1
|
Riborg A, Colquhoun DJ, Gulla S. Biotyping reveals loss of motility in two distinct Yersinia ruckeri lineages exclusive to Norwegian aquaculture. JOURNAL OF FISH DISEASES 2022; 45:641-653. [PMID: 35180320 PMCID: PMC9304254 DOI: 10.1111/jfd.13590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/26/2023]
Abstract
Non-motile strains of Yersinia ruckeri, known as Y. ruckeri biotype 2, now dominate amongst clinical isolates retrieved from rainbow trout internationally. Due to an acute increase in the number of yersiniosis cases in Norway in recent years, followed by introduction of widespread intraperitoneal vaccination against the disease, an investigation on the prevalence of Y. ruckeri biotype 2 in Norwegian aquaculture was conducted. We biotyped 263 Y. ruckeri isolates recovered from diseased salmonids in Norway between 1985 and 2020. A total of seven biotype 2 isolates were identified, four of which were collected between 1985 and 1987, and three of which belong to the current epizootic clone, isolated from two different sea-farms in 2017. Whole-genome sequencing revealed single non-synonymous nucleotide polymorphisms in the flagellar genes flhC in isolates from the 1980s, and in fliP in isolates from 2017. In both variants, motility was restored both by complementation with wild-type alleles in trans and via spontaneous mutation-driven reversion following prolonged incubation on motility agar. While biotype 2 strains do not yet seem to have become broadly established in Norwegian aquaculture, the seven isolates described here serve to document a further two independent cases of Y. ruckeri biotype 2 emergence in salmonid aquaculture.
Collapse
Affiliation(s)
- Andreas Riborg
- Norwegian Veterinary InstituteÅsNorway
- Vaxxinova Norway ASBergenNorway
| | | | | |
Collapse
|
2
|
Lin M, Wu K, Zhan Z, Mi D, Xia Y, Niu X, Feng S, Chen Y, He C, Tao J, Li C. The RavA/VemR two-component system plays vital regulatory roles in the motility and virulence of Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2022; 23:355-369. [PMID: 34837306 PMCID: PMC8828458 DOI: 10.1111/mpp.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/08/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) can cause black rot in cruciferous plants worldwide. Two-component systems (TCSs) are key for bacterial adaptation to various environments, including hosts. VemR is a TCS response regulator and crucial for Xcc motility and virulence. Here, we report that RavA is the cognate histidine kinase (HK) of VemR and elucidate the signalling pathway by which VemR regulates Xcc motility and virulence. Genetic analysis showed that VemR is epistatic to RavA. Using bacterial two-hybrid experiments and pull-down and phosphorylation assays, we found that RavA can interact with and phosphorylate VemR, suggesting that RavA is the cognate HK of VemR. In addition, we found that RpoN2 and FleQ are epistatic to VemR in regulating bacterial motility and virulence. In vivo and in vitro experiments demonstrated that VemR interacts with FleQ but not with RpoN2. RavA/VemR regulates the expression of the flagellin-encoding gene fliC by activating the transcription of the rpoN2-vemR-fleQ and flhF-fleN-fliA operons. In summary, our data show that the RavA/VemR TCS regulates FleQ activity and thus influences the expression of motility-related genes, thereby affecting Xcc motility and virulence. The identification of this novel signalling pathway will deepen our understanding of Xcc-plant interactions.
Collapse
Affiliation(s)
- Maojuan Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Kejian Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Zhaohong Zhan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Duo Mi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Yingying Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Shipeng Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Chunxia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| |
Collapse
|
3
|
The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infect Immun 2019; 87:IAI.00861-18. [PMID: 30988059 DOI: 10.1128/iai.00861-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells in the colonic mucosa, leading to bloody diarrhea. A previous study showed that S. flexneri forms biofilms in the presence of bile salts, through an unknown mechanism. Here, we investigated the potential role of adhesin-like autotransporter proteins in S. flexneri biofilm formation. BLAST search analysis revealed that the S. flexneri 2457T genome harbors 4 genes, S1242, S1289, S2406, and icsA, encoding adhesin-like autotransporter proteins. Deletion mutants of the S1242, S1289, S2406 and icsA genes were generated and tested for biofilm formation. Phenotypic analysis of the mutant strains revealed that disruption of icsA abolished bile salt-induced biofilm formation. IcsA is an outer membrane protein secreted at the bacterial pole that is required for S. flexneri actin-based motility during intracellular infection. In extracellular biofilms, IcsA was also secreted at the bacterial pole and mediated bacterial cell-cell contacts and aggregative growth in the presence of bile salts. Dissecting individual roles of bile salts showed that deoxycholate is a robust biofilm inducer compared to cholate. The release of the extracellular domain of IcsA through IcsP-mediated cleavage was greater in the presence of cholate, suggesting that the robustness of biofilm formation was inversely correlated with IcsA processing. Accordingly, deletion of icsP abrogated IcsA processing in biofilms and enhanced biofilm formation.
Collapse
|
4
|
Horne SM, Sayler J, Scarberry N, Schroeder M, Lynnes T, Prüß BM. Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm. BMC Microbiol 2016; 16:262. [PMID: 27821046 PMCID: PMC5100188 DOI: 10.1186/s12866-016-0878-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/28/2016] [Indexed: 12/02/2022] Open
Abstract
Background Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass. Results We allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an ‘optimal’ biofilm may contain a mixture of motile and non-motile bacteria. Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative. To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10:1, and 1:10. After 3 weeks, biofilm of the mixed cultures contained up to five times more biomass than biofilm of each of the individual strains. Conclusion Mutations in the flhD operon can exert positive or negative effects on motility, depending on the site of the mutation. We believe that this is a mechanism to generate motility heterogeneity within E. coli biofilm, which may help to maintain biofilm biomass over extended periods of time. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0878-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shelley M Horne
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Joseph Sayler
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Nicholas Scarberry
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Meredith Schroeder
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Ty Lynnes
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Birgit M Prüß
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA.
| |
Collapse
|
5
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Bravo V, Puhar A, Sansonetti P, Parsot C, Toro CS. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp. PLoS One 2015; 10:e0121785. [PMID: 25811616 PMCID: PMC4374849 DOI: 10.1371/journal.pone.0121785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.
Collapse
Affiliation(s)
- Verónica Bravo
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Puhar
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
- * E-mail: (CP); (CT)
| | - Cecilia S. Toro
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (CP); (CT)
| |
Collapse
|
7
|
Di Martino ML, Fioravanti R, Barbabella G, Prosseda G, Colonna B, Casalino M. Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype. Int J Med Microbiol 2013; 303:651-61. [DOI: 10.1016/j.ijmm.2013.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 11/27/2022] Open
|
8
|
Prosseda G, Di Martino ML, Campilongo R, Fioravanti R, Micheli G, Casalino M, Colonna B. Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model. Res Microbiol 2012; 163:399-406. [DOI: 10.1016/j.resmic.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/08/2012] [Indexed: 12/31/2022]
|
9
|
Gautam S, Kalidindi R, Humayun MZ. SOS induction and mutagenesis by dnaQ missense alleles in wild type cells. Mutat Res 2012; 735:46-50. [PMID: 22677460 DOI: 10.1016/j.mrfmmm.2012.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/14/2012] [Accepted: 05/25/2012] [Indexed: 01/03/2023]
Abstract
Mistranslation leads to elevated mutagenesis and replication arrest, both of which are hypothesized to result from the presence of mixed populations of wild type and mistranslated versions of DNA polymerase III subunit proteins. Consistent with this possibility, expression of missense alleles of dnaQ (which codes for the proofreading subunit ɛ) in wild type (dnaQ+) cells is shown to lead to SOS induction as well as mutagenesis. Exposure to sublethal concentrations of streptomycin, an aminoglycoside antibiotic known to promote mistranslation, also leads to SOS induction.
Collapse
Affiliation(s)
- Satyendra Gautam
- University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Department of Microbiology and Molecular Genetics, 225 Warren Street, ICPH-E450V, Newark NJ 07101-1709, United States
| | | | | |
Collapse
|
10
|
Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. J Bacteriol 2009; 191:2266-75. [PMID: 19136588 DOI: 10.1128/jb.01152-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In prokaryotes, flagellar biogenesis is a complicated process involving over 40 genes. The phytopathogen Xanthomonas campestris pv. campestris possesses a single polar flagellum, which is essential for the swimming motility. A sigma54 activator, FleQ, has been shown to be required for the transcriptional activation of the flagellar type III secretion system (F-T3SS), rod, and hook proteins. One of the two rpoN genes, rpoN2, encoding sigma54, is essential for flagellation. RpoN2 and FleQ direct the expression of a second alternative sigma FliA (sigma28) that is essential for the expression of the flagellin FliC. FlgM interacts with FliA and represses the FliA regulons. An flgM mutant overexpressing FliC generates a deformed flagellum and displays an abnormal motility. Mutation in the two structural genes of F-T3SS, flhA and flhB, suppresses the production of FliC. Furthermore, FliA protein levels are decreased in an flhB mutant. A mutant defective in flhA, but not flhB, exhibits a decreased infection rate. In conclusion, the flagellar biogenesis of Xanthomonas campestris requires alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM.
Collapse
|
11
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
12
|
Dobbin HS, Hovde CJ, Williams CJ, Minnich SA. The Escherichia coli O157 flagellar regulatory gene flhC and not the flagellin gene fliC impacts colonization of cattle. Infect Immun 2006; 74:2894-905. [PMID: 16622228 PMCID: PMC1459738 DOI: 10.1128/iai.74.5.2894-2905.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A virulent European Escherichia coli O157:H- isolate is nonmotile due to a 12-bp deletion in the flagellar regulatory gene flhC. To investigate the contribution of flhC in the relationship between E. coli O157:H7 and cattle, we constructed a similar flhC regulatory mutant in the well-characterized strain ATCC 43894. There was no difference in the growth rate between the wild type and this regulatory mutant, but phenotypic arrays showed substrate utilization differences. Survival in the bovine gastrointestinal tract and colonization of the rectoanal junction mucosa were assessed. Mixtures of both strains were given orally or rectally to steers or administered into the rumen of cattle dually cannulated at the rumen and duodenum. One day post-oral dose, most rectal/fecal isolates (74%) were the regulatory mutant, but by 3 days post-oral dose and throughout the 42-day experiment, > or = 80% of the isolates were wild type. Among steers given a rectal application of both strains, wild-type isolates were the majority of isolates recovered on all days. The regulatory mutant survived better than the wild type in both the rumen and duodenum. To test the role of motility, a filament mutant (delta fliC) was constructed and similar cattle experiments were performed. On all days post-oral dose, the majority of isolates (64% to 98%) were the filament mutant. In contrast, both strains were recovered equally post-rectal application. Thus, the regulatory mutant survived passage through the bovine gastrointestinal tract better than the wild type but failed to efficiently colonize cattle, and the requirement of flhC for colonization was not dependent on a functional flagellum.
Collapse
Affiliation(s)
- Heather S Dobbin
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
13
|
Takahashi H, Watanabe H. A gonococcal homologue of meningococcal gamma-glutamyl transpeptidase gene is a new type of bacterial pseudogene that is transcriptionally active but phenotypically silent. BMC Microbiol 2005; 5:56. [PMID: 16202144 PMCID: PMC1262726 DOI: 10.1186/1471-2180-5-56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/04/2005] [Indexed: 11/24/2022] Open
Abstract
Background It has been speculated that the γ-glutamyl transpeptidase (ggt) gene is present only in Neisseria meningitidis and not among related species such as Neisseria gonorrhoeae and Neisseria lactamica, because N. meningitidis is the only bacterium with GGT activity. However, nucleotide sequences highly homologous to the meningococcal ggt gene were found in the genomes of N. gonorrhoeae isolates. Results The gonococcal homologue (ggt gonococcal homologue; ggh) was analyzed. The nucleotide sequence of the ggh gene was approximately 95 % identical to that of the meningococcal ggt gene. An open reading frame in the ggh gene was disrupted by an ochre mutation and frameshift mutations induced by a 7-base deletion, but the amino acid sequences deduced from the artificially corrected ggh nucleotide sequences were approximately 97 % identical to that of the meningococcal ggt gene. The analyses of the sequences flanking the ggt and ggh genes revealed that both genes were localized in a common DNA region containing the fbp-ggt (or ggh)-glyA-opcA-dedA-abcZ gene cluster. The expression of the ggh RNA could be detected by dot blot, RT-PCR and primer extension analyses. Moreover, the truncated form of ggh-translational product was also found in some of the gonococcal isolates. Conclusion This study has shown that the gonococcal ggh gene is a pseudogene of the meningococcal ggt gene, which can also be designated as Ψggt. The gonococcal ggh (Ψggt) gene is the first identified bacterial pseudogene that is transcriptionally active but phenotypically silent.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruo Watanabe
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
14
|
Tominaga A, Lan R, Reeves PR. Evolutionary changes of the flhDC flagellar master operon in Shigella strains. J Bacteriol 2005; 187:4295-302. [PMID: 15937193 PMCID: PMC1151726 DOI: 10.1128/jb.187.12.4295-4302.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella strains are nonmotile. The master operon of flagellar synthesis, flhDC, was analyzed for genetic damage in 46 Shigella strains representing all known serotypes. In 11 strains (B1, B3, B6, B8, B10, B18, D5, F1B, D10, F3A, and F3C) the flhDC operon was completely deleted. PCR and sequence analysis of the flhDC region of the remaining 35 strains revealed many insertions or deletions associated with insertion sequences, and the majority of the strains were found to be defective in their flhDC genes. As these genes also play a role in regulation of non-flagellar genes, the loss may have other consequences or be driven by selection pressures other than those against flagellar motility. It has been suggested that Shigella strains fall mostly into three clusters within Escherichia coli, with five outlier strains, four of which are also within E. coli (G. M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567-10572, 2000). The distribution of genetic changes in the flhDC region correlated very well with the three clusters and outlier strains found using housekeeping gene DNA sequences, enabling us to follow the sequence of mutational change in the flhDC locus. Two cluster 2 strains were found to have unique flhDC sequences, which are most probably due to recombination during the exchange of the adjacent O-antigen gene clusters.
Collapse
Affiliation(s)
- Akira Tominaga
- School of Molecular and Microbial Biosciences (GO8), The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
15
|
Monday SR, Minnich SA, Feng PCH. A 12-base-pair deletion in the flagellar master control gene flhC causes nonmotility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H- strains. J Bacteriol 2004; 186:2319-27. [PMID: 15060034 PMCID: PMC412172 DOI: 10.1128/jb.186.8.2319-2327.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 01/07/2004] [Indexed: 11/20/2022] Open
Abstract
An atypical, Stx2-producing, pathogenic Escherichia coli O157:H(-) strain has been isolated with increasing frequency from hemolytic uremic syndrome patients in Germany. The lack of the H7 antigen coupled with the strain's ability to ferment sorbitol and express beta-glucuronidase have complicated its detection and identification. In this study, we have determined that the loss of motility in these German sorbitol-fermenting (SF) O157 strains is due to a 12-bp in-frame deletion in flhC that is required for transcriptional activation of genes involved in flagellum biosynthesis. Either complementation with a functional flhC or repair of this mutation restored H7 antigen expression and motility. PCR analysis of several nonmotile E. coli O157 strains from various geographical sources confirmed that the 12-bp flhC deletion is found only in the cluster of German SF O157 strains, providing a potentially useful marker by which these atypical strains can be identified. The loss of motility via mutations in the flhDC operon that we observed in the German SF O157 strains is consistent with a similar phenomenon currently observed in a significant subset of other important gram-negative pathogens.
Collapse
Affiliation(s)
- Steven R Monday
- Division of Microbiological Studies, Food and Drug Administration, College Park, Maryland 20740, USA
| | | | | |
Collapse
|
16
|
Casalino M, Latella MC, Prosseda G, Colonna B. CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect Immun 2003; 71:5472-9. [PMID: 14500464 PMCID: PMC201042 DOI: 10.1128/iai.71.10.5472-5479.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroinvasive E. coli (EIEC), like Shigella, is the etiological agent of bacillary dysentery, a particularly severe syndrome in children in developing countries. All EIEC strains share with Shigella the inability to synthesize lysine decarboxylase (the LDC phenotype). The lack of this function is considered a pathoadaptive mutation whose emergence was necessary to obtain the full expression of invasiveness. Cadaverine, the product of lysine decarboxylation, is a small polyamine which interferes mainly with the inflammatory process induced by dysenteric bacteria. Genes coding for lysine decarboxylase and its transporter constitute a single operon (cadBA) and are expressed at low pH under the positive control of CadC. This regulator is an inner membrane protein that is able to sense pH variation and to respond by transcriptionally activating the cadBA genes. In this study we show that, unlike in Shigella, mutations affecting the cad locus in the EIEC strains we have analyzed are not followed by a novel gene arrangement and that the LCD(-) phenotype is dependent mainly on inactivation of the cadC gene. Introduction of a functional CadC restores cadaverine expression in all EIEC strains harboring either an IS2 element or a defective cadC promoter. Comparative analysis between the cad regions of S. flexneri and EIEC suggests that the LDC(-) phenotype has been attained by different strategies within the E. coli species.
Collapse
|
17
|
Zhou X, Girón JA, Torres AG, Crawford JA, Negrete E, Vogel SN, Kaper JB. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect Immun 2003; 71:2120-9. [PMID: 12654834 PMCID: PMC152053 DOI: 10.1128/iai.71.4.2120-2129.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The type III secretion system (TTSS) of enteropathogenic Escherichia coli (EPEC) has been associated with the ability of these bacteria to induce secretion of proinflammatory cytokines, including interleukin-8 (IL-8), in cultured epithelial cells. However, the identity of the effector molecule directly involved in this event is unknown. In this study, we determined that the native flagellar filament and its flagellin monomer are activators of IL-8 release in T84 epithelial cells. Supernatants of wild-type EPEC strain E2348/69 and its isogenic mutants deficient in TTSS (escN) and in production of intimin (eae), grown in Luria-Bertani broth, elicited similar amounts of IL-8 secretion by T84 cells. In contrast, supernatants of EPEC fliC mutants and of B171, a nonflagellated EPEC strain, were defective in inducing IL-8 release, a phenotype that was largely restored by complementation of the fliC gene in the mutant lacking flagella. Purified flagella from E. coli K-12, EPEC serotypes H6 and H34, and enterohemorrhagic E. coli serotype H7 all induced IL-8 release in T84 cells. Induction of IL-8 by purified flagella or His-tagged FliC from EPEC strain E2348/69 was dose dependent and was blocked by a polyclonal anti-H6 antibody. Finally, the mitogen-activated protein kinases (Erk1 and -2 and Jnk) were phosphorylated in flagellin-treated T84 cells, and inhibition of the p38 and Erk pathways significantly decreased the IL-8 response induced by EPEC flagellin. Our data clearly indicate that FliC of EPEC is sufficient to induce IL-8 release in T84 cells and that activation of the Erk and p38 pathways is required for IL-8 induction.
Collapse
Affiliation(s)
- Xin Zhou
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Al Mamun AAM, Marians KJ, Humayun MZ. DNA polymerase III from Escherichia coli cells expressing mutA mistranslator tRNA is error-prone. J Biol Chem 2002; 277:46319-27. [PMID: 12324458 DOI: 10.1074/jbc.m206856200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Translational stress-induced mutagenesis (TSM) refers to the elevated mutagenesis observed in Escherichia coli cells in which mistranslation has been increased as a result of mutations in tRNA genes (such as mutA) or by exposure to streptomycin. TSM does not require lexA-regulated SOS functions but is suppressed in cells defective for homologous recombination genes. Crude cell-free extracts from TSM-induced E. coli strains express an error-prone DNA polymerase. To determine whether DNA polymerase III is involved in the TSM phenotype, we first asked if the phenotype is expressed in cells defective for all four of the non-replicative DNA polymerases, namely polymerase I, II, IV, and V. By using a colony papillation assay based on the reversion of a lacZ mutant, we show that the TSM phenotype is expressed in such cells. Second, we asked if pol III from TSM-induced cells is error-prone. By purifying DNA polymerase III* from TSM-induced and control cells, and by testing its fidelity on templates bearing 3,N(4)-ethenocytosine (a mutagenic DNA lesion), as well as on undamaged DNA templates, we show here that polymerase III* purified from mutA cells is error-prone as compared with that from control cells. These findings suggest that DNA polymerase III is modified in TSM-induced cells.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | | | |
Collapse
|
19
|
Tominaga A, Mahmoud MA, Al Mamun AA, Mukaihara T. Characterization of cryptic flagellin genes in Shigella boydii and Shigella dysenteriae. Genes Genet Syst 2001; 76:111-20. [PMID: 11434456 DOI: 10.1266/ggs.76.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flagellin (fliC) genes of 12 Shigella boydii and five Shigella dysenteriae strains were characterized. Though these strains are nonmotile, the cryptic fliCSB gene, cloned from S. boydii strain C3, is functional for expression of flagellin. It consists of 1,704 bp, and encodes 568 amino acid residues (57,918 Da). The fliCSD gene from S. dysenteriae strain 16 consists of 1,650 bp encoding 549 amino acid residues (57,591 Da) and contains an IS1 element inserted in its 3' end. The two genes are composed of the 5'-constant, central variable and 3'-constant sequences, like other known fliC genes. The two genes share high homology in nucleotide and amino acid sequences with each other and also with the Escherichia coli fliCE gene, indicating that both genes are closely related to the fliCE gene. Comparison of the central variable sequences of six different fliC genes showed that the fliCSB and fliCSD genes share low homology in amino acid sequence with the other fliC genes, suggesting that they encode antigenic determinants intrinsic to respective subgroups. However, Southern blotting using as probes the central variable sequences of several fliC genes showed that four of 12 S. boydii strains have a fliC gene similar to that of Shigella flexneri, and that among five fliC genes from S. dysenteriae strains, one is similar to that of S. flexneri, two are similar to that of S. boydii, and only one is unique to S. dysenteriae. Some of these variant alleles were verified by immunoblotting with flagellins produced from cloned fliC genes. The presence of variant fliC alleles in S. boydii and S. dysenteriae indicates that subdivision into subgroups does not reflect the ancestral flagella H antigenic relationships. These data will be useful in considering the evolutionary divergence of the Shigella spp..
Collapse
Affiliation(s)
- A Tominaga
- Department of Biology, Faculty of Science, Okayama University, Japan.
| | | | | | | |
Collapse
|
20
|
Liu JH, Lai MJ, Ang S, Shu JC, Soo PC, Horng YT, Yi WC, Lai HC, Luh KT, Ho SW, Swift S. Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J Biomed Sci 2000; 7:475-83. [PMID: 11060496 DOI: 10.1007/bf02253363] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We investigated in Serratia marcescens the functions of the flhDC operon, which controls motility and cell division in enteric bacteria. Included in our evaluations were investigation of cell division, flagellar synthesis and regulation of the expression of nuclease (encoded by the nucA(Sm) gene, one of the virulence factors). Interruption of the chromosomal flhDC operon in S. marcescens CH-1 resulted in aberrant cell division and loss of nuclease and flagella. Expression of nucA(Sm) and other mutated phenotypes was restored in the flhDC mutant by the induction of overexpression of flhDC in a multicopy plasmid. Multicopied flhDC also induced the formation of differentiated cells (polyploid aseptate cells with oversynthesis of peritrichous flagella) in broth culture using minimal growth medium. Expression of the flhDC operon showed positive autoregulation, and was growth phase dependent (upregulated in early log phase). In addition, flhDC expression was inhibited when the temperature increased from 30 to 37 degrees C, and when osmolarity was increased, but was not influenced by glucose catabolite repression. These results show that FlhD/FlhC is a multifunctional transcriptional activator involved in the process of cell differentiation, swarming and virulence factor expression.
Collapse
Affiliation(s)
- J H Liu
- School and Graduate Institute of Medical Technology, College of Medicine, National Taiwan University, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Halling SM. On the presence and organization of open reading frames of the nonmotile pathogen Brucella abortus similar to class II, III, and IV flagellar genes and to LcrD virulence superfamily. MICROBIAL & COMPARATIVE GENOMICS 2000; 3:21-9. [PMID: 11013709 DOI: 10.1089/omi.1.1998.3.21] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Brucellae are pathogenic, nonmotile bacteria that are facultative intracellular parasites. Little is known about the genetics of these bacteria. Open reading frames from Brucella abortus with similarity to the flagellin, M-ring, and hook of related bacteria were discovered. The open reading frames encode proteins of three of the four flagellum gene classes, namely II, III, and IV. A homolog of the LcrD virulence superfamily was also found. This superfamily is involved in type III protein secretion. B. abortus has the potential for motility and type III secretion.
Collapse
Affiliation(s)
- S M Halling
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Zoonotic Diseases Research Unit, Ames, Iowa, USA
| |
Collapse
|
22
|
Al Mamun AA, Yadava RS, Ren L, Humayun MZ. The Escherichia coli UVM response is accompanied by an SOS-independent error-prone DNA replication activity demonstrable in vitro. Mol Microbiol 2000; 38:368-80. [PMID: 11069662 DOI: 10.1046/j.1365-2958.2000.02136.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UVM is an SOS-independent inducible response characterized by elevated mutagenesis at a site-specific 3, N4-ethenocytosine (epsilonC) residue borne on M13 single-stranded DNA transfected into Escherichia coli cells pretreated with DNA-damaging agents. By constructing and using E. coli strain AM124 (polA polB umuDC dinB lexA1[Ind-]), we show here that the UVM response is manifested in cells deficient for SOS induction, as well as for all four of the 'non-replicative' DNA polymerases, namely DNA polymerase I (polA), II (polB), IV (dinB) and V (umuDC). These results confirm that UVM represents a novel, previously unidentified cellular response to DNA-damaging agents. To address the question as to whether the UVM response is accompanied by an error-prone DNA replication activity, we applied a newly developed in vitro replication assay coupled to an in vitro mutation analysis system. In the assay, circular M13 single-stranded DNA bearing a site-specific lesion is converted to circular double-stranded replicative-form DNA in the presence of cell extracts and nucleotide precursors under conditions that closely mimic M13 replication in vivo. The newly synthesized (minus) DNA strand is selectively amplified by ligation-mediated polymerase chain reaction (LM-PCR), followed by a multiplex sequence analysis to determine the frequency and specificity of mutations. Replication of DNA bearing a site-specific epsilonC lesion by cell extracts from uninduced E. coli AM124 cells results in a mutation frequency of about 13%. Mutation frequency is elevated fivefold (to 58%) in cell extracts from UVM-induced AM124 cells, with C --> A mutations predominating over C --> T mutations, a specificity similar to that observed in vivo. These results, together with previously reported data, suggest that the UVM response is mediated through the induction of a transient error-prone DNA replication activity and that a modification of DNA polymerase III or the expression of a previously unidentified DNA polymerase may account for the UVM phenotype.
Collapse
Affiliation(s)
- A A Al Mamun
- Department of Microbiology and Molecular Genetics, UMDNJ - New Jersey Medical School, 185 South Orange Avenue MSB-F607, Newark, NJ 07103-2714, USA
| | | | | | | |
Collapse
|
23
|
Steiner TS, Nataro JP, Poteet-Smith CE, Smith JA, Guerrant RL. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J Clin Invest 2000; 105:1769-77. [PMID: 10862792 PMCID: PMC378507 DOI: 10.1172/jci8892] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. EAEC infections are associated with intestinal inflammation and growth impairment in infected children, even in the absence of diarrhea. We previously reported that prototype EAEC strains rapidly induce IL-8 production by Caco-2 intestinal epithelial cells, and that this effect is mediated by a soluble, heat-stable factor released by these bacteria in culture. We herein report the cloning, sequencing, and expression of this biologically active IL-8-releasing factor from EAEC, and its identification as a flagellin that is unique among known expressed proteins. Flagella purified from EAEC 042 and several other EAEC isolates potently release IL-8 from Caco-2 cells; an engineered aflagellar mutant of 042 does not release IL-8. Finally, cloned EAEC flagellin expressed in nonpathogenic E. coli as a polyhistidine-tagged fusion protein maintains its proinflammatory activity. These findings demonstrate a major new means by which EAEC may cause intestinal inflammation, persistent diarrhea, and growth impairment that characterize human infection with these organisms. Furthermore, they open new approaches for diagnosis and vaccine development. This novel pathogenic mechanism of EAEC extends an emerging paradigm of bacterial flagella as inflammatory stimuli.
Collapse
Affiliation(s)
- T S Steiner
- Division of Geographic and International Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
A mechanism for regulating gene expression at the level of transcription utilizes an antagonist of the sigma transcription factor known as the anti-sigma (anti-sigma) factor. The cytoplasmic class of anti-sigma factors has been well characterized. The class includes AsiA form bacteriophage T4, which inhibits Escherichia coli sigma 70; FlgM, present in both gram-positive and gram-negative bacteria, which inhibits the flagella sigma factor sigma 28; SpoIIAB, which inhibits the sporulation-specific sigma factor, sigma F and sigma G, of Bacillus subtilis; RbsW of B. subtilis, which inhibits stress response sigma factor sigma B; and DnaK, a general regulator of the heat shock response, which in bacteria inhibits the heat shock sigma factor sigma 32. In addition to this class of well-characterized cytoplasmic anti-sigma factors, a new class of homologous, inner-membrane-bound anti-sigma factors has recently been discovered in a variety of eubacteria. This new class of anti-sigma factors regulates the expression of so-called extracytoplasmic functions, and hence is known as the ECF subfamily of anti-sigma factors. The range of cell processes regulated by anti-sigma factors is highly varied and includes bacteriophage phage growth, sporulation, stress response, flagellar biosynthesis, pigment production, ion transport, and virulence.
Collapse
Affiliation(s)
- K T Hughes
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
25
|
Volgyi A, Fodor A, Szentirmai A, Forst S. Phase Variation in Xenorhabdus nematophilus. Appl Environ Microbiol 1998; 64:1188-93. [PMID: 16349534 PMCID: PMC106128 DOI: 10.1128/aem.64.4.1188-1193.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1997] [Accepted: 01/05/1998] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus nematophilus is a symbiotic bacterium that inhabits the intestine of entomopathogenic nematodes. The bacterium-nematode symbiotic pair is pathogenic for larval-stage insects. The phase I cell type is the form of the bacterium normally associated with the nematode. A variant cell type, referred to as phase II, can form spontaneously under stationary-phase conditions. Phase II cells do not elaborate products normally associated with the phase I cell type. To better define phase variation in X. nematophilus, several strains (19061, AN6, F1, N2-4) of this bacterium were analyzed for new phenotypic traits. An analysis of pathogenicity in Manduca sexta larvae revealed that the phase II form of AN6 (AN6/II) was significantly less virulent than the phase I form (AN6/I). The variant form of N2-4 was also avirulent. On the other hand, F1/II and 19061/II were as virulent as the respective phase I cells. Strain 19061/II was found to be motile, and AN6/II regained motility when the bacteria were grown in low-osmolarity medium. In contrast, F1/II remained nonmotile. The phase II cells did not produce the outer membrane protein, OpnB, that is normally induced during the stationary phase. Both phase I and phase II cells were able to support nematode growth and development. These findings indicate that while certain phenotypic traits are common to all phase II cells, other characteristics, such as virulence and motility, are variable and can be influenced by environmental conditions.
Collapse
Affiliation(s)
- A Volgyi
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201, and Department of Genetics, Eotvos Lorand University, Budapest, and Department of Microbiology, Kossuth Lajos University, Debrecen, Hungary
| | | | | | | |
Collapse
|
26
|
Umelo E, Trust TJ. Identification and molecular characterization of two tandemly located flagellin genes from Aeromonas salmonicida A449. J Bacteriol 1997; 179:5292-9. [PMID: 9286979 PMCID: PMC179395 DOI: 10.1128/jb.179.17.5292-5299.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two tandemly located flagellin genes, flaA and flaB, with 79% nucleotide sequence identity were identified in Aeromonas salmonicida A449. The fla genes are conserved in typical and atypical strains of A. salmonicida, and they display significant divergence at the nucleotide level from the fla genes of the motile species Aeromonas hydrophila and Aeromonas veronii biotype sobria. flaA and flaB encode unprocessed flagellins with predicted Mrs of 32,351 and 32,056, respectively. When cloned under the control of the Ptac promoter, flaB was highly expressed when induced in Escherichia coli DH5alpha, and the FlaB protein was detectable even in the uninduced state. In flaA clones containing intact upstream sequence, FlaA was barely detectable when uninduced and poorly expressed on induction. The A. salmonicida flagellins are antigenically cross-reactive with the A. hydrophila TF7 flagellin(s) and evolutionarily closely related to the flagellins of Pseudomonas aeruginosa and Vibrio anguillarum. Electron microscopy showed that A. salmonicida A449 expresses unsheathed polar flagella at an extremely low frequency under normal laboratory growth conditions, suggesting the presence of a full complement of genes whose products are required to make flagella; e.g., immediately downstream of flaA and flaB are open reading frames encoding FlaG and FlaH homologs.
Collapse
Affiliation(s)
- E Umelo
- Department of Biochemistry and Microbiology and Canadian Bacterial Diseases Network, University of Victoria, British Columbia, Canada
| | | |
Collapse
|
27
|
Furness RB, Fraser GM, Hay NA, Hughes C. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol 1997; 179:5585-8. [PMID: 9287017 PMCID: PMC179433 DOI: 10.1128/jb.179.17.5585-5588.1997] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Proteus mirabilis flagellum class I flhDC operon was isolated, and its transcript was shown to originate from a sigma70 promoter 244 bp 5' of flhD and 29 bp 3' of a putative cyclic AMP receptor protein-binding site. Expression of this regulatory master operon increased strongly as cells differentiated into elongated hyperflagellated swarm filaments, and cell populations artificially overexpressing flhDC migrated sooner and faster. A class II flhA transposon mutant was reduced in flagellum class III gene expression, as would be expected from the FlgM anti-sigma28 accumulation demonstrated in Salmonella typhimurium, but was unexpectedly also reduced in cell elongation. Here, we show that levels of flhDC transcript were ca. 10-fold lower in this flagellum export mutant, indicating that in cells defective in flagellum assembly, there is additional negative feedback via flhDC. In support of this view, artificial overexpression of flhDC in the flhA mutant restored elongation but not class III flagellum gene transcription.
Collapse
Affiliation(s)
- R B Furness
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
28
|
Al Mamun AA, Tominaga A, Enomoto M. Cloning and characterization of the region III flagellar operons of the four Shigella subgroups: genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei. J Bacteriol 1997; 179:4493-500. [PMID: 9226258 PMCID: PMC179284 DOI: 10.1128/jb.179.14.4493-4500.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To detect genetic defects that might have caused loss of flagella in Shigella boydii and Shigella sonnei, the region III flagellar (fli) operons were cloned from certain strains and analyzed with reference to the restriction maps and genetic maps of Escherichia coli fli operons. S. boydii NCTC9733 (strain C5 in this paper) had the 988-bp internal deletion in the fliF gene that encodes a large substructural protein of the basal body. Two strains (C1 and C8) had deletions of the entire fliF operon, and the remaining three (C3, C4, and C9) differed in the size of the restriction fragments carrying the fliF and fliL operons. Loss of flagella in S. boydii appears to originate in some defect in the fliF operon. S. sonnei IID969 lacked the fliD gene and, in place of it, carried two IS600 elements as inverted repeats. Genes downstream from fliD were not detected in the cloned fragment despite its large size but did appear elsewhere in the chromosome. The fliD gene encodes a cap protein of the flagellar filament, and its deletion results in overexpression of class 3 operons by the increased amount of FliA (sigmaF) caused by the excess export of the anti-sigma factor FlgM. Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei. The lack of FliF or FliD in each subgroup is discussed in connection with the maintenance of virulence and bacterial growth. We also discuss the process of loss of flagella in relation to transposition of IS elements and alterations of the noncoding region, which were found to be common to at least three subgroups.
Collapse
Affiliation(s)
- A A Al Mamun
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | |
Collapse
|