIOLOGY-SGM 2008; 154:2151-2160. [PMID: 18599842 DOI: 10.1099/mic.0.2007/015578-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression from the Escherichia coli W meta-hpa operon promoter (Pg) is under a strict catabolic repression control mediated by the cAMP-catabolite repression protein (CRP) complex in a glucose-containing medium. The Pg promoter is also activated by the integration host factor (IHF) and repressed by the specific transcriptional regulator HpaR when 4-hydroxyphenylacetate (4HPA) is not present in the medium. Expression from the hpa promoter is also repressed in undefined rich medium such as LB, but the molecular basis of this mechanism is not understood. We present in vitro and in vivo studies to demonstrate the involvement of FIS protein in this catabolic repression. DNase I footprinting experiments show that FIS binds to multiple sites within the Pg promoter. FIS-site I overlaps the CRP-binding site. By using an electromobility shift assay, we demonstrated that FIS efficiently competes with CRP for binding to the Pg promoter, suggesting an antagonist/competitive mechanism. RT-PCR showed that the Pg repression effect is relieved in a FIS deleted strain. The repression role of FIS at Pg was further demonstrated by in vitro transcription assays. These results suggest that FIS contributes to silencing the Pg promoter in the exponential phase of growth in an undefined rich medium when FIS is predominantly expressed.
Collapse
Affiliation(s)
- Beatriz Galán
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Isabel Manso
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Annie Kolb
- Unité de Génétique Moléculaire-URA 2172, Institut Pasteur, Paris, France
| | - José Luis García
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - María A Prieto
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
50
|
Rea D, Hovington R, Rakus JF, Gerlt JA, Fülöp V, Bugg TDH, Roper DI. Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12. Biochemistry 2008; 47:9955-65. [PMID: 18754683 DOI: 10.1021/bi800943g] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, 9944-9954). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.
Collapse
Affiliation(s)
- Dean Rea
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | | | | | | | | | | | | |
Collapse
|