1
|
Choi N, Choi E, Cho YJ, Kim MJ, Choi HW, Lee EJ. A shared mechanism of multidrug resistance in laboratory-evolved uropathogenic Escherichia coli. Virulence 2024; 15:2367648. [PMID: 38899601 PMCID: PMC11195483 DOI: 10.1080/21505594.2024.2367648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
The emergence of multidrug-resistant bacteria poses a significant threat to human health, necessitating a comprehensive understanding of their underlying mechanisms. Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, is frequently associated with multidrug resistance and recurrent infections. To elucidate the mechanism of resistance of UPEC to beta-lactam antibiotics, we generated ampicillin-resistant UPEC strains through continuous exposure to low and high levels of ampicillin in the laboratory, referred to as Low AmpR and High AmpR, respectively. Whole-genome sequencing revealed that both Low and High AmpR strains contained mutations in the marR, acrR, and envZ genes. The High AmpR strain exhibited a single additional mutation in the nlpD gene. Using protein modeling and qRT-PCR analyses, we validated the contributions of each mutation in the identified genes to antibiotic resistance in the AmpR strains, including a decrease in membrane permeability, increased expression of multidrug efflux pump, and inhibition of cell lysis. Furthermore, the AmpR strain does not decrease the bacterial burden in the mouse bladder even after continuous antibiotic treatment in vivo, implicating the increasing difficulty in treating host infections caused by the AmpR strain. Interestingly, ampicillin-induced mutations also result in multidrug resistance in UPEC, suggesting a common mechanism by which bacteria acquire cross-resistance to other classes of antibiotics.
Collapse
Affiliation(s)
- Nakjun Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eunna Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Multidimensional Genomics Research Center, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Min Jung Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hae Woong Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
2
|
Türkyılmaz O, Darcan C. Resistance mechanism of Escherichia coli strains with different ampicillin resistance levels. Appl Microbiol Biotechnol 2024; 108:5. [PMID: 38165477 DOI: 10.1007/s00253-023-12929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic resistance is an important problem that threatens medical treatment. Differences in the resistance levels of microorganisms cause great difficulties in understanding the mechanisms of antibiotic resistance. Therefore, the molecular reasons underlying the differences in the level of antibiotic resistance need to be clarified. For this purpose, genomic and transcriptomic analyses were performed on three Escherichia coli strains with varying degrees of adaptive resistance to ampicillin. Whole-genome sequencing of strains with different levels of resistance detected five mutations in strains with 10-fold resistance and two additional mutations in strains with 95-fold resistance. Overall, three of the seven mutations occurred as a single base change, while the other four occurred as insertions or deletions. While it was thought that 10-fold resistance was achieved by the effect of mutations in the ftsI, marAR, and rpoC genes, it was found that 95-fold resistance was achieved by the synergistic effect of five mutations and the ampC mutation. In addition, when the general transcriptomic profiles were examined, it was found that similar transcriptomic responses were elicited in strains with different levels of resistance. This study will improve our view of resistance mechanisms in bacteria with different levels of resistance and provide the basis for our understanding of the molecular mechanism of antibiotic resistance in ampicillin-resistant E. coli strains. KEY POINTS: •The mutation of the ampC promoter may act synergistically with other mutations and lead to higher resistance. •Similar transcriptomic responses to ampicillin are induced in strains with different levels of resistance. •Low antibiotic concentrations are the steps that allow rapid achievement of high antibiotic resistance.
Collapse
Affiliation(s)
- Osman Türkyılmaz
- Biotechnology Application & Research Centre, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
3
|
Karpov DS, Kazakova EM, Kovalev MA, Shumkov MS, Kusainova T, Tarasova IA, Osipova PJ, Poddubko SV, Mitkevich VA, Kuznetsova MV, Goncharenko AV. Determinants of Antibiotic Resistance and Virulence Factors in the Genome of Escherichia coli APEC 36 Strain Isolated from a Broiler Chicken with Generalized Colibacillosis. Antibiotics (Basel) 2024; 13:945. [PMID: 39452211 PMCID: PMC11504656 DOI: 10.3390/antibiotics13100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: Multidrug-resistant, highly pathogenic Escherichia coli strains are the primary causative agents of intestinal and extraintestinal human diseases. The extensive utilization of antibiotics for farm animals has been identified as a contributing factor to the emergence and dissemination of E. coli strains that exhibit multidrug resistance and possess high pathogenic potential. Consequently, a significant research objective is to examine the genetic diversity of pathogenic E. coli strains and to identify those that may pose a threat to human health. Methods: In this study, we present the results of genome sequencing and analysis, as well as the physiological characterization of E. coli strain APEC 36, which was isolated from the liver of a broiler chicken with generalized colibacillosis. Results: We found that APEC 36 possess a number of mechanisms of antibiotic resistance, including antibiotic efflux, antibiotic inactivation, and antibiotic target alteration/replacement/protection. The most widely represented group among these mechanisms was that of antibiotic efflux. This finding is consistent with the strain's documented resistance to multiple antibiotics. APEC 36 has an extremely rare variant of the beta-lactamase CTX-M-169. Notwithstanding the multitude of systems for interfering with foreign DNA present in the strain, seven plasmids have been identified, three of which may possess novel replication origins. Additionally, qnrS1, which confers resistance to fluoroquinolones, was found to be encoded in the genome rather than in the plasmid. This suggests that the determinants of antibiotic resistance may be captured in the genome and stably transmitted from generation to generation. Conclusions: The APEC 36 strain has genes for toxins, adhesins, protectins, and an iron uptake system. The obtained set of genetic and physiological characteristics allowed us to assume that this strain has a high pathogenic potential for humans.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Elizaveta M. Kazakova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Maxim A. Kovalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Mikhail S. Shumkov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Tomiris Kusainova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Irina A. Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Pamila J. Osipova
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia; (P.J.O.); (S.V.P.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia; (P.J.O.); (S.V.P.)
| | - Vladimir A. Mitkevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Marina V. Kuznetsova
- Perm Federal Research Centre, Institute of Ecology and Genetics of Microorganisms, Ural Branch Russian Academy of Sciences, 614081 Perm, Russia;
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
4
|
Okumura K, Kaido M, Muratani T, Yamasaki E, Akai Y, Kurazono H, Yamamoto S. Multi-drug resistance pattern and genome-wide SNP detection in levofloxacin-resistant uropathogenic Escherichia coli strains. Int J Urol 2024; 31:295-300. [PMID: 38041251 DOI: 10.1111/iju.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES Antibiotic treatment is extremely stressful for bacteria and has profound effects on their viability. Such administration induces physiological changes in bacterial cells, with considerable impact on their genome structure that induces mutations throughout the entire genome. This study investigated drug resistance profiles and structural changes in the entire genome of uropathogenic Escherichia coli (UPEC) strains isolated from six adapted clones that had evolved under laboratory conditions. METHODS Eight UPEC strains, including two parental strains and six adapted clones, with different fluoroquinolone resistance levels originally isolated from two patients were used. The minimum inhibitory concentration (MIC) of 28 different antibiotics including levofloxacin was determined for each of the eight strains. In addition, the effects of mutations acquired with increased drug resistance in the levofloxacin-resistant strains on expression of genes implicated to be involved in drug resistance were examined. RESULTS Of the eight UPEC strains used to test the MIC of 28 different antibiotics, two highly fluoroquinolone-resistant strains showed increased MIC in association with many of the antibiotics. As drug resistance increased, some genes acquired mutations, including the transcriptional regulator acrR and DNA-binding transcriptional repressor marR. Two strain groups with genetically different backgrounds (GUC9 and GFCS1) commonly acquired mutations in acrR and marR. Notably, acquired mutations related to efflux pump upregulation also contributed to increases in MIC for various antibiotics other than fluoroquinolone. CONCLUSIONS The present results obtained using strains with artificially acquired drug resistance clarify the underlying mechanism of resistance to fluoroquinolones and other types of antibiotics.
Collapse
Affiliation(s)
- Kayo Okumura
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masako Kaido
- Scientific Affairs, Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | | | - Eiki Yamasaki
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yasumasa Akai
- Regulatory Affairs & Quality Assurance, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Hisao Kurazono
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shingo Yamamoto
- Department of Urology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
5
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Front Microbiol 2023; 14:1049255. [PMID: 37485524 PMCID: PMC10359894 DOI: 10.3389/fmicb.2023.1049255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/24/2023] [Indexed: 07/25/2023] Open
Abstract
In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype.
Collapse
Affiliation(s)
- Calin C. Guet
- Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago, Chicago, IL, United States
- Molecular and Cellular Biology Department and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Luke Bruneaux
- Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago, Chicago, IL, United States
- Molecular and Cellular Biology Department and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Panos Oikonomou
- Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago, Chicago, IL, United States
- Molecular and Cellular Biology Department and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Maximino Aldana
- Instituto de Ciencias Físicas and Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Philippe Cluzel
- Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago, Chicago, IL, United States
- Molecular and Cellular Biology Department and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
7
|
Gahlot DK, Taheri N, MacIntyre S. Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway. Int J Mol Sci 2022; 24:ijms24010161. [PMID: 36613605 PMCID: PMC9820224 DOI: 10.3390/ijms24010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria express different types of hair-like proteinaceous appendages on their cell surface known as pili or fimbriae. These filamentous structures are primarily involved in the adherence of bacteria to both abiotic and biotic surfaces for biofilm formation and/or virulence of non-pathogenic and pathogenic bacteria. In pathogenic bacteria, especially Gram-negative bacteria, fimbriae play a key role in bacteria-host interactions which are critical for bacterial invasion and infection. Fimbriae assembled by the Chaperone Usher pathway (CUP) are widespread within the Enterobacteriaceae, and their expression is tightly regulated by specific environmental stimuli. Genes essential for expression of CUP fimbriae are organised in small blocks/clusters, which are often located in proximity to other virulence genes on a pathogenicity island. Since these surface appendages play a crucial role in bacterial virulence, they have potential to be harnessed in vaccine development. This review covers the regulation of expression of CUP-assembled fimbriae in Gram-negative bacteria and uses selected examples to demonstrate both dedicated and global regulatory mechanisms.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.K.G.); (S.M.)
| | - Nayyer Taheri
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland
| | - Sheila MacIntyre
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Correspondence: (D.K.G.); (S.M.)
| |
Collapse
|
8
|
Elucidation of Key Interactions between VirF and the virB Promoter in Shigella flexneri Using E. coli MarA- and GadX-Based Homology Models and In Vitro Analysis of the DNA-Binding Domains of VirF and MarA. J Bacteriol 2022; 204:e0014322. [PMID: 36040161 PMCID: PMC9487632 DOI: 10.1128/jb.00143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Shigella, the organism responsible for the diarrheal disease shigellosis, leads to approximately 200,000 deaths globally annually. Virulence of this pathogen is primarily controlled by the DNA-binding transcriptional activator VirF. This AraC family protein activates transcription of two major virulence genes, virB and icsA, which lead to the pathogen's ability to invade and spread within colonic epithelial cells. While several AraC proteins have been studied, few studies of VirF's binding to its DNA promoters have been reported, and VirF's three-dimensional structure remains unsolved. Here, we used structures of two E. coli VirF homologs, GadX and MarA-marRAB, to generate homology models of the VirF DNA-binding domain in free and DNA-bound conformations. We conducted alanine scanning mutagenesis on seven residues within MarA that make base-specific interactions with its promoter, marRAB, and the corresponding residues within VirF (identified by sequence and structural homologies). In vitro DNA-binding assays studying both wild-type and mutant MarA and VirF proteins identified residues important for binding to the marRAB and virB promoters, respectively. Comparison of the effects of these DNA-binding domain mutants validated our MarA-based homology model, allowing us to identify crucial interactions between VirF and the virB promoter. Proteins with mutations to helix 3 within both MarA(W42A, R46A) and MalE-VirF(R192A, K193A) exhibited significant reductions in DNA binding, while the effects of mutations in helix 6 varied. This suggests the shared importance of helix 3 in the binding to these promoters, while helix 6 is transcription factor specific. These results can inform further development of virulence-targeting inhibitors as an alternative to traditional antimicrobial drug design. IMPORTANCE Globally, infection with Shigella flexneri is a leading cause of bacterial dysentery, particularly affecting children under the age of 5 years. The virulence of this pathogen makes it highly infectious, allowing it to spread easily within areas lacking proper sanitation or access to clean drinking water. VirF is a DNA-binding transcription factor that activates S. flexneri virulence once the bacteria infect the human colon. Development of drugs that target VirF's DNA-binding activity can be an effective treatment to combat shigellosis as an alternative or addition to traditional antibiotics. Due to the lack of structural data, analysis of VirF's DNA-binding activity is critical to the development of potent VirF inhibitors.
Collapse
|
9
|
Nagy K, Dukic B, Hodula O, Ábrahám Á, Csákvári E, Dér L, Wetherington MT, Noorlag J, Keymer JE, Galajda P. Emergence of Resistant Escherichia coli Mutants in Microfluidic On-Chip Antibiotic Gradients. Front Microbiol 2022; 13:820738. [PMID: 35391738 PMCID: PMC8981919 DOI: 10.3389/fmicb.2022.820738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Spatiotemporal structures and heterogeneities are common in natural habitats, yet their role in the evolution of antibiotic resistance is still to be uncovered. We applied a microfluidic gradient generator device to study the emergence of resistant bacteria in spatial ciprofloxacin gradients. We observed biofilm formation in regions with sub-inhibitory concentrations of antibiotics, which quickly expanded into the high antibiotic regions. In the absence of an explicit structure of the habitat, this multicellular formation led to a spatial structure of the population with local competition and limited migration. Therefore, such structures can function as amplifiers of selection and aid the spread of beneficial mutations. We found that the physical environment itself induces stress-related mutations that later prove beneficial when cells are exposed to antibiotics. This shift in function suggests that exaptation occurs in such experimental scenarios. The above two processes pave the way for the subsequent emergence of highly resistant specific mutations.
Collapse
Affiliation(s)
- Krisztina Nagy
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- *Correspondence: Krisztina Nagy,
| | - Barbara Dukic
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Orsolya Hodula
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Ágnes Ábrahám
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Eszter Csákvári
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | | | - Janneke Noorlag
- Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Juan E. Keymer
- Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Péter Galajda
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Péter Galajda,
| |
Collapse
|
10
|
Kotecka K, Kawalek A, Kobylecki K, Bartosik AA. The AraC-Type Transcriptional Regulator GliR (PA3027) Activates Genes of Glycerolipid Metabolism in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:5066. [PMID: 34064685 PMCID: PMC8151288 DOI: 10.3390/ijms22105066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa encodes a large set of transcriptional regulators (TRs) that modulate and manage cellular metabolism to survive in variable environmental conditions including that of the human body. The AraC family regulators are an abundant group of TRs in bacteria, mostly acting as gene expression activators, controlling diverse cellular functions (e.g., carbon metabolism, stress response, and virulence). The PA3027 protein from P. aeruginosa has been classified in silico as a putative AraC-type TR. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3027 revealed a spectacular increase in the mRNA levels of PA3026-PA3024 (divergent to PA3027), PA3464, and PA3342 genes encoding proteins potentially involved in glycerolipid metabolism. Concomitantly, chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that at least 22 regions are bound by PA3027 in the PAO1161 genome. These encompass promoter regions of PA3026, PA3464, and PA3342, showing the major increase in expression in response to PA3027 excess. In Vitro DNA binding assay confirmed interactions of PA3027 with these regions. Furthermore, promoter-reporter assays in a heterologous host showed the PA3027-dependent activation of the promoter of the PA3026-PA3024 operon. Two motifs representing the preferred binding sites for PA3027, one localized upstream and one overlapping with the -35 promoter sequence, were identified in PA3026p and our data indicate that both motifs are required for full activation of this promoter by PA3027. Overall, the presented data show that PA3027 acts as a transcriptional regulator in P. aeruginosa, activating genes likely engaged in glycerolipid metabolism. The GliR name, from a glycerolipid metabolism regulator, is proposed for PA3027 of P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.K.); (A.K.); (K.K.)
| |
Collapse
|
11
|
Kotecka K, Kawalek A, Kobylecki K, Bartosik AA. The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22083982. [PMID: 33921535 PMCID: PMC8070244 DOI: 10.3390/ijms22083982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.
Collapse
|
12
|
Hennessen F, Miethke M, Zaburannyi N, Loose M, Lukežič T, Bernecker S, Hüttel S, Jansen R, Schmiedel J, Fritzenwanker M, Imirzalioglu C, Vogel J, Westermann AJ, Hesterkamp T, Stadler M, Wagenlehner F, Petković H, Herrmann J, Müller R. Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin. Antibiotics (Basel) 2020; 9:antibiotics9090619. [PMID: 32962088 PMCID: PMC7559539 DOI: 10.3390/antibiotics9090619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.
Collapse
Affiliation(s)
- Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Marcus Miethke
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Maria Loose
- Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Gießen, Germany; (M.L.); (F.W.)
| | - Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Steffen Bernecker
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephan Hüttel
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Rolf Jansen
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Judith Schmiedel
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; (J.V.); (A.J.W.)
| | - Alexander J. Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; (J.V.); (A.J.W.)
| | - Thomas Hesterkamp
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Marc Stadler
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Florian Wagenlehner
- Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Gießen, Germany; (M.L.); (F.W.)
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Correspondence: (J.H.); (R.M.); Tel.: +49-681-98806-3101 (J.H.); +49-681-98806-3000 (R.M.)
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Correspondence: (J.H.); (R.M.); Tel.: +49-681-98806-3101 (J.H.); +49-681-98806-3000 (R.M.)
| |
Collapse
|
13
|
HilD, HilC, and RtsA Form Homodimers and Heterodimers To Regulate Expression of the Salmonella Pathogenicity Island I Type III Secretion System. J Bacteriol 2020; 202:JB.00012-20. [PMID: 32041797 DOI: 10.1128/jb.00012-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium colonizes and invades host intestinal epithelial cells using the type three secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The level of SPI1 T3SS gene expression is controlled by the transcriptional activator HilA, encoded on SPI1. Expression of hilA is positively regulated by three homologous transcriptional regulators, HilD, HilC, and RtsA, belonging to the AraC/XylS family. These regulators also activate the hilD, hilC, and rtsA genes by binding to the same DNA sequences upstream of these promoters, forming a complex feed-forward loop to control SPI1 expression. Despite the apparent redundancy in function, HilD has a unique role in SPI1 regulation because the majority of external regulatory inputs act exclusively through HilD. To better understand SPI1 regulation, the nature of interaction between HilD, HilC, and RtsA has been characterized using biochemical and genetic techniques. Our results showed that HilD, HilC, and RtsA can form heterodimers as well as homodimers in solution. Comparison with other AraC family members identified a putative α-helix in the N-terminal domain, which acts as the dimerization domain. Alanine substitution in this region results in reduced dimerization of HilD and HilC and also affects their ability to activate hilA expression. The dimer interactions of HilD, HilC, and RtsA add another layer of complexity to the SPI1 regulatory circuit, providing a more comprehensive understanding of SPI1 T3SS regulation and Salmonella pathogenesis.IMPORTANCE The SPI1 type three secretion system is a key virulence factor required for Salmonella to both cause gastroenteritis and initiate serious systemic disease. The system responds to numerous environmental signals in the intestine, integrating this information via a complex regulatory network. Here, we show that the primary regulatory proteins in the network function as both homodimers and heterodimers, providing information regarding both regulation of virulence in this important pathogen and general signal integration to control gene expression.
Collapse
|
14
|
Sundaramoorthy NS, Suresh P, Selva Ganesan S, GaneshPrasad A, Nagarajan S. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. Sci Rep 2019; 9:19845. [PMID: 31882661 PMCID: PMC6934491 DOI: 10.1038/s41598-019-56325-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Antibiotics like colistin are the last resort to deal with infections by carbapenem-resistant Enterobacteriaceae (CREB). Resistance to colistin severely restricts therapeutic options. To tackle this dire situation, urgent measures to restore colistin sensitivity are needed. In this study, whole-genome sequencing of colistin-resistant E. coli strain was performed and the genome analysis revealed that the strain belonged to the sequence type ST405. Multiple mutations were observed in genes implicated in colistin resistance, especially those related to the L-Ara-4-N pathway but mgrB was unmutated and mcr1-9 genes were missing. MarR inhibitor salicylate was used to re-sensitize this strain to colistin, which increased the negative charge on the cell surface especially in colistin resistant E. coli (U3790 strain) and thereby facilitated a decrease in colistin MIC by 8 fold. It is indeed well known that MarR inhibition by salicylate triggers the expression of AcrAB efflux pumps through MarA. So, in order to fully restore colistin sensitivity, a potent efflux pump inhibitor (BC1), identified earlier by this group was employed. The combination of colistin with both salicylate and BC1 caused a remarkable 6 log reduction in cell counts of U3790 in time-kill assay. Infection of muscle tissue of zebrafish with U3790 followed by various treatments showed that the combination of colistin + salicylate + BC1 was highly effective in reducing bioburden in infected muscle tissue by 4 log fold. Thus, our study shows that a combination of MarR inhibitor to enhance colistin binding and efflux pump inhibitor to reduce colistin extrusion was highly effective in restoring colistin sensitivity in colistin-resistant clinical isolate of E. coli in vitro and in vivo.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Pavithira Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Subramaniapillai Selva Ganesan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - ArunKumar GaneshPrasad
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
15
|
Multidrug Resistance Regulators MarA, SoxS, Rob, and RamA Repress Flagellar Gene Expression and Motility in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00385-19. [PMID: 31501286 DOI: 10.1128/jb.00385-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via these transcription factors occurred through direct interactions with the flhDC promoter, particularly for MarA and Rob. Additionally, SoxS repressed flagellar gene expression via a posttranscriptional pathway, reducing flhDC translation. The roles of these transcription factors in reducing motility in the presence of salicylic acid were also elucidated, adding a genetic regulatory element to the response of S Typhimurium to this well-characterized chemorepellent. Integration of flagellar gene expression into the mar-sox-rob regulon in S Typhimurium contrasts with findings for closely related species such as Escherichia coli, providing an example of plasticity in the mar-sox-rob regulon throughout the Enterobacteriaceae family.IMPORTANCE The mar-sox-rob regulon is a large and highly conserved stress response network in the Enterobacteriaceae family. Although it is well characterized in E. coli, the extent of this regulon in related species is unclear. Here, the control of costly flagellar gene expression is connected to the mar-sox-rob regulon of S Typhimurium, contrasting with the E. coli regulon model. These findings demonstrate the flexibility of the mar-sox-rob regulon to accommodate novel regulatory targets, and they provide evidence for its broader regulatory role within this family of diverse bacteria.
Collapse
|
16
|
Wang T, Kunze C, Dunlop MJ. Salicylate Increases Fitness Cost Associated with MarA-Mediated Antibiotic Resistance. Biophys J 2019; 117:563-571. [PMID: 31349991 DOI: 10.1016/j.bpj.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/12/2023] Open
Abstract
Antibiotic resistance is generally associated with a fitness deficit resulting from the burden of producing and maintaining resistance machinery. This additional cost suggests that resistant bacteria will be outcompeted by susceptible bacteria in conditions without antibiotics. However, in practice, this process is slow in part because of regulation that minimizes expression of these genes in the absence of antibiotics. This suggests that if it were possible to turn on their expression, the cost would increase, thereby accelerating removal of resistant strains. Experimental and theoretical studies have shown that environmental chemicals can change the fitness cost associated with resistance and therefore have a significant impact on population dynamics. The multiple antibiotic resistance activator (MarA) is a clinically important regulator in Escherichia coli that activates downstream genes to increase resistance against multiple classes of antibiotics. Salicylate is an inducer of MarA that can be found in the environment and derepresses marA's expression. In this study, we sought to unravel the interplay between salicylate and the fitness cost of MarA-mediated antibiotic resistance. Using salicylate as an inducer of MarA, we found that a wide spectrum of concentrations can increase burden in resistant strains compared to susceptible strains. Induction resulted in rapid exclusion of resistant bacteria from mixed populations of antibiotic-resistant and susceptible cells. A mathematical model captures the process and predicts its effect in various environmental conditions. Our work provides a quantitative understanding of salicylate exposure on the fitness of different MarA variants and suggests that salicylate can lead to selection against MarA-mediated resistant strains. More generally, our findings show that natural inducers may serve to bias population membership and could impact antibiotic resistance and other important phenotypes.
Collapse
Affiliation(s)
- Tiebin Wang
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts; Biological Design Center, Boston University, Boston, Massachusetts
| | - Colin Kunze
- Biological Design Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mary J Dunlop
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts; Biological Design Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
| |
Collapse
|
17
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
MarR Family Transcription Factors from Burkholderia Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiol Mol Biol Rev 2018; 83:83/1/e00039-18. [PMID: 30487164 DOI: 10.1128/mmbr.00039-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.
Collapse
|
19
|
Pham N, Dao N, Saviola B. Over expression of the constitutive expression refractory Mycobacterium tuberculosis Rv3488 protein with an acid-inducible expression system. J Microbiol Methods 2018; 154:112-117. [PMID: 30287353 DOI: 10.1016/j.mimet.2018.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
As inducible protein expression plasmids available for mycobacterial species are limited, here we demonstrate the utility of an acid-inducible promoter driving gene and subsequent protein expression of a difficult to express protein. We wanted to assess the use of an acid inducible promoter expression system to produce proteins in a mycobacterial system, specifically proteins that when overexpressed interfere with mycobacterial cell growth. Overexpression of those types of proteins would require a tightly regulated promoter system. We employed the Mycobacterium tuberculosis lipF minimal acid-inducible promoter (mpr) which had previously been shown to be upregulated by acidic stress >100 X and to have a low basal level of expression in the absence of acidic stress. It is active from pH 4.3 up to pH 6.4 making this an acid range that is compatible with mycobacterial growth or survival and active at acidic ranges encountered in vivo within acidified phagosomes of macrophages. We therefore cloned the M. tuberculosis gene Rv3488, whose product had been unable to be expressed constitutively, into a plasmid downstream of the lipF mpr promoter and overexpressed this gene in the presence of acidic pH in Mycobacterium smegmatis. Sustained overexpression of the gene leads to inhibition of replication of mycobacterial cells as well as inhibition of carotenoid pigment synthesis, while short-term overexpression leads to appropriate protein expression.
Collapse
Affiliation(s)
- Nam Pham
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St. Pomona, CA 91766, United States
| | - Nelson Dao
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St. Pomona, CA 91766, United States
| | - Beatrice Saviola
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St. Pomona, CA 91766, United States.
| |
Collapse
|
20
|
Tierrafría VH, Mejía-Almonte C, Camacho-Zaragoza JM, Salgado H, Alquicira K, Ishida C, Gama-Castro S, Collado-Vides J. MCO: towards an ontology and unified vocabulary for a framework-based annotation of microbial growth conditions. Bioinformatics 2018; 35:856-864. [PMID: 30137210 PMCID: PMC7963087 DOI: 10.1093/bioinformatics/bty689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/22/2018] [Accepted: 08/16/2018] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION A major component in increasing our understanding of the biology of an organism is the mapping of its genotypic potential into its phenotypic expression profiles. This mapping is executed by the machinery of gene regulation, which is essentially studied by changes in growth conditions. Although many efforts have been made to systematize the annotation of experimental conditions in microbiology, the available annotations are not based on a consistent and controlled vocabulary, making difficult the identification of biologically meaningful comparisons of knowledge derived from different experiments or laboratories. RESULTS We curated terms related to experimental conditions that affect gene expression in Escherichia coli K-12. Since this is the best-studied microorganism, the collected terms are the seed for the Microbial Conditions Ontology (MCO), a controlled and structured vocabulary that can be expanded to annotate microbial conditions in general. Moreover, we developed an annotation framework to describe experimental conditions, providing the foundation to identify regulatory networks that operate under particular conditions. AVAILABILITY AND IMPLEMENTATION As far as we know, MCO is the first ontology for growth conditions of any bacterial organism, and it is available at http://regulondb.ccg.unam.mx and https://github.com/microbial-conditions-ontology. Furthermore, we will disseminate MCO throughout the Open Biological and Biomedical Ontology (OBO) Foundry in order to set a standard for the annotation of gene expression data. This will enable comparison of data from diverse data sources. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - J M Camacho-Zaragoza
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - H Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - K Alquicira
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - C Ishida
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
21
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
22
|
Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2017; 72:3016-3024. [PMID: 28962020 PMCID: PMC5890708 DOI: 10.1093/jac/dkx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To determine whether the spectrum of mutations in marR in ciprofloxacin-resistant clinical isolates of Escherichia coli shows evidence of selection bias, either to reduce fitness costs, or to increase drug resistance. MarR is a repressor protein that regulates, via MarA, expression of the Mar regulon, including the multidrug efflux pump AcrAB-TolC. METHODS Isogenic strains carrying 36 different marR alleles identified in resistant clinical isolates, or selected for resistance in vitro, were constructed. Drug susceptibility and relative fitness in growth competition assays were measured for all strains. The expression level of marA, and of various efflux pump components, as a function of specific mutations in marR, was measured by qPCR. RESULTS The spectrum of genetic alterations in marR in clinical isolates is strongly biased against inactivating mutations. In general, the alleles found in clinical isolates conferred a lower level of resistance and imposed a lower growth fitness cost than mutations selected in vitro. The level of expression of MarA correlated well with the MIC of ciprofloxacin. This supports the functional connection between mutations in marR and reduced susceptibility to ciprofloxacin. CONCLUSIONS Mutations in marR selected in ciprofloxacin-resistant clinical isolates are strongly biased against inactivating mutations. Selection favours mutant alleles that have the lowest fitness costs, even though these cause only modest reductions in drug susceptibility. This suggests that selection for high relative fitness is more important than selection for increased resistance in determining which alleles of marR will be selected in resistant clinical isolates.
Collapse
Affiliation(s)
- Lisa Praski Alzrigat
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| |
Collapse
|
23
|
Rodrigo G, Bajić D, Elola I, Poyatos JF. Deconstructing a multiple antibiotic resistance regulation through the quantification of its input function. NPJ Syst Biol Appl 2017; 3:30. [PMID: 29018569 PMCID: PMC5630622 DOI: 10.1038/s41540-017-0031-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Many essential bacterial responses present complex transcriptional regulation of gene expression. To what extent can the study of these responses substantiate the logic of their regulation? Here, we show how the input function of the genes constituting the response, i.e., the information of how their transcription rates change as function of the signals acting on the regulators, can serve as a quantitative tool to deconstruct the corresponding regulatory logic. To demonstrate this approach, we consider the multiple antibiotic resistance (mar) response in Escherichia coli. By characterizing the input function of its representative genes in wild-type and mutant bacteria, we recognize a dual autoregulation motif as main determinant of the response, which is further adjusted by the interplay with other regulators. We show that basic attributes, like its reaction to a wide range of stress or its moderate expression change, are associated with a strong negative autoregulation, while others, like the buffering of metabolic signals or the lack of memory to previous stress, are related to a weak positive autoregulation. With a mathematical model of the input functions, we identify some constraints fixing the molecular attributes of the regulators, and also notice the relevance of the bicystronic architecture harboring the dual autoregulation that is unique in E. coli. The input function emerges then as a tool to disentangle the rationale behind most of the attributes defining the mar phenotype. Overall, the present study supports the value of characterizing input functions to deconstruct the complexity of regulatory architectures in prokaryotic and eukaryotic systems. Many cellular responses result from the integration of numerous regulatory signals. To deconstruct the regulation of one of these responses, which enables resistance to multiple antibiotics in Escherichia coli, a team led by Juan F. Poyatos at the National Center for Biotechnology in Madrid studied the response input function by combining theoretical models and experiments. This function quantifies the rate of transcription of the genes constituting the response with respect to the signals acting on its cognate regulators. By examining how the shape of the function changes in different situations, e.g., when a given regulator is mutated, the team identified the implications for the specificity and dynamics of the response of a dual autoregulation at the core of the control architecture. The use of input functions as quantitative tools allows us to reverse engineer the complex regulations that dictate essential physiological functions in both prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain
| | - Djordje Bajić
- Logic of Genomic Systems Laboratory, CNB-CSIC, 28049 Madrid, Spain.,Present Address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
| | - Ignacio Elola
- Logic of Genomic Systems Laboratory, CNB-CSIC, 28049 Madrid, Spain
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory, CNB-CSIC, 28049 Madrid, Spain
| |
Collapse
|
24
|
Sánchez DG, Primo ED, Damiani MT, Lisa AT. Pseudomonas aeruginosa gbdR gene is transcribed from a σ54-dependent promoter under the control of NtrC/CbrB, IHF and BetI. MICROBIOLOGY-SGM 2017; 163:1343-1354. [PMID: 28791946 DOI: 10.1099/mic.0.000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pseudomonasaeruginosa uses choline as a source of carbon and nitrogen, and also for the synthesis of glycine betaine, an osmoprotectant under stress conditions such as drought and salinity. The transcription factor GbdR is the specific regulator of choline metabolism and it belongs to the Arac/XylS family of transcriptional regulators. Despite the link between choline catabolism and bacterial pathogenicity, gbdR regulation has not been explored in detail. In the present work, we describe how gbdR transcription can be initiated from a σ54-dependent promoter. gbdR transcription can be activated by NtrC in the absence of a preferential nitrogen source, by CbrB in the absence of a preferential carbon source, and by the integration host factor favouring DNA bending. In addition, we found that BetI negatively regulates gbdR expression in the absence of choline. We identified two overlapping BetI binding sites in the gbdR promoter sequence, providing an additional example of σ54-promoter down-regulation. Based on our findings, we propose a model for gdbR regulation and its impact on choline metabolism.
Collapse
Affiliation(s)
- Diego Germán Sánchez
- Laboratory of Phagocytosis and Intracellular Transport, School of Medicine, University of Cuyo, IHEM-CONICET, Mendoza 5500, Argentina.,Department of Molecular Biology, FCEFQN, National University of Río Cuarto, Route 36-Km 601, 5800, Argentina
| | - Emiliano David Primo
- Department of Molecular Biology, FCEFQN, National University of Río Cuarto, Route 36-Km 601, 5800, Argentina
| | - María Teresa Damiani
- Laboratory of Phagocytosis and Intracellular Transport, School of Medicine, University of Cuyo, IHEM-CONICET, Mendoza 5500, Argentina
| | - Angela Teresita Lisa
- Department of Molecular Biology, FCEFQN, National University of Río Cuarto, Route 36-Km 601, 5800, Argentina
| |
Collapse
|
25
|
Jain K, Saini S. MarRA, SoxSR, and Rob encode a signal dependent regulatory network in Escherichia coli. MOLECULAR BIOSYSTEMS 2017; 12:1901-12. [PMID: 27098660 DOI: 10.1039/c6mb00263c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When exposed to low concentrations of toxic chemicals, bacteria modulate the expression of a number of cellular processes. Typically, these processes include those related to porin production, dismutases, and metabolic fluxes. In Escherichia coli (E. coli), the expression of these systems is largely controlled by three homologous transcriptional regulators: MarA, SoxS, and Rob. Each of the three regulators responds to distinct chemical signals (salicylate for MarA; paraquat for SoxS; and bipyridyl for Rob) and controls the expression of an overlapping set of downstream targets. In addition, the three systems autoregulate their own expression, and cross-regulate each other's expression. Specifically, MarA is known to activate SoxS expression, and Rob is known to activate MarA expression. In addition, a number of conflicting regulatory interactions are known to exist between the three loci. Thus, the three systems encode a complex regulatory topology with multiple feedback loops, the precise nature of whose interactions or their significance in cellular physiology is not well understood currently. In this work, we focus on understanding the details of this crosstalk between the Mar-Sox-Rob systems in E. coli, and the resulting control and dynamics of the expression of cellular processes by studying gene expression at the population level and at single-cell resolution in wild type and mutants. Our results indicate that the regulatory architecture between MarA, SoxS, and Rob is dependent on the signal (inducer) present in the environment. The regulators, in response to an inducer, form a Feed Forward Loop (FFL), which leads to faster and stronger induction of target genes in the cell, consequently resulting in better cellular growth. Through the FFL, the cell is able to integrate qualitatively different signals in the network, and consequently, control cellular physiology. In addition, we present two intriguing dynamic features of the Mar-Sox-Rob regulon. First, in the presence of salicylate, the activation of target genes via MarA and Rob, at single-cell resolution, is qualitatively different. Second, we report the synergistic activation of target and Mar/Sox systems in the presence of both salicylate and paraquat. These results strongly indicate that there exists a complex control of gene regulation in the Mar-Sox-Rob regulon. Mechanistic details of this control are likely quite complex, and may involve additional regulators.
Collapse
Affiliation(s)
- Kirti Jain
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| |
Collapse
|
26
|
Peng JW, Yuan H, Tan XS. Crystal structure of the multiple antibiotic resistance regulator MarR from Clostridium difficile. Acta Crystallogr F Struct Biol Commun 2017; 73:363-368. [PMID: 28580925 PMCID: PMC5458394 DOI: 10.1107/s2053230x1700766x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/24/2017] [Indexed: 11/10/2022] Open
Abstract
Regulators of multiple antibiotic resistance (MarRs) are key players against toxins in prokaryotes. MarR homologues have been identified in many bacterial and archaeal species which pose daunting antibiotic resistance issues that threaten public health. The continuous prevalence of Clostridium difficile infection (CDI) throughout the world is associated with the abuse of antibiotics, and antibiotic treatments of CDI have limited effect. In the genome of C. difficile strain 630, the marR gene (ID 4913953) encodes a MarR protein. Here, MarR from C. difficile (MarRC.difficile) was subcloned and crystallized for the first time. MarRC.difficile was successfully expressed in Escherichia coli in a soluble form and was purified to near-homogeneity (>95%) by a two-step purification protocol. The structure of MarRC.difficile has been solved at 2.3 Å resolution. The crystal belonged to the monoclinic space group P43212, with unit-cell parameters a = b = 66.569, c = 83.654 Å. The structure reported reveals MarRC.difficile to be a dimer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. MarRC.difficile shows high structural similarity to the MarR proteins from E. coli and Staphylococcus aureus, indicating that MarRC.difficile might be a DNA-binding protein.
Collapse
Affiliation(s)
- J. W. Peng
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| | - H. Yuan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| | - X. S. Tan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
27
|
Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, Kishony R. Spatiotemporal microbial evolution on antibiotic landscapes. Science 2017; 353:1147-51. [PMID: 27609891 DOI: 10.1126/science.aag0822] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023]
Abstract
A key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)-plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front. While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front, we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behind more sensitive lineages. The MEGA-plate provides a versatile platform for studying microbial adaption and directly visualizing evolutionary dynamics.
Collapse
Affiliation(s)
- Michael Baym
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Tami D Lieberman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Eric D Kelsic
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Remy Chait
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Rotem Gross
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel. Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
28
|
Rodrigo G, Bajic D, Elola I, Poyatos JF. Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli. Sci Rep 2016; 6:36196. [PMID: 27796341 PMCID: PMC5086920 DOI: 10.1038/srep36196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023] Open
Abstract
By integrating positive and negative feedback loops, biological systems establish intricate gene expression patterns linked to multistability, pulsing, and oscillations. This depends on the specific characteristics of each interlinked feedback, and thus one would expect additional expression programs to be found. Here, we investigate one such program associated with an antagonistic positive and negative transcriptional autoregulatory motif derived from the multiple antibiotic resistance (mar) system of Escherichia coli. We studied the dynamics of the system by combining a predictive mathematical model with high-resolution experimental measures of the response both at the population and single-cell level. We show that in this motif the weak positive autoregulation does not slow down but rather enhances response speedup in combination with a strong negative feedback loop. This balance of feedback strengths anticipates a homogeneous population phenotype, which we corroborate experimentally. Theoretical analysis also emphasized the specific molecular properties that determine the dynamics of the mar phenotype. More broadly, response acceleration could provide a rationale for the presence of weak positive feedbacks in other biological scenarios exhibiting these interlinked regulatory architectures.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Cellular de Plantas, CSIC–UPV, 46022 Valencia, Spain
| | - Djordje Bajic
- Logic of Genomic Systems Laboratory, CNB–CSIC, 28049 Madrid, Spain
| | - Ignacio Elola
- Logic of Genomic Systems Laboratory, CNB–CSIC, 28049 Madrid, Spain
| | - Juan F. Poyatos
- Logic of Genomic Systems Laboratory, CNB–CSIC, 28049 Madrid, Spain
| |
Collapse
|
29
|
Control of MarRAB Operon in Escherichia coli via Autoactivation and Autorepression. Biophys J 2016; 109:1497-508. [PMID: 26445450 DOI: 10.1016/j.bpj.2015.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/15/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Choice of network topology for gene regulation has been a question of interest for a long time. How do simple and more complex topologies arise? In this work, we analyze the topology of the marRAB operon in Escherichia coli, which is associated with control of expression of genes associated with conferring resistance to low-level antibiotics to the bacterium. Among the 2102 promoters in E. coli, the marRAB promoter is the only one that encodes for an autoactivator and an autorepressor. What advantages does this topology confer to the bacterium? In this work, we demonstrate that, compared to control by a single regulator, the marRAB regulatory arrangement has the least control cost associated with modulating gene expression in response to environmental stimuli. In addition, the presence of dual regulators allows the regulon to exhibit a diverse range of dynamics, a feature that is not observed in genes controlled by a single regulator.
Collapse
|
30
|
Roles of Lon protease and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology (Reading) 2016; 162:764-776. [DOI: 10.1099/mic.0.000271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
El Meouche I, Siu Y, Dunlop MJ. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. Sci Rep 2016; 6:19538. [PMID: 26758525 PMCID: PMC4725842 DOI: 10.1038/srep19538] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022] Open
Abstract
Transient resistance can allow microorganisms to temporarily survive lethal concentrations of antibiotics. This can be accomplished through stochastic mechanisms, where individual cells within a population display diverse phenotypes to hedge against the appearance of an antibiotic. To date, research on transient stochastic resistance has focused primarily on mechanisms where a subpopulation of cells enters a dormant, drug-tolerant state. However, a fundamental question is whether stochastic gene expression can also generate variable resistance levels among growing cells in a population. We hypothesized that stochastic expression of antibiotic-inducible resistance mechanisms might play such a role. To investigate this, we focused on a prototypical example of such a system: the multiple antibiotic resistance activator MarA. Previous studies have shown that induction of MarA can lead to a multidrug resistant phenotype at the population level. We asked whether MarA expression also has a stochastic component, even when uninduced. Time lapse microscopy showed that isogenic cells express heterogeneous, dynamic levels of MarA, which were correlated with transient antibiotic survival. This finding has important clinical implications, as stochastic expression of resistance genes may be widespread, allowing populations to hedge against the sudden appearance of an antibiotic.
Collapse
Affiliation(s)
- Imane El Meouche
- School of Engineering, University of Vermont, Burlington, VT USA 05405
| | - Yik Siu
- School of Engineering, University of Vermont, Burlington, VT USA 05405
| | - Mary J Dunlop
- School of Engineering, University of Vermont, Burlington, VT USA 05405
| |
Collapse
|
32
|
Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil. Appl Environ Microbiol 2015; 82:897-909. [PMID: 26590287 DOI: 10.1128/aem.03306-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022] Open
Abstract
Metagenomics allows the study of genes related to xenobiotic degradation in a culture-independent manner, but many of these studies are limited by the lack of genomic context for metagenomic sequences. This study combined a phenotypic screen known as substrate-induced gene expression (SIGEX) with whole-metagenome shotgun sequencing. SIGEX is a high-throughput promoter-trap method that relies on transcriptional activation of a green fluorescent protein (GFP) reporter gene in response to an inducing compound and subsequent fluorescence-activated cell sorting to isolate individual inducible clones from a metagenomic DNA library. We describe a SIGEX procedure with improved library construction from fragmented metagenomic DNA and improved flow cytometry sorting procedures. We used SIGEX to interrogate an aromatic hydrocarbon (AH)-contaminated soil metagenome. The recovered clones contained sequences with various degrees of similarity to genes (or partial genes) involved in aromatic metabolism, for example, nahG (salicylate oxygenase) family genes and their respective upstream nahR regulators. To obtain a broader context for the recovered fragments, clones were mapped to contigs derived from de novo assembly of shotgun-sequenced metagenomic DNA which, in most cases, contained complete operons involved in aromatic metabolism, providing greater insight into the origin of the metagenomic fragments. A comparable set of contigs was generated using a significantly less computationally intensive procedure in which assembly of shotgun-sequenced metagenomic DNA was directed by the SIGEX-recovered sequences. This methodology may have broad applicability in identifying biologically relevant subsets of metagenomes (including both novel and known sequences) that can be targeted computationally by in silico assembly and prediction tools.
Collapse
|
33
|
Carpenter BM, West AL, Gancz H, Servetas SL, Pich OQ, Gilbreath JJ, Hallinger DR, Forsyth MH, Merrell DS, Michel SLJ. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription. Front Microbiol 2015; 6:558. [PMID: 26124751 PMCID: PMC4464171 DOI: 10.3389/fmicb.2015.00558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct “cross-talk” between HpArsRS and HpNikR at neutral pH has been demonstrated.
Collapse
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Abby L West
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| | - Hanan Gancz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Oscar Q Pich
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Daniel R Hallinger
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Mark H Forsyth
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| |
Collapse
|
34
|
Motta SS, Cluzel P, Aldana M. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS One 2015; 10:e0118464. [PMID: 25781931 PMCID: PMC4363326 DOI: 10.1371/journal.pone.0118464] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/18/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN) model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1) intrinsic variability in the expression of the EPRN transcription factors; 2) epigenetic inheritance of the transcription rate of EPRN associated genes; and 3) energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics.
Collapse
Affiliation(s)
| | - Philippe Cluzel
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Maximino Aldana
- Instituto de Ciencias Físicas, UNAM, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
35
|
Cantas L, Suer K. Review: the important bacterial zoonoses in "one health" concept. Front Public Health 2014; 2:144. [PMID: 25353010 PMCID: PMC4196475 DOI: 10.3389/fpubh.2014.00144] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED An infectious disease that is transmitted from animals to humans, sometimes by a vector, is called zoonosis. The focus of this review article is on the most common emerging and re-emerging bacterial zoonotic diseases. The role of "One Health" approach, public health education, and some measures that can be taken to prevent zoonotic bacterial infections are discussed. KEY POINTS A zoonotic bacterial disease is a disease that can be very commonly transmitted between animals and humans. Global climate changes, overuse of antimicrobials in medicine, more intensified farm settings, and closer interactions with animals facilitate emergence or re-emergence of bacterial zoonotic infections.The global "One Health" approach, which requires interdisciplinary collaborations and communications in all aspects of health care for humans, animals, and the environment, will support public health in general.New strategies for continuous dissemination of multidisciplinary research findings related to zoonotic bacterial diseases are hence needed.
Collapse
Affiliation(s)
- Leon Cantas
- Norwegian Private Veterinary Services, MicroLab, Hammerfest, Norway
- Department of Medical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Kaya Suer
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
36
|
Weatherspoon-Griffin N, Yang D, Kong W, Hua Z, Shi Y. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem 2014; 289:32571-82. [PMID: 25294881 DOI: 10.1074/jbc.m114.565762] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A genome-wide susceptibility assay was used to identify specific CpxR-dependent genes that facilitate Escherichia coli resistance to a model cationic antimicrobial peptide, protamine. A total of 115 strains from the Keio Collection, each of which contained a deletion at a demonstrated or predicted CpxR/CpxA-dependent locus, were tested for protamine susceptibility. One strain that exhibited high susceptibility carried a deletion of tolC, a gene that encodes the outer membrane component of multiple tripartite multidrug transporters. Concomitantly, two of these efflux systems, AcrAB/TolC and EmrAB/TolC, play major roles in protamine resistance. Activation of the CpxR/CpxA system stimulates mar transcription, suggesting a new regulatory circuit that enhances the multidrug resistance cascade. Tripartite multidrug efflux systems contribute to bacterial resistance to protamine differently from the Tat system. DNase I footprinting analysis demonstrated that the CpxR protein binds to a sequence located in the -35 and -10 regions of mar promoter. This sequence resembles the consensus CpxR binding site, however, on the opposite strand. aroK, a CpxR-dependent gene that encodes a shikimate kinase in the tryptophan biosynthesis pathway, was also found to facilitate protamine resistance. Specific aromatic metabolites from this pathway, such as indole, can stimulate expression of well studied CpxR-dependent genes degP and cpxP, which are not components of the tripartite multidrug transporters. Thus, we propose a novel mechanism for E. coli to modulate resistance to protamine and likely other cationic antimicrobial peptides in which the CpxR/CpxA system up-regulates mar transcription in response to specific aromatic metabolites, subsequently stimulating the multidrug resistance cascade.
Collapse
Affiliation(s)
| | - Dezhi Yang
- the College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China, and From The School of Life Sciences, The Center for Infectious Diseases and Vaccinology at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287-4501
| | - Wei Kong
- The Center for Infectious Diseases and Vaccinology at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287-4501
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yixin Shi
- From The School of Life Sciences, The Center for Infectious Diseases and Vaccinology at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287-4501,
| |
Collapse
|
37
|
Overproduction of AcrR increases organic solvent tolerance mediated by modulation of SoxS regulon in Escherichia coli. Appl Microbiol Biotechnol 2014; 98:8763-73. [DOI: 10.1007/s00253-014-6024-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
|
38
|
Abstract
Enterotoxigenic Escherichia coli is frequently associated with travelers' diarrhea and is a leading cause of infant and childhood mortality in developing countries. Disease is dependent upon the orchestrated expression of enterotoxins, flexible adhesive pili, and other virulence factors. Both the heat-labile (LT) and heat-stable (ST-H) enterotoxins are regulated at the level of transcription by cAMP-receptor protein which represses the expression of LT while activating expression of ST-H. The expression of many different serotypes of adhesive pili is regulated by Rns, a member of the AraC family that represents a subgroup of conserved virulence regulators from several enteric pathogens. These Rns-like regulators recognize similar DNA binding sites, and a compiled sequence logo suggests they may bind DNA through both major and minor groove interactions. These regulators are also tempting targets for novel therapeutics because they play pivotal roles during infection. To that end, high-throughput screens have begun to identify compounds that inhibit the activity of these regulators, predominately by interfering with DNA binding.
Collapse
Affiliation(s)
- George P Munson
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA,
| |
Collapse
|
39
|
Carone BR, Xu T, Murphy KC, Marinus MG. High incidence of multiple antibiotic resistant cells in cultures of in enterohemorrhagic Escherichia coli O157:H7. Mutat Res 2013; 759:1-8. [PMID: 24361397 DOI: 10.1016/j.mrfmmm.2013.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/06/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
The spontaneous incidence of chloramphenicol (Cam) resistant mutant bacteria is at least ten-fold higher in cultures of enterohemorrhagic Escherichia coli O157:H7 strain EDL933 than in E. coli K-12. It is at least 100-fold higher in the dam (DNA adenine methyltransferase) derivative of EDL933, compared to the dam strain of E. coli K-12, thereby preventing the use of Cam resistance as a marker in gene replacement technology. Genome sequencing of Cam-resistant isolates of EDL933 and its dam derivatives showed that the marR (multiple antibiotic resistance) gene was mutated in every case but not in the Cam-sensitive parental strains. As expected from mutation in the marR gene, the Cam-resistant bacteria were also found to be resistant to tetracycline and nalidixic acid. The marR gene in strain EDL933 is annotated as a shorter open reading frame than that in E. coli K-12 but the longer marR(+) open reading frame was more efficient at complementing the marR antibiotic-resistance phenotype of strain EDL933. Beta-lactamase-tolerant derivatives were present at frequencies 10-100 times greater in cultures of marR derivatives of strain EDL933 than the parent strain. Spontaneous mutation frequency to rifampicin, spectinomycin and streptomycin resistance was the same in E. coli O157:H7 and E. coli K-12 strains.
Collapse
Affiliation(s)
- Benjamin R Carone
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Tao Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Kenan C Murphy
- Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Martin G Marinus
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
40
|
Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, Zeng S, Chen X, Chan J, He C, Chen PR. The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat Chem Biol 2013; 10:21-8. [PMID: 24185215 DOI: 10.1038/nchembio.1380] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Abstract
The widely conserved multiple antibiotic resistance regulator (MarR) family of transcription factors modulates bacterial detoxification in response to diverse antibiotics, toxic chemicals or both. The natural inducer for Escherichia coli MarR, the prototypical transcription repressor within this family, remains unknown. Here we show that copper signaling potentiates MarR derepression in E. coli. Copper(II) oxidizes a cysteine residue (Cys80) on MarR to generate disulfide bonds between two MarR dimers, thereby inducing tetramer formation and the dissociation of MarR from its cognate promoter DNA. We further discovered that salicylate, a putative MarR inducer, and the clinically important bactericidal antibiotics norfloxacin and ampicillin all stimulate intracellular copper elevation, most likely through oxidative impairment of copper-dependent envelope proteins, including NADH dehydrogenase-2. This membrane-associated copper oxidation and liberation process derepresses MarR, causing increased bacterial antibiotic resistance. Our study reveals that this bacterial transcription regulator senses copper(II) as a natural signal to cope with stress caused by antibiotics or the environment.
Collapse
Affiliation(s)
- Ziyang Hao
- 1] Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. [2]
| | - Hubing Lou
- 1] Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. [2] [3]
| | - Rongfeng Zhu
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jiuhe Zhu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dianmu Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Boxuan Simen Zhao
- 1] Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. [2] Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Shizhe Zeng
- International Curriculum Center, High School affiliated to Renmin University, Beijing, China
| | - Xing Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jefferson Chan
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA
| | - Chuan He
- 1] Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. [2] Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA. [3] Shanghai Universities E-Institute for Chemical Biology, Shanghai, China
| | - Peng R Chen
- 1] Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. [2] Peking-Tsinghua Center for Life Sciences, Beijing, China. [3] Shanghai Universities E-Institute for Chemical Biology, Shanghai, China
| |
Collapse
|
41
|
Garcia-Bernardo J, Dunlop MJ. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops. PLoS Comput Biol 2013; 9:e1003229. [PMID: 24086119 PMCID: PMC3784492 DOI: 10.1371/journal.pcbi.1003229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.
Collapse
Affiliation(s)
- Javier Garcia-Bernardo
- School of Engineering, University of Vermont, Burlington, Vermont, United States of America
| | - Mary J. Dunlop
- School of Engineering, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
42
|
Nitrofurantoin, phenazopyridine, and the superoxide-response regulon soxRS of Escherichia coli. J Infect Chemother 2013; 19:1135-40. [PMID: 23793794 DOI: 10.1007/s10156-013-0635-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Nitrofurantoin and phenazopyridine are two drugs commonly used against urinary tract infections. Both compounds exert oxidative damage in patients deficient in glucose-6-phosphate dehydrogenase. This study was done to assess the interactions of these drugs with the soxRS regulon of Escherichia coli, a superoxide-defense system (that includes a nitroreductase that yields the active metabolite of nitrofurantoin) involved in antibiotic multi-resistance. The effects of either nitrofurantoin or phenazopyridine, upon strains with different soxRS genotypes, were measured as minimum inhibitory concentrations (MICs) and growth curves. Also, the ability of these drugs to induce the expression of a soxS'::lacZ gene fusion was assessed. The effect of antibiotics in the presence of phenazopyridine, paraquat (a known soxRS inducer), or an efflux inhibitor, was measured using the disk diffusion method. A strain constitutively expressing the soxRS regulon was slightly more susceptible to nitrofurantoin, and more resistant to phenazopyridine, compared to wild-type and soxRS-deleted strains, during early treatment, but 24-h MICs were the same (8 mg/l nitrofurantoin, 1,000 mg/l phenazopyridine) for all strains. Both compounds were capable of inducing the expression of a soxS'::lacZ fusion, but less than paraquat. Subinhibitory concentrations of phenazopyridine increased the antimicrobial effect of ampicillin, chloramphenicol, tetracycline, and nitrofurantoin. The induction or constitutive expression of the soxRS regulon seems to be a disadvantage for E. coli during nitrofurantoin exposure; but might be an advantage during phenazopyridine exposure, indicating that the latter compound could act as a selective pressure for mutations related to virulence and antibiotic multi-resistance.
Collapse
|
43
|
Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. ACTA ACUST UNITED AC 2013; 2:101-124. [PMID: 24860636 DOI: 10.6000/1927-3037.2013.02.03.2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Ida M Lister
- Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118
| |
Collapse
|
44
|
Jaktaji RP, Heidari F. Study the Expression of ompf Gene in Esherichia coli Mutants. Indian J Pharm Sci 2013; 75:540-4. [PMID: 24403654 PMCID: PMC3877515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 06/19/2013] [Accepted: 06/30/2013] [Indexed: 10/25/2022] Open
Abstract
The outer membrane porin proteins are the major factors in controlling the permeability of cell membrane. OmpF is an example of porin proteins in Esherichia coli. In normal growth condition a large amount of this protein is synthesised, but under stress condition, such as the presence of antibiotics in environment its expression is decreased inhibiting the entrance of antibiotics into cell. The expression of ompF is inhibited by antisense RNA transcribed from micF. In normal condition the expression of micF is low, but in the presence of antibiotics its expression is increased and causes multiple resistances to irrelevant antibiotics. The aims of this research were to study first, the intactness of micF and then quantify the expression of ompF in ciprofloxacin and tetracycline resistant mutants of E. coli. For this purpose the 5' end of micF was amplified and then sequenced. None of these mutants except one and its clone has a mutation in this gene. Then the relative expression of ompF in these mutants was quantified by real time PCR. There was no significant difference between ompF transcription of mutants and wild type strain. Based on this study and previous study it is concluded that low to intermediate levels of resistance to ciprofloxacin and tetracycline does not decrease ompF transcription.
Collapse
Affiliation(s)
- R. Pourahmad Jaktaji
- Department of Genetics, Faculty of Science, University of Shahrekord, Shahrekord 8818634141, Iran,Address for correspondence E-mail:
| | - F. Heidari
- Department of Genetics, Faculty of Science, University of Shahrekord, Shahrekord 8818634141, Iran
| |
Collapse
|
45
|
Pourahmad Jaktaji R, Ebadi R. Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2013; 12:923-8. [PMID: 24523773 PMCID: PMC3920692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms.
Collapse
Affiliation(s)
- Razieh Pourahmad Jaktaji
- Department of Genetics, Faculty of Science, University of Shahrekord and Biotechnology Center, University of Shahrekord, Shahrekord, Iran. ,Corresponding author: E-mail:
| | | |
Collapse
|
46
|
Abstract
Here we study the influence of the putative fatty acid biosynthesis (FAB) regulator FabT (originally called RmaG [Llmg_1788]) on gene transcription in Lactococcus lactis MG1363. A strain with a knockout mutation of the putative regulator was constructed, and its transcriptome was compared to that of the wild-type strain. Almost all FAB genes were significantly upregulated in the knockout. Using electrophoretic mobility shift assays (EMSAs) and DNase I footprinting, the binding motif of the regulator and the binding locations in the genome were characterized. Fatty acid composition analysis revealed that a strain lacking FabT contained significantly more saturated acyl chains in its phospholipids. This observation demonstrates that the vital pathway of FAB in L. lactis is regulated by the repressor FabT.
Collapse
|
47
|
Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. mBio 2012; 3:e00446-12. [PMID: 23221802 PMCID: PMC3517864 DOI: 10.1128/mbio.00446-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MtrA is a member of the AraC family of transcriptional regulators and has been shown to play an important role in enhancing transcription of the mtrCDE operon, which encodes a tripartite multidrug efflux pump, when gonococci are exposed to a sublethal level of antimicrobials. Heretofore, the DNA-binding properties of MtrA were unknown. In order to understand how MtrA activates mtrCDE expression, we successfully purified MtrA and found that it could bind specifically to the mtrCDE promoter region. The affinity of MtrA for the mtrCDE promoter increased 2-fold in the presence of a known effector and substrate of the MtrCDE pump, the nonionic detergent Triton X-100 (TX-100). When placed in competition with MtrR, the transcriptional repressor of mtrCDE, MtrA was found to bind with apparent lower affinity than MtrR to the same region. However, preincubation of MtrA with TX-100 prior to addition of the promoter-containing DNA probe increased MtrA binding and greatly reduced its dissociation from the promoter upon addition of MtrR. Two independent approaches (DNase I footprinting and a screen for bases important in MtrA binding) defined the MtrA-binding site 20–30 bp upstream of the known MtrR-binding site. Collectively, these results suggest that the MtrA and MtrR-binding sites are sterically close and that addition of an effector increases the affinity of MtrA for the mtrCDE promoter such that MtrR binding is negatively impacted. Our results provide a mechanism for transcriptional activation of mtrCDE by MtrA and highlight the complexity of transcriptional control of drug efflux systems possessed by gonococci. Antibiotic resistance in Neisseria gonorrhoeae has been increasing in recent years, such that in 2007 the Centers for Disease Control and Prevention listed N. gonorrhoeae as a “superbug.” One of the major contributors to antibiotic resistance in N. gonorrhoeae is the MtrCDE efflux pump. Until now, most work on the regulation of the genes encoding this efflux pump has been done on the transcriptional repressor, MtrR. This study is the first one to purify and define the DNA-binding ability of the transcriptional activator, MtrA. Understanding how levels of the MtrCDE efflux pump are regulated increases our knowledge of gonococcal biology and how the gonococcus can respond to various stresses, including antimicrobials.
Collapse
|
48
|
Detection of AmpC beta-lactamases using sodium salicylate. J Microbiol Methods 2012; 91:354-7. [PMID: 23059062 DOI: 10.1016/j.mimet.2012.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/22/2012] [Accepted: 09/29/2012] [Indexed: 11/24/2022]
Abstract
AmpC β-lactamases are enzymes that hydrolyze all β-lactam antibiotics except cefipime and imipenem. Currently, there is no standard phenotypic method for detection of such enzymes. This study aims to report the use of sodium salicylate for AmpC β-lactamases detection and to compare its sensitivity and specificity to other commonly known inhibitors. A total of 135 clinical isolates were used to test the effectiveness of sodium salicylate in detection of plasmid- as well as chromosomally encoded AmpC β-lactamases. All isolates were tested by multiplex PCR testing as well as inhibitor-based methods using cloxacillin, phenylboronic acid and sodium salicylate for the detection of AmpC enzymes. Four isolates were confirmed as producers of plasmid-encoded AmpC β-lactamase and a single isolate was confirmed to have both plasmid and chromosomal genes. Cloxacillin and phenylyboronic acid failed to detect most of the plasmid-encoded enzymes. Sodium salicylate was able to detect the Escherichia coli isolates with plasmid-encoded enzymes in addition to few other isolates that were chromosomally mediated. The sensitivity and specificity of sodium salicylate was 50% and 93%, respectively, higher than those of other known inhibitors. We thus conclude that sodium salicylate can be reliably used as an inhibitor in the detection of plasmid-encoded AmpC enzymes in E. coli.
Collapse
|
49
|
Rodgers ME, Schleif R. Heterodimers Reveal That Two Arabinose Molecules Are Required for the Normal Arabinose Response of AraC. Biochemistry 2012; 51:8085-91. [DOI: 10.1021/bi3005347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael E. Rodgers
- Biology Department, Johns Hopkins University, 3400 North Charles Street,
Baltimore, Maryland 21218, United States
| | - Robert Schleif
- Biology Department, Johns Hopkins University, 3400 North Charles Street,
Baltimore, Maryland 21218, United States
| |
Collapse
|
50
|
Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob Agents Chemother 2012; 56:6256-66. [PMID: 23006750 DOI: 10.1128/aac.01085-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Control of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae.
Collapse
|