1
|
Plant-Pathogenic Ralstonia Phylotypes Evolved Divergent Respiratory Strategies and Behaviors To Thrive in Xylem. mBio 2023; 14:e0318822. [PMID: 36744950 PMCID: PMC9973335 DOI: 10.1128/mbio.03188-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem. Reduction of nitrate, nitrite, and nitric oxide all contribute to the virulence of a model phylotype I strain. However, little is known about the physiological role of the last denitrification step, the reduction of nitrous oxide to dinitrogen by NosZ. We found that phylotypes I and III need NosZ for full virulence. However, strains in phylotypes II and IV are highly virulent despite lacking NosZ. The ability to respire by reducing nitrate to nitrous oxide does not greatly enhance the growth of phylotype II and IV strains. These partial denitrifying strains reach high cell densities during plant infection and cause typical wilt disease. However, unlike phylotype I and III strains, partial denitrifiers cannot grow well under anaerobic conditions or form thick biofilms in culture or in tomato xylem vessels. Furthermore, aerotaxis assays show that strains from different phylotypes have different oxygen and nitrate preferences. Together, these results indicate that the RSSC contains two subgroups that occupy the same habitat but have evolved divergent energy metabolism strategies to exploit distinct metabolic niches in the xylem. IMPORTANCE Plant-pathogenic Ralstonia spp. are a heterogeneous globally distributed group of bacteria that colonize plant xylem vessels. Ralstonia cells multiply rapidly in plants and obstruct water transport, causing fatal wilting and serious economic losses of many key food security crops. The virulence of these pathogens depends on their ability to grow to high cell densities in the low-oxygen xylem environment. Plant-pathogenic Ralstonia can use denitrifying respiration to generate ATP. The last denitrification step, nitrous oxide reduction by NosZ, contributes to energy production and virulence for only one of the three phytopathogenic Ralstonia species. These complete denitrifiers form thicker biofilms in culture and in tomato xylem, suggesting they are better adapted to hypoxic niches. Strains with partial denitrification physiology form less biofilm and are more often planktonic. They are nonetheless highly virulent. Thus, these closely related bacteria have adapted their core metabolic functions to exploit distinct microniches in the same habitat.
Collapse
|
2
|
Liebrenz K, Frare R, Gómez C, Pascuan C, Brambilla S, Soldini D, Maguire V, Carrio A, Ruiz O, McCormick W, Soto G, Ayub N. Multiple ways to evade the bacteriostatic action of glyphosate in rhizobia include the mutation of the conserved serine 90 of the nitrogenase subunit NifH to alanine. Res Microbiol 2022; 173:103952. [PMID: 35436545 DOI: 10.1016/j.resmic.2022.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
The genome resequencing of spontaneous glyphosate-resistant mutants derived from the soybean inoculant E109 allowed identifying genes most likely associated with the uptake (gltL and cya) and metabolism (zigA and betA) of glyphosate, as well as with nitrogen fixation (nifH). Mutations in these genes reduce the lag phase and improve nodulation under glyphosate stress. In addition to providing glyphosate resistance, the amino acid exchange Ser90Ala in NifH increased the citrate synthase activity, growth rate and plant growth-promoting efficiency of E109 in the absence of glyphosate stress, suggesting roles for this site during both the free-living and symbiotic growth stages.
Collapse
Affiliation(s)
- Karen Liebrenz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina
| | - Romina Frare
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina
| | - Cecilia Pascuan
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina
| | - Silvina Brambilla
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina
| | - Diego Soldini
- Estación Experimental Agropecuaria Marcos Juárez, INTA, Córdoba, Argentina
| | - Vanina Maguire
- Instituto Tecnológico Chascomús (INTECH-CONICET), Buenos Aires, Argentina
| | - Alejandro Carrio
- Estación Experimental Agropecuaria Marcos Juárez, INTA, Córdoba, Argentina
| | - Oscar Ruiz
- Instituto Tecnológico Chascomús (INTECH-CONICET), Buenos Aires, Argentina
| | - Wayne McCormick
- Ottawa Research and Development Centre (AAFC), Ottawa, ON, Canada
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina; Instituto de Genética (IGEAF), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Liu H, Li Y, Pan B, Zheng X, Yu J, Ding H, Zhang Y. Pathways of soil N 2O uptake, consumption, and its driving factors: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30850-30864. [PMID: 35092587 DOI: 10.1007/s11356-022-18619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas that plays a significant role in atmospheric photochemical reactions and contributes to stratospheric ozone depletion. Soils are the main sources of N2O emissions. In recent years, it has been demonstrated that soil is not only a source but also a sink of N2O uptake and consumption. N2O emissions at the soil surface are the result of gross N2O production, uptake, and consumption, which are co-occurring processes. Soil N2O uptake and consumption are complex biological processes, and their mechanisms are still worth an in-depth systematic study. This paper aimed to systematically address the current research progress on soil N2O uptake and consumption. Based on a bibliometric perspective, this study has highlighted the pathways of soil N2O uptake and consumption and their driving factors and measurement techniques. This systematic review of N2O uptake and consumption will help to further understand N transformations and soil N2O emissions.
Collapse
Affiliation(s)
- Hongshan Liu
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China.
| | - Baobao Pan
- School of Agriculture and Food, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China.
| |
Collapse
|
4
|
Frare R, Pascuan C, Galindo-Sotomonte L, McCormick W, Soto G, Ayub N. Exploring the Role of the NO-Detoxifying Enzyme HmpA in the Evolution of Domesticated Alfalfa Rhizobia. MICROBIAL ECOLOGY 2022; 83:501-505. [PMID: 33966095 DOI: 10.1007/s00248-021-01761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We have previously shown the extensive loss of genes during the domestication of alfalfa rhizobia and the high nitrous oxide emission associated with the extreme genomic instability of commercial inoculants. In the present note, we describe the molecular mechanism involved in the evolution of alfalfa rhizobia. Genomic analysis showed that most of the gene losses in inoculants are due to large genomic deletions rather than to small deletions or point mutations, a fact consistent with recurrent DNA double-strand breaks (DSBs) at numerous locations throughout the microbial genome. Genetic analysis showed that the loss of the NO-detoxifying enzyme HmpA in inoculants results in growth inhibition and high DSB levels under nitrosative stress, and large genomic deletions in planta but not in the soil. Therefore, besides its known function in the effective establishment of the symbiosis, HmpA can play a critical role in the preservation of the genomic integrity of alfalfa rhizobia under host-derived nitrosative stress.
Collapse
Affiliation(s)
- Romina Frare
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Cecilia Pascuan
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Luisa Galindo-Sotomonte
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Wayne McCormick
- Ottawa Research and Development Centre (AAFC), Ottawa, ON, Canada
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina.
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Brambilla S, Soto G, Odorizzi A, Arolfo V, McCormick W, Primo E, Giordano W, Jozefkowicz C, Ayub N. Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N 2O-Emitting Alfalfa Rhizobia in Regions with Different Climates. MICROBIAL ECOLOGY 2020; 79:1044-1053. [PMID: 31828388 DOI: 10.1007/s00248-019-01473-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.
Collapse
Affiliation(s)
- Silvina Brambilla
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina
| | - Ariel Odorizzi
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Valeria Arolfo
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Wayne McCormick
- Ottawa Research and Development Centre (AAFC), Ottawa, ON, Canada
| | - Emiliano Primo
- Departamento de Biología Molecular (UNRC), Córdoba, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular (UNRC), Córdoba, Argentina
| | - Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina.
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Wang Y, Wang Z, Duo Y, Wang X, Chen J, Chen J. Gene cloning, expression, and reducing property enhancement of nitrous oxide reductase from Alcaligenes denitrificans strain TB. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:43-52. [PMID: 29649759 DOI: 10.1016/j.envpol.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/14/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and tends to accumulate as an intermediate in the process of bacteria denitrification. To achieve complete reduction of nitrogen oxide (NOx) in bacteria denitrification, the structural gene nosZ encoding nitrous oxide reductase (N2OR) was cloned from Alcaligenes denitrificans strain TB (GenBank JQ044686). The recombinant plasmid containing the nosZ gene was built, and the expression of nosZ gene in Escherichia coli was determined. Results show that the nosZ gene consisting of 1917 nucleotides achieves heterologous expression successfully by codon optimization strategy under optimal conditions (pre-induction inoculum OD600 of 0.67, final IPTG concentration of 0.5 mM, inducing time of 6 h, and inducing temperature of 28 °C). Determination result of gas chromatography confirms that N2O degradation efficiency of recombinant E. coli is strengthened by at least 1.92 times compared with that of original strain TB when treated with N2O as substrate. Moreover, N2OR activity in recombinant strain is 2.09 times higher than that in wild strain TB, which validates the aforementioned result and implies that the recombinant E. coli BL21 (DE3)-pET28b-nosZ is a potential candidate to control N2O accumulation and alleviate greenhouse effect. In addition, the N2OR structure and the possible N2O binding site in Alcaligenes sp. TB are predicted, which open an avenue for further research on the relationship between N2OR activity and its structure.
Collapse
Affiliation(s)
- Yu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zeyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yankai Duo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianmeng Chen
- Engineering Research Center of the Ministry of Education for Bioconversion and Biopurification, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Chen
- Engineering Research Center of the Ministry of Education for Bioconversion and Biopurification, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
7
|
Torres MJ, Bueno E, Jiménez-Leiva A, Cabrera JJ, Bedmar EJ, Mesa S, Delgado MJ. FixK 2 Is the Main Transcriptional Activator of Bradyrhizobium diazoefficiens nosRZDYFLX Genes in Response to Low Oxygen. Front Microbiol 2017; 8:1621. [PMID: 28912756 PMCID: PMC5582078 DOI: 10.3389/fmicb.2017.01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.
Collapse
Affiliation(s)
- María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
8
|
Chu L, Wang J. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity. CHEMOSPHERE 2016; 155:463-470. [PMID: 27145420 DOI: 10.1016/j.chemosphere.2016.04.090] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
In the present study, three kinds of biopolymers, PHBV, PHBV/starch and PHBV/bamboo powder (BP) blends were used as carbon source and biofilm carriers for denitrification in packed bed reactors to remove nitrate from groundwater. Results showed that a fast start-up was obtained in bioreactors filled with both PHBV/Starch and PHBV/BP blends without external inocula and it took more than 3 month for PHBV reactor to reach the same loading rate. The PHBV/BP packed reactor exhibited a better nitrate removal efficiency (87.4 ± 7.0%) and less adverse effects in nitrite accumulation and DOC release (below 0.5 mg NO2N L(-1) and 10.5 mg DOC L(-1) in the effluent) during stable operation. Pyrosequencing analysis demonstrated that bacteria belonging to genus Clostridium in phylum Firmicus, which play the primary role in degrading the biopolymers, are the most dominant (33-15% of the sequences). The predominant species in all samples is related to Clostridium crotonatovorans. All the identified 11 genera of denitrifying bacteria affiliated with phylum Proteobacteria and constituted 30-55% in the representative sequences. The PHBV/BP blend is economically attractive carbon source with good denitrification performance.
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
10
|
Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 2013; 196:811-24. [PMID: 24317400 DOI: 10.1128/jb.01104-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.
Collapse
|
11
|
Yang Y, Huang S, Zhang Y, Xu F. Nitrogen Removal by Chelatococcus daeguensis TAD1 and Its Denitrification Gene Identification. Appl Biochem Biotechnol 2013; 172:829-39. [DOI: 10.1007/s12010-013-0590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
12
|
|
13
|
Chen J, Strous M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:136-44. [PMID: 23044391 DOI: 10.1016/j.bbabio.2012.10.002] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022]
Abstract
This paper explores the bioenergetics and potential co-evolution of denitrification and aerobic respiration. The advantages and disadvantages of combining these two pathways in a single, hybrid respiratory chain are discussed and the experimental evidence for the co-respiration of nitrate and oxygen is critically reviewed. A scenario for the co-evolution of the two pathways is presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jianwei Chen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | |
Collapse
|
14
|
Li Y, Katzmann E, Borg S, Schüler D. The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol 2012; 194:4847-56. [PMID: 22730130 PMCID: PMC3430331 DOI: 10.1128/jb.00903-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization.
Collapse
Affiliation(s)
- Yingjie Li
- Ludwig-Maximilians-Universität München, Department Biologie I, Mikrobiologie, Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
15
|
Characterization of the twin-arginine transport secretome in Sinorhizobium meliloti and evidence for host-dependent phenotypes. Appl Environ Microbiol 2012; 78:7141-4. [PMID: 22843517 DOI: 10.1128/aem.01458-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine transport (Tat) system is essential for cell viability in Sinorhizobium meliloti and may play a role during the development of root nodules. Utilizing an in vivo recombination strategy, we have constructed 28 strains that contain deletions in predicted Tat substrates. Testing of these mutations for symbiotic proficiency on the plant hosts alfalfa and sweet clover shows that some of these mutations affect associations with these hosts differentially.
Collapse
|
16
|
Complete sequence analysis of two methanotroph-specific repABC-containing plasmids from Methylocystis sp. strain SC2. Appl Environ Microbiol 2012; 78:4373-9. [PMID: 22504811 DOI: 10.1128/aem.00628-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequences of two large, low-copy-number plasmids of 229.6 kb (pBSC2-1) and 143.5 kb (pBSC2-2) were determined during assembly of the whole-genome shotgun sequences of the methane-oxidizing bacterium Methylocystis sp. strain SC2. The physical existence of the two plasmids in strain SC2 was confirmed by pulsed-field gel electrophoresis followed by Southern hybridization. Both plasmids have a conserved replication module of the repABC system and carry genes involved in their faithful maintenance and conjugation. In addition, they contain genes that might be involved in essential metabolic processes. These include several heavy metal resistance genes and copper transport genes in pBSC2-1 and a complete nitrous oxide reductase operon and a pmoC singleton in pBSC2-2, the latter encoding the PmoC subunit of particulate methane monooxygenase.
Collapse
|
17
|
Abstract
Denitrification is the complete reduction of nitrate or nitrite to N2, via the intermediates nitric oxide (NO) and nitrous oxide (N2O), and is coupled to energy conservation and growth under O2-limiting conditions. In Bradyrhizobium japonicum, this process occurs through the action of the napEDABC, nirK, norCBQD and nosRZDFYLX gene products. DNA sequences showing homology with nap, nirK, nor and nos genes have been found in the genome of the symbiotic plasmid pSymA of Sinorhizobium meliloti strain 1021. Whole-genome transcriptomic analyses have demonstrated that S. meliloti denitrification genes are induced under micro-oxic conditions. Furthermore, S. meliloti has also been shown to possess denitrifying activities in both free-living and symbiotic forms. Despite possessing and expressing the complete set of denitrification genes, S. meliloti is considered a partial denitrifier since it does not grow under anaerobic conditions with nitrate or nitrite as terminal electron acceptors. In the present paper, we show that, under micro-oxic conditions, S. meliloti is able to grow by using nitrate or nitrite as respiratory substrates, which indicates that, in contrast with anaerobic denitrifiers, O2 is necessary for denitrification by S. meliloti. Current knowledge of the regulation of S. meliloti denitrification genes is also included.
Collapse
|
18
|
Gómez-Hernández N, Reyes-González A, Sánchez C, Mora Y, Delgado MJ, Girard L. Regulation and symbiotic role of nirK and norC expression in Rhizobium etli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:233-45. [PMID: 21043576 DOI: 10.1094/mpmi-07-10-0173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rhizobium etli CFN42 is unable to use nitrate for respiration and lacks nitrate reductase activity as well as the nap or nar genes encoding respiratory nitrate reductase. However, genes encoding proteins closely related to denitrification enzymes, the norCBQD gene cluster and a novel nirKnirVnnrRnnrU operon are located on pCFN42f. In this study, we carried out a genetic and functional characterization of the reductases encoded by the R. etli nirK and norCB genes. By gene fusion expression analysis in free-living conditions, we determined that R. etli regulates its response to nitric oxide through NnrR via the microaerobic expression mediated by FixKf. Interestingly, expression of the norC and nirK genes displays a different level of dependence for NnrR. A null mutation in nnrR causes a drastic drop in the expression of norC, while nirK still exhibits significant expression. A thorough analysis of the nirK regulatory region revealed that this gene is under both positive and negative regulation. Functional analysis carried out in this work demonstrated that reduction of nitrite and nitric oxide in R. etli requires the reductase activities encoded by the norCBQD and nirK genes. Levels of nitrosylleghemoglobin complexes in bean plants exposed to nitrate are increased in a norC mutant but decreased in a nirK mutant. The nitrate-induced decline in nitrogenase-specific activity observed in both the wild type and the norC mutant was not detected in the nirK mutant. This data indicate that bacterial nitrite reductase is an important contributor to the formation of NO in bean nodules in response to nitrate.
Collapse
Affiliation(s)
- Nicolás Gómez-Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, 62271, México
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
We are becoming increasingly aware of the role played by archaea in the biogeochemical cycling of the elements. Metabolism of metals is linked to fundamental metabolic functions, including nitrogen fixation, energy production, and cellular processes based on oxidoreductions. Comparative genomic analyses have shown that genes for metabolism, resistance, and detoxification of metals are widespread throughout the archaeal domain. Archaea share with other organisms strategies allowing them to utilize essential metals and maintain metal ions within a physiological range, although comparative proteomics show, in a few cases, preferences for specific genetic traits related to metals. A more in-depth understanding of the physiology of acidophilic archaea might lead to the development of new strategies for the bioremediation of metal-polluted sites and other applications, such as biomining.
Collapse
Affiliation(s)
- Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
20
|
Barth KR, Isabella VM, Clark VL. Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria. MICROBIOLOGY-SGM 2009; 155:4093-4103. [PMID: 19762442 DOI: 10.1099/mic.0.032961-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since Neisseria gonorrhoeae and Neisseria meningitidis are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal Neisseria genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains. Only Neisseria mucosa contained a nitrate reductase (Nar), and only Neisseria lactamica, Neisseria cinerea, Neisseria subflava, Neisseria flavescens and Neisseria sicca contained a nitrous oxide reductase (Nos) complex. The regulators of the denitrification genes, FNR, NarQP and NsrR, were highly conserved, except for the GAF domain of NarQ. Biochemical examination of laboratory strains revealed that all of the neisserial species tested except N. mucosa had a two- to fourfold lower nitrite reductase activity than N. gonorrhoeae, while N. meningitidis and most of the commensal Neisseria species had a two- to fourfold higher nitric oxide (NO) reductase activity. For N. meningitidis and most of the commensal Neisseria, there was a greater than fourfold reduction in the NO steady-state level in the presence of nitrite as compared with N. gonorrhoeae. All of the species tested generated an NO steady-state level in the presence of an NO donor that was similar to that of N. gonorrhoeae. The greatest difference between the Neisseria species was the lack of a functional Nos system in the pathogenic species N. gonorrhoeae and N. meningitidis.
Collapse
Affiliation(s)
- Kenneth R Barth
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Liu X, Gao C, Zhang A, Jin P, Wang L, Feng L. Thenosgene cluster from gram-positive bacteriumGeobacillus thermodenitrificansNG80-2 and functional characterization of the recombinant NosZ. FEMS Microbiol Lett 2008; 289:46-52. [DOI: 10.1111/j.1574-6968.2008.01362.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Tripathi LP, Sowdhamini R. Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. BMC Genomics 2008; 9:549. [PMID: 19019219 PMCID: PMC2605481 DOI: 10.1186/1471-2164-9-549] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 11/19/2008] [Indexed: 12/29/2022] Open
Abstract
Background Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. Results A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc.) were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. Conclusion Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes, suggesting distinct roles for serine proteases in prokaryotes. Many domain combinations were found unique to specific prokaryotic species, suggesting functional specialisation in various cellular and physiological processes.
Collapse
Affiliation(s)
- Lokesh P Tripathi
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore-560065, India.
| | | |
Collapse
|
23
|
Haritha A, Rodrigue A, Mohan PM. A comparative analysis of metal transportomes from metabolically versatile Pseudomonas. BMC Res Notes 2008; 1:88. [PMID: 18816395 PMCID: PMC2573884 DOI: 10.1186/1756-0500-1-88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/24/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of complete genome sequences of versatile Pseudomonas occupying remarkably diverse ecological niches enabled to gain insights into their adaptative assets. The objective of this study was to analyze the complete genetic repertoires of metal transporters (metal transportomes) from four representative Pseudomonas species and to identify metal transporters with "Genomic Island" associated features. METHODS A comparative metal transporter inventory was built for the following four Pseudomonas species: P.putida (Ppu) KT2440, P.aeruginosa (Pae) PA01, P.fluorescens (Pfl) Pf-5 and P.syringae (Psy)pv.tomato DC3000 using TIGR-CMR and Transport DB. Genomic analysis of essential and toxic metal ion transporters was accomplished from the above inventory. Metal transporters with "Genomic Island" associated features were identified using Islandpath analysis. RESULTS Dataset cataloguing has been executed for 262 metal transporters from the four spp. Additional metal ion transporters belonging to NiCoT, Ca P-type ATPase, Cu P-type ATPases, ZIP and MgtC families were identified. In Psy DC3000, 48% of metal transporters showed strong GI features while it was 45% in Ppu KT2440. In Pfl Pf-5 and Pae PA01 only 26% of their metal transporters exhibited GI features. CONCLUSION Our comparative inventory of 262 metal transporters from four versatile Pseudomonas spp is the complete suite of metal transportomes analysed till date in a prokaryotic genus. This study identified differences in the basic composition of metal transportomes from Pseudomonas occupying diverse ecological niches and also elucidated their novel features. Based on this inventory we analysed the role of horizontal gene transfer in expansion and variability of metal transporter families.
Collapse
|
24
|
Zumft WG, Kroneck PMH. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 2006; 52:107-227. [PMID: 17027372 DOI: 10.1016/s0065-2911(06)52003-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of physiological traits and biochemically challenging metabolic modes or habitats, including halorespiration, diazotrophy, symbiosis, pathogenicity, psychrophily, thermophily, extreme halophily and the marine habitat down to the greatest depth. Components for N2O respiration cover topologically the periplasm and the inner and outer membranes. The Sec and Tat translocons share the task of exporting Nos components to their functional sites. Electron donation to N2OR follows pathways with modifications depending on the host organism. A short chronology of the field is also presented.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
25
|
de Bruijn FJ, Rossbach S, Bruand C, Parrish JR. A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. Environ Microbiol 2006; 8:1371-81. [PMID: 16872401 DOI: 10.1111/j.1462-2920.2006.01030.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A previously generated collection of 11 Tn5-luxAB insertion mutants of Sinorhizobium meliloti harbouring lux reporter gene fusions induced under microaerobic (1% O2) conditions was further characterized and mapped on the sequenced S. meliloti genome. One highly induced gene fusion from this collection (loe-7) was found to be located in the intergenic region between sma1292, encoding a putative protease/collagenase, and a gene of unknown function (sma1294). The loe-7 fusion had been shown previously to be partially controlled by the oxygen sensor/regulator FixLJ system, but significant ( approximately 40%) Lux activity remained in a fixLJ mutant background. Therefore, a secondary Tn1721 mutagenesis of the loe-7 strain was carried out. Nine Tn1721 ('dark') insertions completely abolishing the Lux activity of the loe-7 fusion under microaerobic conditions were isolated. Surprisingly, five dark insertions mapped in denitrification genes [napA, napC, nirK--two insertions--and sma1245 encoding a NnrR-like transcriptional regulator controlling denitrification in response to nitric oxide (NO)]; Tn1721 insertions in the respiration genes fixG and fixP resulted in a reduced expression of the loe-7-lux fusion, and insertions in the regulatory genes fixJ and fixK1 resulted in low, but still detectable Lux activity. On the contrary, insertions in the norD or norQ genes resulted in constitutive Lux activity. In these mutant strains, NO would be expected to accumulate under microaerobic conditions. NO was found to be able to strongly induce the loe-7-luxAB fusion under microaerobic and aerobic conditions, but only in the presence of the functional nnrR-like gene (sma1245). These results suggest that NO, via the NnrR regulator, can serve as a signal molecule to induce the loe-7-luxAB fusion in concert with the FixLJ system.
Collapse
Affiliation(s)
- Frans J de Bruijn
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS 2594/INRA 441, BP 52627, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | |
Collapse
|
26
|
Zumft WG. Biogenesis of the bacterial respiratory CuA, Cu-S enzyme nitrous oxide reductase. J Mol Microbiol Biotechnol 2006; 10:154-66. [PMID: 16645312 DOI: 10.1159/000091562] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitrous oxide reductase (NosZ, EC 1.7.99.6) is the terminal oxidoreductase of a respiratory electron transfer chain that transforms nitrous oxide to dinitrogen. The enzyme carries six Cu atoms. Two are arranged in the mixed-valent binuclear CuA site, and four make up the mu4-sulfide-bridged Cu cluster, CuZ. The biogenesis of a catalytically active NosZ requires auxiliary functions for metal center assembly in the periplasm. Both Tat and Sec pathways share the task to transport the various Nos proteins to their functional sites. Biogenesis of NosZ requires an ABC transporter complex and the periplasmic Cu chaperone NosL. Sustaining whole-cell NosZ function depends on the periplasmic, FAD-containing protein NosX, and the membrane-bound iron-sulfur flavoprotein NosR. Most components with a biogenetic function are now amenable to structural studies.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
27
|
Abstract
Autotrophic microorganisms have been isolated that are able to derive energy from the oxidation of arsenite [As(III)] to arsenate [As(V)] under aerobic conditions. Based on chemical energetics, microbial oxidation of As(III) can occur in the absence of oxygen, and may be relevant in some environments. Enrichment cultures were established from an arsenic contaminated industrial soil amended with As(III) as the electron donor, inorganic C as the carbon source and nitrate as the electron acceptor. In the active enrichment cultures, oxidation of As(III) was stoichiometrically coupled to the reduction of NO(3) (-). Two autotrophic As(III)-oxidizing strains were isolated that completely oxidized 5 mM As(III) within 7 days under denitrifying conditions. Based on 16S rRNA gene sequencing results, strain DAO1 was 99% related to Azoarcus and strain DAO10 was most closely related to a Sinorhizobium. The nitrous oxide reductase (nosZ) and the RuBisCO Type II (cbbM) genes were successfully amplified from both isolates underscoring their ability to denitrify and fix CO(2) while coupled to As(III) oxidation. Although limited work has been done to examine the diversity of anaerobic autotrophic oxidizers of As(III), this process may be an important component in the biological cycling of arsenic within the environment.
Collapse
Affiliation(s)
- E Danielle Rhine
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
28
|
Sameshima-Saito R, Chiba K, Hirayama J, Itakura M, Mitsui H, Eda S, Minamisawa K. Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase. Appl Environ Microbiol 2006; 72:2526-32. [PMID: 16597953 PMCID: PMC1449076 DOI: 10.1128/aem.72.4.2526-2532.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Accepted: 01/25/2006] [Indexed: 11/20/2022] Open
Abstract
N(2)O reductase activity in soybean nodules formed with Bradyrhizobium japonicum was evaluated from N(2)O uptake and conversion of (15)N-N(2)O into (15)N-N(2). Free-living cells of USDA110 showed N(2)O reductase activity, whereas a nosZ mutant did not. Complementation of the nosZ mutant with two cosmids containing the nosRZDFYLX genes of B. japonicum USDA110 restored the N(2)O reductase activity. When detached soybean nodules formed with USDA110 were fed with (15)N-N(2)O, they rapidly emitted (15)N-N(2) outside the nodules at a ratio of 98.5% of (15)N-N(2)O uptake, but nodules inoculated with the nosZ mutant did not. Surprisingly, N(2)O uptake by soybean roots nodulated with USDA110 was observed even in ambient air containing a low concentration of N(2)O (0.34 ppm). These results indicate that the conversion of N(2)O to N(2) depends exclusively on the respiratory N(2)O reductase and that soybean roots nodulated with B. japonicum carrying the nos genes are able to remove very low concentrations of N(2)O.
Collapse
Affiliation(s)
- Reiko Sameshima-Saito
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Watson RJ, Heys R. Replication regions of Sinorhizobium meliloti plasmids. Plasmid 2005; 55:87-98. [PMID: 16202450 DOI: 10.1016/j.plasmid.2005.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 07/21/2005] [Accepted: 08/05/2005] [Indexed: 11/24/2022]
Abstract
The replication (rep) regions of small plasmids from three Sinorhizobium meliloti strains were cloned by marker rescue. Two unique replication regions were identified, one of which was common to two different strains. Plasmid pBB83 carried a 7.2 kbp rep region from a 42 kbp plasmid, and pBB84 carried a 4.5 kbp rep region from a 36 kbp plasmid. The cloned rep regions were of different compatibility types, and were capable of displacing their parent plasmids from S. meliloti. Neither could function in a PolA- strain of Escherichia coli. The cloned replication regions were less stable in S. meliloti than their parent plasmids. The rep genes for each plasmid were localized to less than 2.5 kbp segments. Sequencing data revealed that the pBB83 Rep protein is uncommon, with partial identity to a protein encoded by a plasmid from S. meliloti GR4 [Mercado-Blanco, J., Olivares, J., 1994. The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid 32, 75-79]. However, the cloned DNA fragment also contains a truncated segment of the common repABC genes, suggesting that the parent plasmid contained two sets of replication genes. Other genes and an IS-element within the insert are most closely related to sequences derived from the Rhizobiaceae family, suggesting that the plasmid has a limited host range. In contrast, the pBB84 rep region contained genes similar to those associated with several broad host-range plasmids, and its Rep protein is related to that of a Pseudomonas aeruginosa broad host-range plasmid, pVS1 [Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., Walsh, U., O'Gara, F., Haas, D., 2000. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant-Microbe Interact. 13, 232-237]. The pBB84 rep region also includes a probable origin of replication, consisting of DNA boxes flanking a series of direct repeats and an AT-rich sequence.
Collapse
Affiliation(s)
- Robert J Watson
- Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ont., Canada KIA OC6.
| | | |
Collapse
|
30
|
Wunsch P, Zumft WG. Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 2005; 187:1992-2001. [PMID: 15743947 PMCID: PMC1064061 DOI: 10.1128/jb.187.6.1992-2001.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial nitrous oxide (N2O) respiration depends on the polytopic membrane protein NosR for the expression of N2O reductase from the nosZ gene. We constructed His-tagged NosR and purified it from detergent-solubilized membranes of Pseudomonas stutzeri ATCC 14405. NosR is an iron-sulfur flavoprotein with redox centers positioned at opposite sides of the cytoplasmic membrane. The flavin cofactor is presumably bound covalently to an invariant threonine residue of the periplasmic domain. NosR also features conserved CX3CP motifs, located C-terminally of the transmembrane helices TM4 and TM6. We genetically manipulated nosR with respect to these different domains and putative functional centers and expressed recombinant derivatives in a nosR null mutant, MK418nosR::Tn5. NosR's function was studied by its effects on N2O respiration, NosZ synthesis, and the properties of purified NosZ proteins. Although all recombinant NosR proteins allowed the synthesis of NosZ, a loss of N2O respiration was observed upon deletion of most of the periplasmic domain or of the C-terminal parts beyond TM2 or upon modification of the cysteine residues in a highly conserved motif, CGWLCP, following TM4. Nonetheless, NosZ purified from the recombinant NosR background exhibited in vitro catalytic activity. Certain NosR derivatives caused an increase in NosZ of the spectral contribution from a modified catalytic Cu site. In addition to its role in nosZ expression, NosR supports in vivo N2O respiration. We also discuss its putative functions in electron donation and redox activation.
Collapse
Affiliation(s)
- Patrick Wunsch
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Karlsruhe, Germany
| | | |
Collapse
|
31
|
Wang G, Skipper HD. Identification of denitrifying rhizobacteria from bentgrass and bermudagrass golf greens. J Appl Microbiol 2004; 97:827-37. [PMID: 15357733 DOI: 10.1111/j.1365-2672.2004.02368.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS As high rates of nitrogen fertilization are used in turfgrass management, there is a great potential for nitrogen loss. Research on identification of denitrifiers in turfgrass has been limited. Therefore, the aim was to identify denitrifier species and genes from turfgrass roots. METHODS AND RESULTS Rhizobacteria were isolated from roots of bentgrass and bermudagrass in sand-based United States Golf Association (USGA) golf greens and used for denitrification biochemical analysis. Seventeen per cent (34 isolates) were identified as denitrifiers, 47% were classified as nitrate-reducers and 36% were nondenitrifiers. Identification of species of the denitrifiers was performed by chromatography fatty acid methyl ester (GC-FAME) and16S rDNA analyses. Bacillus and Pseudomonas were the major turfgrass denitrifiers. The two methods showed a 60% agreement at the genus level. Nitrite reductase genes nirK and nirS were detected in 74 and 15% of the denitrifiers, respectively, but not in nondenitrifiers. The nosZ gene encoding nitrous oxide reductase was detected in all the denitrifiers, but also in some nondenitrifiers. CONCLUSIONS To our knowledge, this is the first report for identification of denitrifiers and denitrification-related genes associated with turfgrass roots. SIGNIFICANCE AND IMPACT OF THE STUDY These results provide valuable data for future denitrification studies that seek to improve turfgrass nitrogen management for maximum efficiency.
Collapse
Affiliation(s)
- G Wang
- Department of Crop and Soil Environmental Science, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
32
|
Puskás LG, Nagy ZB, Kelemen JZ, Rüberg S, Bodogai M, Becker A, Dusha I. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. Mol Genet Genomics 2004; 272:275-89. [PMID: 15365818 DOI: 10.1007/s00438-004-1051-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/31/2004] [Indexed: 10/26/2022]
Abstract
A mutation in the second gene in the ntrPR operon results in increased expression of nodulation (nod) and nitrogen fixation (nif) genes in Sinorhizobium meliloti. Since this pleiotropic effect is particularly pronounced in the presence of external combined nitrogen, a nitrogen regulatory function has been suggested for NtrR. To identify the complete set of protein-coding genes influenced by loss of ntrR function, microarray hybridizations were carried out to compare transcript levels in the wild type and mutant strains grown under aerobic and microaerobic conditions. Of the 6207 genes examined, representing the entire genome of S. meliloti, 7% exhibited altered expression: 4.5% of the genes are affected under oxic, 2.5% under microoxic conditions. 0.4% of all the genes are affected under both oxygen concentrations. A microoxic environment is required for the induction of genes related to symbiotic functions but results in the down-regulation of other (e.g. metabolic) functions. When the alterations in transcription levels at low oxygen concentration in the mutant strain were compared to those of the wild type, a modulating effect of the ntrR mutation was observed. For example, symbiotic nif/fix genes were induced in both strains, but the level of induction was higher in the ntrR mutant. In contrast, genes related to transcription/translation functions were down-regulated in both strains, and the effect was greater in the wild-type strain than in the ntrR mutant. A relatively wide range of functions was affected by this modulating influence, suggesting that ntrR is not a nitrogen regulatory gene. Since genes encoding various unrelated functions were affected, we propose that NtrR may either interfere with general regulatory mechanisms, such as phosphorylation/dephosphorylation, or may influence RNA stability.
Collapse
Affiliation(s)
- L G Puskás
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Chan YK, McCormick WA. Experimental evidence for plasmid-bornenor-nirgenes inSinorhizobium melilotiJJ1c10. Can J Microbiol 2004; 50:657-67. [PMID: 15644918 DOI: 10.1139/w04-062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In denitrification, nir and nor genes are respectively required for the sequential dissimilatory reduction of nitrite and nitric oxide to form nitrous oxide. Their location on the pSymA megaplasmid of Sinorhizobium meliloti was confirmed by Southern hybridization of its clones with specific structural gene probes for nirK and norCB. A 20-kb region of pSymA containing the nor-nir genes was delineated by nucleotide sequence analysis. These genes were linked to the nap genes encoding periplasmic proteins involved in nitrate reduction. The nor-nir-nap segment is situated within 30 kb downstream from the nos genes encoding nitrous oxide reduction, with a fix cluster intervening between nir and nos. Most of these predicted nor-nir and accessory gene products are highly homologous with those of related proteobacterial denitrifiers. Functional tests of Tn5 mutants confirmed the requirement of the nirV product and 1 unidentified protein for nitrite reduction as well as the norB-D products and another unidentified protein for nitric oxide reduction. Overall comparative analysis of the derived amino acid sequences of the S. meliloti gene products suggested a close relationship between this symbiotic N2fixer and the free-living non-N2-fixing denitrifier Pseudomonas G-179, despite differences in their genetic organization. This relationship may be due to lateral gene transfer of denitrification genes from a common donor followed by rearrangement and recombination of these genes.Key words: denitrification genes, nitric oxide reductase, nitrite reductase, Rhizobiaceae, Sinorhizobium meliloti.
Collapse
Affiliation(s)
- Yiu-Kwok Chan
- Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON.
| | | |
Collapse
|
34
|
Mesa S, Alché Jd JDD, Bedmar E, Delgado MJ. Expression of nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules. PHYSIOLOGIA PLANTARUM 2004; 120:205-211. [PMID: 15032854 DOI: 10.1111/j.0031-9317.2004.0211.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK, norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of beta-galactosidase activity. Similarly, P(nirK)-lacZ, P(norC)-lacZ, and P(nosZ)-lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of beta-galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N(2)-dependent or grown in the presence of 4 mM KNO(3). These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK, norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 mM KNO(3), plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.
Collapse
Affiliation(s)
- Socorno Mesa
- Institut für Mikrobiologie, ETH-Zentrum/LFV, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
35
|
Abstract
Flavobacterium johnsoniae, like many other members of the Cytophaga-Flavobacterium-Bacteroides group, displays rapid gliding motility. Cells of F. johnsoniae glide over surfaces at rates of up to 10 microm/s. Latex spheres added to F. johnsoniae bind to and are rapidly propelled along cells, suggesting that adhesive molecules move laterally along the cell surface during gliding. Genetic analyses have identified a number of gld genes that are required for gliding. Three Gld proteins are thought to be components of an ATP-binding-cassette transporter. Five other Gld proteins are lipoproteins that localize to the cytoplasmic membrane or outer membrane. Disruption of gld genes results not only in loss of motility, but also in resistance to bacteriophages that infect wild-type cells, and loss of the ability to digest the insoluble polysaccharide chitin. Two models that attempt to incorporate the available data to explain the mechanism of F. johnsoniae gliding are presented.
Collapse
Affiliation(s)
- Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
| |
Collapse
|
36
|
Chan YK, McCormick WA, Seifert KA. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can J Microbiol 2003; 49:253-62. [PMID: 12897834 DOI: 10.1139/w03-033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria were isolated from a cultivated soil and screened for antagonistic activity against Fusarium graminearum, a predominant agent of ear rot and head blight in cereal crops. Based on its in vitro effectiveness, isolate D1/2 was selected for characterization and identified as a strain of Bacillus subtilis by phenotypic tests and comparative analysis of its 16S ribosomal RNA gene (rDNA) sequence. It inhibited the mycelial growth of a collection of common fungal phytopathogens, including eight Fusarium species, three other ascomycetes, and one basidiomycete. The cell-free culture filtrate of D1/2 at different dilutions was active against macroconidium germination and hyphal growth of F. graminearum, depending on the initial macroconidium density. It induced the formation of swollen hyphal cells in liquid cultures of this fungus grown from macroconidia. A bioassay also demonstrated that D1/2 offered in planta protection against the damping-off disease in alfalfa seedlings caused by F. graminearum, while the type strain of B. subtilis was ineffective. Hence, B. subtilis D1/2 or its culture filtrate has potential application in controlling plant diseases caused by Fusarium.
Collapse
Affiliation(s)
- Yiu-Kwok Chan
- Eastern Cereal and Oilseed Research Center, Agriculture and Agri-Food Canada, Ottawa.
| | | | | |
Collapse
|
37
|
Wunsch P, Herb M, Wieland H, Schiek UM, Zumft WG. Requirements for Cu(A) and Cu-S center assembly of nitrous oxide reductase deduced from complete periplasmic enzyme maturation in the nondenitrifier Pseudomonas putida. J Bacteriol 2003; 185:887-96. [PMID: 12533464 PMCID: PMC142834 DOI: 10.1128/jb.185.3.887-896.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial nitrous oxide (N(2)O) reductase is the terminal oxidoreductase of a respiratory process that generates dinitrogen from N(2)O. To attain its functional state, the enzyme is subjected to a maturation process which involves the protein-driven synthesis of a unique copper-sulfur cluster and metallation of the binuclear Cu(A) site in the periplasm. There are seven putative maturation factors, encoded by nosA, nosD, nosF, nosY, nosL, nosX, and sco. We wanted to determine the indispensable proteins by expressing nos genes from Pseudomonas stutzeri in the nondenitrifying organism Pseudomonas putida. An in silico study of denitrifying bacteria revealed that nosL, nosX (or a homologous gene, apbE), and sco, but not nosA, coexist consistently with the N(2)O reductase structural gene and other maturation genes. Nevertheless, we found that expression of only three maturation factors (periplasmic protein NosD, cytoplasmic NosF ATPase, and the six-helix integral membrane protein NosY) together with nosRZ in trans was sufficient to produce catalytically active holo-N(2)O reductase in the nondenitrifying background. We suggest that these obligatory factors are required for Cu-S center assembly. Using a mutational approach with P. stutzeri, we also studied NosA, the Cu-containing outer membrane protein previously thought to have Cu insertase function, and ScoP, a putative membrane-anchored chaperone for Cu(A) metallation. Both of these were found to be dispensable elements for N(2)O reductase biosynthesis. Our experimental and in silico data were integrated in a model of N(2)O reductase maturation.
Collapse
Affiliation(s)
- Patrick Wunsch
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
38
|
Abstract
Denitrification, the reduction of nitrate or nitrite to nitrous oxide or dinitrogen, is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Although the denitrifying ability has been found in microorganisms belonging to numerous groups of bacteria and Archaea, the genes encoding the denitrifying reductases have been studied in only few species. Recent investigations have led to the identification of new classes of denitrifying reductases, indicating a more complex genetic basis of this process than previously recognized. The increasing number of genome sequencing projects has opened a new way to study the genetics of the denitrifying process in bacteria and Archaea. In this review, we summarized the current knowledge on denitrifying genes and compared their genetic organizations by using new sequences resulting from the analysis of finished and unfinished microbial genomes with a special attention paid to the clustering of genes encoding different classes of reductases. In addition, some evolutionary relationships between the structural genes are presented.
Collapse
Affiliation(s)
- Laurent Philippot
- Institut National de la Recherche Agronomique-UMR 111 Géosols-Microbiologie des Sols-17, rue Sully-B.V. 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
39
|
Hunnicutt DW, Kempf MJ, McBride MJ. Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J Bacteriol 2002; 184:2370-8. [PMID: 11948149 PMCID: PMC134979 DOI: 10.1128/jb.184.9.2370-2378.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium johnsoniae moves rapidly over surfaces by a process known as gliding motility. The mechanism of this form of motility is not known. Four genes that are required for F. johnsoniae gliding motility, gldA, gldB, gldD, and ftsX, have recently been described. GldA is similar to the ATP-hydrolyzing components of ATP binding cassette (ABC) transporters. Tn4351 mutagenesis was used to identify two additional genes, gldF and gldG, that are required for cell movement. gldF and gldG appear to constitute an operon, and a Tn4351 insertion in gldF was polar on gldG. pMK314, which carries the entire gldFG region, restored motility to each of the gldF and gldG mutants. pMK321, which expresses GldG but not GldF, restored motility to each of the gldG mutants but did not complement the gldF mutant. GldF has six putative membrane-spanning segments and is similar in sequence to channel-forming components of ABC transporters. GldG is similar to putative accessory proteins of ABC transporters. It has two apparent membrane-spanning helices, one near the amino terminus and one near the carboxy terminus, and a large intervening loop that is predicted to reside in the periplasm. GldF and GldG are involved in membrane localization of GldA, suggesting that GldA, GldF, and GldG may interact to form a transporter. F. johnsoniae gldA is not closely linked to gldFG, but the gldA, gldF, and gldG homologs of the distantly related gliding bacterium Cytophaga hutchinsonii are arranged in what appears to be an operon. The exact roles of F. johnsoniae GldA, GldF, and GldG in gliding are not known. Sequence similarities of GldA to components of other ABC transporters suggest that the Gld transporter may be involved in export of some material to the periplasm, outer membrane, or beyond.
Collapse
Affiliation(s)
- David W Hunnicutt
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
40
|
Ponting CP, Mott R, Bork P, Copley RR. Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Res 2001; 11:1996-2008. [PMID: 11731489 DOI: 10.1101/gr.198701] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequence database searching methods such as BLAST, are invaluable for predicting molecular function on the basis of sequence similarities among single regions of proteins. Searches of whole databases however, are not optimized to detect multiple homologous regions within a single polypeptide. Here we have used the prospero algorithm to perform self-comparisons of all predicted Drosophila melanogaster gene products. Predicted repeats, and their homologs from all species, were analyzed further to detect hitherto unappreciated evolutionary relationships. Results included the identification of novel tandem repeats in the human X-linked retinitis pigmentosa type-2 gene product, repeated segments in cystinosin, associated with a defect in cystine transport, and 'nested' homologous domains in dysferlin, whose gene is mutated in limb girdle muscular dystrophy. Novel signaling domain families were found that may regulate the microtubule-based cytoskeleton and ubiquitin-mediated proteolysis, respectively. Two families of glycosyl hydrolases were shown to contain internal repetitions that hint at their evolution via a piecemeal, modular approach. In addition, three examples of fruit fly genes were detected with tandem exons that appear to have arisen via internal duplication. These findings demonstrate how completely sequenced genomes can be exploited to further understand the relationships between molecular structure, function, and evolution.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Amino Acid Transport Systems, Neutral
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/physiology
- Cystinosis/genetics
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Drosophila melanogaster/chemistry
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Evolution, Molecular
- Exons/genetics
- Eye Proteins
- GTP-Binding Proteins
- Gene Duplication
- Glycoproteins
- Glycoside Hydrolases/chemistry
- Glycoside Hydrolases/genetics
- Glycoside Hydrolases/physiology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Humans
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/physiology
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Membrane Transport Proteins
- Molecular Sequence Data
- Muscular Dystrophies/genetics
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- Proteins/physiology
- Repetitive Sequences, Amino Acid
- Retinitis Pigmentosa/genetics
- Signal Transduction/genetics
- Species Specificity
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- C P Ponting
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| | | | | | | |
Collapse
|
41
|
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 2001; 98:9883-8. [PMID: 11481432 PMCID: PMC55547 DOI: 10.1073/pnas.161294798] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti contains three replicons: pSymA, pSymB, and the chromosome. We report here the complete 1,354,226-nt sequence of pSymA. In addition to a large fraction of the genes known to be specifically involved in symbiosis, pSymA contains genes likely to be involved in nitrogen and carbon metabolism, transport, stress, and resistance responses, and other functions that give S. meliloti an advantage in its specialized niche.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, and Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Philippot L, Mirleau P, Mazurier S, Siblot S, Hartmann A, Lemanceau P, Germon JC. Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1517:436-40. [PMID: 11342223 DOI: 10.1016/s0167-4781(00)00286-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we report the cloning and characterization of denitrifying gene clusters of Pseudomonas fluorescens C7R12 containing the narXLDKGHJI, nirPOQSM, norCB and nosRZDFYL genes. While consensus sequences for Fnr-like protein binding sites were identified in the promoter regions of the nar, nir, nor and nos genes, consensus sequences corresponding to the NarL binding sites were identified only upstream the nar genes. Monitoring by mRNA analysis the expression of the narG, nirS, norB and nosZ structural genes suggests a sequential induction of the denitrification system in P. fluorescens.
Collapse
Affiliation(s)
- L Philippot
- Institut National de la Recherche Agronomique-Laboratoire de Microbiologie des Sols et de Recherche sur la Flore Pathogène, 17, rue Sully, B.V. 1540, 21034 Cedex, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Saunders NF, Hornberg JJ, Reijnders WN, Westerhoff HV, de Vries S, van Spanning RJ. The NosX and NirX proteins of Paracoccus denitrificans are functional homologues: their role in maturation of nitrous oxide reductase. J Bacteriol 2000; 182:5211-7. [PMID: 10960107 PMCID: PMC94671 DOI: 10.1128/jb.182.18.5211-5217.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nos (nitrous oxide reductase) operon of Paracoccus denitrificans contains a nosX gene homologous to those found in the nos operons of other denitrifiers. NosX is also homologous to NirX, which is so far unique to P. denitrificans. Single mutations of these genes did not result in any apparent phenotype, but a double nosX nirX mutant was unable to reduce nitrous oxide. Promoter-lacZ assays and immunoblotting against nitrous oxide reductase showed that the defect was not due to failure of expression of nosZ, the structural gene for nitrous oxide reductase. Electron paramagnetic resonance spectroscopy showed that nitrous oxide reductase in cells of the double mutant lacked the Cu(A) center. A twin-arginine motif in both NosX and NirX suggests that the NosX proteins are exported to the periplasm via the TAT translocon.
Collapse
Affiliation(s)
- N F Saunders
- Department of Molecular Cell Physiology, Faculty of Biology, BioCentrum Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Barloy-Hubler F, Capela D, Barnett MJ, Kalman S, Federspiel NA, Long SR, Galibert F. High-resolution physical map of the Sinorhizobium meliloti 1021 pSyma megaplasmid. J Bacteriol 2000; 182:1185-9. [PMID: 10648551 PMCID: PMC94401 DOI: 10.1128/jb.182.4.1185-1189.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate sequencing of the Sinorhizobium meliloti 1021 pSyma megaplasmid, a high-resolution map was constructed by ordering 113 overlapping bacterial artificial chromosome clones with 192 markers. The 157 anonymous sequence tagged site markers (81,072 bases) reveal hypothetical functions encoded by the replicon.
Collapse
Affiliation(s)
- F Barloy-Hubler
- Laboratoire de Recombinaisons Génétiques UPR41-CNRS, Faculté de Médecine, F-35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Sabaty M, Schwintner C, Cahors S, Richaud P, Verméglio A. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J Bacteriol 1999; 181:6028-32. [PMID: 10498715 PMCID: PMC103630 DOI: 10.1128/jb.181.19.6028-6032.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.
Collapse
Affiliation(s)
- M Sabaty
- Commissariat à l'Energie Atomique/Cadarache DSV, DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 St. Paul lez Durance Cedex, France.
| | | | | | | | | |
Collapse
|
46
|
Saunders NF, Houben EN, Koefoed S, de Weert S, Reijnders WN, Westerhoff HV, De Boer AP, Van Spanning RJ. Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Mol Microbiol 1999; 34:24-36. [PMID: 10540283 DOI: 10.1046/j.1365-2958.1999.01563.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nirIX gene cluster of Paracoccus denitrificans is located between the nir and nor gene clusters encoding nitrite and nitric oxide reductases respectively. The NirI sequence corresponds to that of a membrane-bound protein with six transmembrane helices, a large periplasmic domain and cysteine-rich cytoplasmic domains that resemble the binding sites of [4Fe-4S] clusters in many ferredoxin-like proteins. NirX is soluble and apparently located in the periplasm, as judged by the predicted signal sequence. NirI and NirX are homologues of NosR and NosX, proteins involved in regulation of the expression of the nos gene cluster encoding nitrous oxide reductase in Pseudomonas stutzeri and Sinorhizobium meliloti. Analysis of a NirI-deficient mutant strain revealed that NirI is involved in transcription activation of the nir gene cluster in response to oxygen limitation and the presence of N-oxides. The NirX-deficient mutant transiently accumulated nitrite in the growth medium, but it had a final growth yield similar to that of the wild type. Transcription of the nirIX gene cluster itself was controlled by NNR, a member of the family of FNR-like transcriptional activators. An NNR binding sequence is located in the middle of the intergenic region between the nirI and nirS genes with its centre located at position -41.5 relative to the transcription start sites of both genes. Attempts to complement the NirI mutation via cloning of the nirIX gene cluster on a broad-host-range vector were unsuccessful, the ability to express nitrite reductase being restored only when the nirIX gene cluster was reintegrated into the chromosome of the NirI-deficient mutant via homologous recombination in such a way that the wild-type nirI gene was present directly upstream of the nir operon.
Collapse
Affiliation(s)
- N F Saunders
- Department of Molecular Cell Physiology, Faculty of Biology, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Scala DJ, Kerkhof LJ. Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl Environ Microbiol 1999; 65:1681-7. [PMID: 10103268 PMCID: PMC91238 DOI: 10.1128/aem.65.4.1681-1687.1999] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diversity of the nitrous oxide reductase (nosZ) gene was examined in sediments obtained from the Atlantic Ocean and Pacific Ocean continental shelves. Approximately 1,100 bp of the nosZ gene were amplified via PCR, using nosZ gene-specific primers. Thirty-seven unique copies of the nosZ gene from these marine environments were characterized, increasing the nosZ sequence database fourfold. The average DNA similarity for comparisons between all 49 variants of the nosZ gene was 64% +/- 10%. Alignment of the derived amino acid sequences confirmed the conservation of important structural motifs. A highly conserved region is proposed as the copper binding, catalytic site (CuZ) of the mature protein. Phylogenetic analysis demonstrated three major clusters of nosZ genes, with little overlap between environmental and culture-based groups. Finally, the two non-culture-based gene clusters generally corresponded to sampling location, implying that denitrifier communities may be restricted geographically.
Collapse
Affiliation(s)
- D J Scala
- Institute of Marine and Coastal Sciences, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
48
|
Ferretti S, Grossmann JG, Hasnain SS, Eady RR, Smith BE. Biochemical characterization and solution structure of nitrous oxide reductase from Alcaligenes xylosoxidans (NCIMB 11015). EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:651-9. [PMID: 10092849 DOI: 10.1046/j.1432-1327.1999.00082.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitrous oxide reductase (N2OR) is the terminal enzyme involved in denitrification by microbes. No three-dimensional structural information has been published for this enzyme. We have isolated and characterised N2OR from Alcaligenes xylosoxidans (AxN2OR) as a homodimer of M(r) 134,000 containing seven to eight copper atoms per dimer. Comparison of sequence and compositional data with other N2ORs suggests that AxN2OR is typical and can be expected to have similar domain folding and subunit structure to other members of this family of enzymes. We present synchrotron X-ray-scattering data, analysed using a model-independent method for shape restoration, which gave a approximately 20 A resolution structure of the enzyme in solution, providing a glimpse of the structure of any N2OR and shedding light on the molecular architecture of the molecule. The specific activity of AxN2OR was approximately 6 mumol of N2O reduced.min-1. (mg of protein)-1; N2OR activity showed both base and temperature activation. The visible spectrum exhibited an absorption maximum at 550 nm with a shoulder at 635 nm. On oxidation with K3Fe(CN)6, the absorption maximum shifted to 540 nm and a new shoulder at 480 nm appeared. Reduction under anaerobic conditions resulted in the formation of an inactive blue form of the enzyme with a broad absorption maximum at 650 nm. As isolated, the enzyme shows an almost featureless EPR spectrum, which changes on oxidation to give an almost completely resolved seven-line hyperfine signal in the gII region, g = 2.18, with AII = 40 G, consistent with the enzyme being partially reduced as isolated. Both the optical and EPR spectra of the oxidized enzyme are characteristic of the presence of a CuA centre.
Collapse
Affiliation(s)
- S Ferretti
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, UK
| | | | | | | | | |
Collapse
|
49
|
Farrar JA, Zumft WG, Thomson AJ. CuA and CuZ are variants of the electron transfer center in nitrous oxide reductase. Proc Natl Acad Sci U S A 1998; 95:9891-6. [PMID: 9707571 PMCID: PMC21432 DOI: 10.1073/pnas.95.17.9891] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is a dimeric copper-dependent bacterial enzyme that catalyzes the reduction of N2O to N2 as part of the denitrification pathway. In the absence of an x-ray crystal structure, the current model of the nature of the copper sites within the enzyme is based on four copper atoms per monomer and assigns two copper atoms to an electron transfer center, CuA, a bis-thiolate-bridged dinuclear copper center found to date only in N2OR and cytochrome c oxidase, and two copper atoms to a second dinuclear center, CuZ, presumed to be the site of catalysis. Based on detailed analysis of the low temperature magnetic CD spectra of N2OR, this paper revises the current model and proposes that both CuA and CuZ are variants of an electron transfer center and hence that all of the observed optical features are due to this electron transfer center. It is proposed further that the presence of these different forms provides a mechanism for the delivery of two electrons to an active site comprising copper ions lacking thiolate coordination.
Collapse
Affiliation(s)
- J A Farrar
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| | | | | |
Collapse
|
50
|
McGuirl MA, Nelson LK, Bollinger JA, Chan YK, Dooley DM. The nos (nitrous oxide reductase) gene cluster from the soil bacterium Achromobacter cycloclastes: cloning, sequence analysis, and expression. J Inorg Biochem 1998; 70:155-69. [PMID: 9720302 DOI: 10.1016/s0162-0134(98)10001-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nitrous oxide (N2O) reductase (nos) gene cluster from Achromobacter cycloclastes has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ (structural N2O reductase gene), nosD, nosF, nosY, nosL, and nosX are detected, indicating a genetic organization similar to that of Rhizobium meliloti. To aid homology studies, nosR from R. meliloti has also been sequenced. Comparison of the deduced amino acid sequences with corresponding sequences from other organisms has also allowed structural and functional inferences to be made. The heterologous expression of NosD, NosZ (N2O reductase), and NosL is also reported. A model of the CuA site in N2O reductase, based on the crystal structure of this site in bovine heart cytochrome c oxidase, is presented. The model suggests that a His residue of the CuA domain may be a ligand to the catalytic CuZ site. In addition, the origin of the spectroscopically-observed Cys coordination to CuZ is discussed in terms of the sequence alignment of seven N2O reductases.
Collapse
Affiliation(s)
- M A McGuirl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman 59717, USA
| | | | | | | | | |
Collapse
|