1
|
Barbosa Rodrigues JD, Moreira RO, de Souza JAM, Desidério JA. Interaction of insecticidal proteins from Pseudomonas spp. and Bacillus thuringiensis for boll weevil management. PLoS One 2023; 18:e0294654. [PMID: 38033128 PMCID: PMC10688866 DOI: 10.1371/journal.pone.0294654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton crop yields are largely affected by infestations of Anthonomus grandis, which is its main pest. Although Bacillus thuringiensis (Bt) derived proteins can limit insect pest infestations, the diverse use of control methods becomes a viable alternative in order to prolong the use of technology in the field. One of the alternative methods to Bt technology has been the utilization of certain Pseudomonas species highly efficient in controlling coleopteran insects have been used to produce highly toxic insecticidal proteins. This study aimed to evaluate the toxicity of IPD072Aa and PIP-47Aa proteins, isolated from Pseudomonas spp., in interaction with Cry1Ia10, Cry3Aa, and Cry8B proteins isolated from B. thuringiensis, to control A. grandis in cotton crops. The genes IPD072Aa and PIP-47Aa were synthesized and cloned into a pET-SUMO expression vector. Moreover, Cry1Ia10, Cry3Aa, and Cry8B proteins were obtained by inducing recombinant E. coli clones, which were previously acquired by our research group from the Laboratory of Bacteria Genetics and Applied Biotechnology (LGBBA). These proteins were visualized in SDS-PAGE, quantified, and incorporated into an artificial diet to estimate their lethal concentrations (LC) through individual or combined bioassays. The results of individual toxicity revealed that IPD072Aa, PIP-47Aa, Cry1Ia10, Cry3Aa, and Cry8B were efficient in controlling A. grandis, with the latter being the most toxic. Regarding interaction assays, a high synergistic interaction was observed between Cry1Ia10 and Cry3Aa. All interactions involving Cry3Aa and PIP-47Aa, when combined with other proteins, showed a clear synergistic effect. Our findings highlighted that the tested proteins in combination, for the most part, increase toxicity against A. grandis neonate larvae, suggesting possible constructions for pyramiding cotton plants to the manage and the control boll weevils.
Collapse
Affiliation(s)
- Jardel Diego Barbosa Rodrigues
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Raquel Oliveira Moreira
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Jackson Antônio Marcondes de Souza
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Janete Apparecida Desidério
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
2
|
Endo H. Molecular and Kinetic Models for Pore Formation of Bacillus thuringiensis Cry Toxin. Toxins (Basel) 2022; 14:toxins14070433. [PMID: 35878171 PMCID: PMC9321905 DOI: 10.3390/toxins14070433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cry proteins from Bacillus thuringiensis (Bt) and other bacteria are pesticidal pore-forming toxins. Since 2010, when the ABC transporter C2 (ABCC2) was identified as a Cry1Ac protein resistant gene, our understanding of the mode of action of Cry protein has progressed substantially. ABCC2 mediates high Cry1A toxicity because of its high activity for helping pore formation. With the discovery of ABCC2, the classical killing model based on pore formation and osmotic lysis became nearly conclusive. Nevertheless, we are still far from a complete understanding of how Cry proteins form pores in the cell membrane through interactions with their host gut membrane proteins, known as receptors. Why does ABCC2 mediate pore formation with high efficiency unlike other Cry1A-binding proteins? Is the “prepore” formation indispensable for pore formation? What is the mechanism underlying the synergism between ABCC2 and the 12-cadherin domain protein? We examine potential mechanisms of pore formation via receptor interactions in this paper by merging findings from prior studies on the Cry mode of action before and after the discovery of ABC transporters as Cry protein receptors. We also attempt to explain Cry toxicity using Cry–receptor binding affinities, which successfully predicts actual Cry toxicity toward cultured cells coexpressing ABC transporters and cadherin.
Collapse
Affiliation(s)
- Haruka Endo
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
3
|
Identification and characterization of a new cry-like gene found in a Bacillus cereus strain. Antonie van Leeuwenhoek 2021; 114:1759-1770. [PMID: 34491485 DOI: 10.1007/s10482-021-01635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis is the most successful microbial insecticide against different pests in agriculture and vectors of diseases. Its activity is mostly attributed to the Cry proteins expressed during its sporulation phase. However, these proteins are not exclusive to B. thuringiensis. Some cry genes have been found in other Bacillus species, or even in other genera. In this work, cry genes were searched in 223 acrystalliferous bacillaceous strains. From these strains 13 amplicons were obtained, cloned, and sequenced; however, only 6 amplicons tested positive for cry-like genes, and the 6 isolates showed to be the same strain. We report the characterization of an unusual strain of B. cereus (LBIC-004) which is unable to form protein inclusions during the sporulation phase. LBIC-004 showed a high identity to B. cereus using the sequences of 16S rRNA, gyrB and hag genes; in addition, a unique plasmid pattern of the strain was obtained. A 1953-bp cry gene was identified, coding for a 651 amino acid protein with a molecular weight of 74.9 kDa. This protein showed a predicted three-domain structure, similar to all Cry proteins. However, the amino acid sequence of the protein showed only 41% identity its highest hit: the Cry8Ca1 protein, indicating the uniqueness of this cry-like gene. It was cloned and transferred into a mutant acrystalliferous B. thuringiensis strain which was used in bioassays against Caenorhabditis elegans, Aedes aegypti, Manduca sexta and Phyllophaga sp. The recombinant strain showed no crystal formation and no toxicity to the tested species.
Collapse
|
4
|
Pathma J, Kennedy RK, Bhushan LS, Shankar BK, Thakur K. Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. RECENT DEVELOPMENTS IN MICROBIAL TECHNOLOGIES 2021. [DOI: 10.1007/978-981-15-4439-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins (Basel) 2020; 12:toxins12070430. [PMID: 32610662 PMCID: PMC7404982 DOI: 10.3390/toxins12070430] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.
Collapse
|
6
|
Identification of entomopathogenic bacteria associated with the invasive pest Drosophila suzukii in infested areas of Germany. J Invertebr Pathol 2020; 173:107389. [PMID: 32348777 DOI: 10.1016/j.jip.2020.107389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022]
Abstract
The invasive insect pest Drosophila suzukii causes extensive damage to soft-skinned fruit crops as they ripen. Current control methods involve the application of chemical pesticides, but this approach is ineffective and environmentally hazardous. To investigate the potential of bacterial pathogens carried by D. suzukii as biocontrol agents, we characterized bacteria associated with D. suzukii larvae in two parts of Hesse, Germany, by collecting infested fruits and culturing individual bacteria from moribund specimens for taxonomic classification by 16S rDNA sequencing. Among the bacteria we detected, some had a detrimental effect on the host whereas others were neutral or beneficial. When the detrimental and beneficial bacteria were presented simultaneously, we observed complex tripartite interactions that modulated the insect's innate immune response. Our study provides insight into the complex relationships within the microbiome and pathobiome of D. suzukii and may lead to the isolation of bacteria that can be used as biological control agents.
Collapse
|
7
|
Wang K, Shu C, Zhang J. Effective bacterial insecticidal proteins against coleopteran pests: A review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21558. [PMID: 31094011 DOI: 10.1002/arch.21558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Coleoptera, the order of insects commonly referred to as beetles, are able to survive in various environments, and thus, comprise the largest order in the animal kingdom. Coleopterans mainly include coprophagous and phytophagous lineages, and many species of the latter lineage are serious pests. In addition to traditional chemical methods, biocontrol measures using various bacterial insecticidal proteins have also gradually been developed to control these insect pests. In this review, we summarized the possible coleopteran-pest-specific bacteria and insecticidal proteins that have been reported in the literature thus far and have provided a comprehensive overview and long-term guidance for the control of coleopteran pests in the future.
Collapse
Affiliation(s)
- Kui Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Glare TR, Durrant A, Berry C, Palma L, Ormskirk MM, Cox MP. Phylogenetic determinants of toxin gene distribution in genomes of Brevibacillus laterosporus. Genomics 2019; 112:1042-1053. [PMID: 31226484 PMCID: PMC6978878 DOI: 10.1016/j.ygeno.2019.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022]
Abstract
Brevibacillus laterosporus is a globally ubiquitous, spore forming bacterium, strains of which have shown toxic activity against invertebrates and microbes and several have been patented due to their commercial potential. Relatively little is known about this bacterium. Here, we examined the genomes of six published and five newly determined genomes of B. laterosporus, with an emphasis on the relationships between known and putative toxin encoding genes, as well as the phylogenetic relationships between strains. Phylogenetically, strain relationships are similar using average nucleotide identity (ANI) values and multi-gene approaches, although PacBio sequencing revealed multiple copies of the 16S rDNA gene which lessened utility at the strain level. Based on ANI values, the New Zealand isolates were distant from other isolates and may represent a new species. While all of the genomes examined shared some putative toxicity or virulence related proteins, many specific genes were only present in a subset of strains. We examined genomes of 11 Brevibacillus laterosporus, a bacterium which is antagonistic to invertebrates and/or microbes Multiple phylogenetic methods showed New Zealand isolates more distant than all other isolates Each genome could contain 11–13 copies of the 16S rDNA gene, some of which were not identical Many putative toxin encoding genes were present in the genomes, but the toxin complement varied from isolate to isolate Variation in occurrence of toxin-encoding genes indicates the potential to find strains with new combinations of activities
Collapse
Affiliation(s)
- Travis R Glare
- Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, New Zealand.
| | - Abigail Durrant
- Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, New Zealand
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Leopoldo Palma
- Universidad Nacional de Villa María, Instituto A.P. de Ciencias Básicas y Aplicadas, Av. Arturo Jauretche 1555, Villa María 5900, Córdoba, Argentina
| | - M Marsha Ormskirk
- Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
9
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
10
|
Search for Cry proteins expressed by Bacillus spp. genomes, using hidden Markov model profiles. 3 Biotech 2019; 9:13. [PMID: 30622851 DOI: 10.1007/s13205-018-1533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
This report focuses on a systematic search for Cry proteins in Bacillus spp. other than B. thuringiensis by analyzing reported Bacillus spp. genomes, using conserved sequences from the C-terminal half of reported Cry proteins in hidden Markov model profiles. A high-throughput model based on the use of HMMER and CD-HIT tools was designed, which identified Cry proteins. This model was used on 857 reported Bacillus spp. genomes, where 174 Cry protein sequences were identified, mostly, as expected, in B. thuringiensis genomes but, interestingly, 42 were identified on other species. Despite including 89 species of Bacillus in the HMMER analysis, Cry protein sequences were found only in genomes from species within the B. cereus group. According to the species registered at the NCBI database containing each genome, this group was formed by 18 non-B. thuringiensis strains. However, when sequences in those genomes were analyzed by multilocus sequence typing, the number of non-B. thuringiensis strains increased to 39, indicating that as many as 119 Cry protein sequences were found in four non-B. thuringiensis species. Therefore, dispersion of Cry proteins is much wider and frequent than previously thought, questioning its role in nature.
Collapse
|
11
|
Garcia‐Ramon DC, Berry C, Tse C, Fernández‐Fernández A, Osuna A, Vílchez S. The parasporal crystals of Bacillus pumilus strain 15.1: a potential virulence factor? Microb Biotechnol 2018; 11:302-316. [PMID: 29027367 PMCID: PMC5812249 DOI: 10.1111/1751-7915.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med-fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well-known as invertebrate-active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N-terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid-cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
Collapse
Affiliation(s)
- Diana C. Garcia‐Ramon
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Present address:
Medical SchoolFaculty of Life, Health and Medical SciencesUniversidad Internacional del EcuadorQuitoEcuador
| | - Colin Berry
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Carmen Tse
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Antonio Osuna
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
| | - Susana Vílchez
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Department of Biochemistry and Molecular Biology ICampus FuentenuevaUniversity of GranadaGranadaSpain
| |
Collapse
|
12
|
DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of Bacillus thuringiensis. BMC BIOPHYSICS 2017; 10:4. [PMID: 28540040 PMCID: PMC5441083 DOI: 10.1186/s13628-017-0036-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 05/11/2017] [Indexed: 12/26/2022]
Abstract
Background The Cry toxins, or δ-endotoxins, are a diverse group of proteins produced by Bacillus thuringiensis. While DNA secondary structures are biologically relevant, it is unknown if such structures are formed in regions encoding conserved domains of Cry toxins under shuffling conditions. We analyzed 5 holotypes that encode Cry toxins and that grouped into 4 clusters according to their phylogenetic closeness. The mean number of DNA secondary structures that formed and the mean Gibbs free energy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left(\overline{\varDelta G}\right) $$\end{document}ΔG¯ were determined by an in silico analysis using different experimental DNA shuffling scenarios. In terms of spontaneity, shuffling efficiency was directly proportional to the formation of secondary structures but inversely proportional to ∆G. Results The results showed a shared thermodynamic pattern for each cluster and relationships among sequences that are phylogenetically close at the protein level. The regions of the cry11Aa, Ba and Bb genes that encode domain I showed more spontaneity and thus a greater tendency to form secondary structures (<∆G). In the region of domain III; this tendency was lower (>∆G) in the cry11Ba and Bb genes. Proteins that are phylogenetically closer to Cry11Ba and Cry11Bb, such as Cry2Aa and Cry18Aa, maintained the same thermodynamic pattern. More distant proteins, such as Cry1Aa, Cry1Ab, Cry30Aa and Cry30Ca, featured different thermodynamic patterns in their DNA. Conclusion These results suggest the presence of thermodynamic variations associated to the formation of secondary structures and an evolutionary relationship with regions that encode highly conserved domains in Cry proteins. The findings of this study may have a role in the in silico design of cry gene assembly by DNA shuffling techniques.
Collapse
|
13
|
Karpyn Esqueda M, Yen AL, Rochfort S, Guthridge KM, Powell KS, Edwards J, Spangenberg GC. A Review of Perennial Ryegrass Endophytes and Their Potential Use in the Management of African Black Beetle in Perennial Grazing Systems in Australia. FRONTIERS IN PLANT SCIENCE 2017; 8:3. [PMID: 28154571 PMCID: PMC5244474 DOI: 10.3389/fpls.2017.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/03/2017] [Indexed: 05/05/2023]
Abstract
The major insect pest of Australian cool temperate pastures is the root-feeding insect Heteronychus arator (African black beetle, ABB). Significant pasture damage can occur even at low ABB densities (11 individuals per square meter), and often re-sowing of the whole paddock is required. Mitigation of the effects of pasture pests, and in particular subterranean species such as the larval form of ABB, can be challenging. Early detection is limited by the ability to visualize above-ground symptoms, and chemical control of insects in soil is often ineffective. This review takes a look at the historical events that molded the pastoral landscape in Australia. The importation route, changes in land management and pasture composition by European settlers may have aided the establishment of ABB in Australia. Perennial ryegrass Lolium perenne is discussed as it is one of the most important perennial agricultural grasses and is widely-sown in moderate-to-high-rainfall temperate zones of the world. Endophytic fungi from the genus Epichloë form symbiotic relationships with cool season grasses such as Lolium perenne (perennial ryegrass). They have been studied extensively and are well documented for enhancing persistence in pasture via a suite of bioactive secondary metabolites produced by the fungal symbionts. Several well-characterized secondary metabolites are discussed. Some can have negative effects on cattle (e.g., ergovaline and lolitrems) while others have been shown to benefit the host plant through deterrence of insect pests from feeding and by insecticidal activity (e.g., peramine, lolines, ergopeptines). Various control methods for ABB are also discussed, with a focus on the potential role of asexual Epichloë endophytes.
Collapse
Affiliation(s)
- Mijail Karpyn Esqueda
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
- *Correspondence: Mijail Karpyn Esqueda
| | - Alan L. Yen
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - Simone Rochfort
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
- Simone Rochfort
| | - Kathryn M. Guthridge
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
| | - Kevin S. Powell
- Agriculture Victoria, Department of Economic Development, Jobs, Transport and ResourcesRutherglen, VIC, Australia
| | - Jacqueline Edwards
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - German C. Spangenberg
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
14
|
Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203. [PMID: 27905924 PMCID: PMC5134293 DOI: 10.1186/s12934-016-0603-7] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Isolated from a wide range of sources, the genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment. Many Paenibacillus species can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition. They can also offer protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses. This is accomplished by the production of a variety of antimicrobials and insecticides, and by triggering a hypersensitive defensive response of the plant, known as induced systemic resistance (ISR). Paenibacillus-derived antimicrobials also have applications in medicine, including polymyxins and fusaricidins, which are nonribosomal lipopeptides first isolated from strains of Paenibacillus polymyxa. Other useful molecules include exo-polysaccharides (EPS) and enzymes such as amylases, cellulases, hemicellulases, lipases, pectinases, oxygenases, dehydrogenases, lignin-modifying enzymes, and mutanases, which may have applications for detergents, food and feed, textiles, paper, biofuel, and healthcare. On the negative side, Paenibacillus larvae is the causative agent of American Foulbrood, a lethal disease of honeybees, while a variety of species are opportunistic infectors of humans, and others cause spoilage of pasteurized dairy products. This broad review summarizes the major positive and negative impacts of Paenibacillus: its realised and prospective contributions to agriculture, medicine, process manufacturing, and bioremediation, as well as its impacts due to pathogenicity and food spoilage. This review also includes detailed information in Additional files 1, 2, 3 for major known Paenibacillus species with their locations of isolation, genome sequencing projects, patents, and industrially significant compounds and enzymes. Paenibacillus will, over time, play increasingly important roles in sustainable agriculture and industrial biotechnology.
Collapse
Affiliation(s)
- Elliot Nicholas Grady
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Jacqueline MacDonald
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, Dental Science Building Rm. 3014, London, ON N6A 5C1 Canada
| | - Linda Liu
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Alex Richman
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Ze-Chun Yuan
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, Dental Science Building Rm. 3014, London, ON N6A 5C1 Canada
| |
Collapse
|
15
|
Insect Pathogenic Bacteria in Integrated Pest Management. INSECTS 2015; 6:352-67. [PMID: 26463190 PMCID: PMC4553484 DOI: 10.3390/insects6020352] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.
Collapse
|
16
|
Iiyama K, Mon H, Mori K, Mitsudome T, Lee JM, Kusakabe T, Tashiro K, Asano SI, Yasunaga-Aoki C. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706(T). Meta Gene 2015; 4:29-44. [PMID: 25853059 PMCID: PMC4372654 DOI: 10.1016/j.mgene.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022] Open
Abstract
A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. A 15.9 kb plasmid of P. popilliae was identified and completely sequenced. The plasmid was predicted to encode 17 putative open reading frames. Recombinant KfrA proteins formed multimers and bound upstream of the kfrA genes. Phylogenetic analysis suggests that kfrA genes were horizontally transferred.
Collapse
Affiliation(s)
- Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Kazuki Mori
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Takumi Mitsudome
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Kousuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| | - Shin-Ichiro Asano
- Laboratory of Applied Molecular Entomology, Faculty of Agriculture, Hokkaido University, Japan
| | - Chisa Yasunaga-Aoki
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Japan
| |
Collapse
|
17
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
18
|
Li H, Liu R, Shu C, Zhang Q, Zhao S, Shao G, Zhang X, Gao J. Characterization of one novel cry8 gene from Bacillus thuringiensis strain Q52-7. World J Microbiol Biotechnol 2014; 30:3075-80. [PMID: 25218711 DOI: 10.1007/s11274-014-1734-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/31/2014] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis (Bt) is the most widely used insecticidal microbe due to its specific toxicity and safe use with respect to animals and the environment. In this study, we isolated Bt strain Q52-7 from a soil sample collected in the Qian Shan District, Liao Ning Province, China. We observed that the Q52-7 strain produced spherical crystals. The Bt Q52-7 strain had high toxicity against Asian Cockchafer (Holotrichia parallela), exhibiting an LC50 of 3.80 × 10(9) cfu/g, but is not toxic for Anomala corpulenta Motschulsky and Holotrichia oblita. Using general cry8 primers, we amplified a 1.3 kb fragment with the polymerase chain reaction. Specific primers were designed for the amplified fragment to clone the full-length coding region. A novel gene, cry8Na1, had 69 % sequence similarity with cry8Ca1. cry8Na1 gene was successfully expressed in the HD-73(-) acrystalliferous mutant of Bt subsp. Kurstaki HD-73. Bioassays demonstrated that the Cry8Na1 protein is highly toxic for the H. parallela, with a 50 % lethal concentration of 8.18 × 10(10) colony forming units per gram.
Collapse
Affiliation(s)
- Haitao Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bi Y, Zhang Y, Shu C, Crickmore N, Wang Q, Du L, Song F, Zhang J. Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae. Appl Microbiol Biotechnol 2014; 99:753-60. [PMID: 25081556 DOI: 10.1007/s00253-014-5966-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
Abstract
The Bacillus thuringiensis strain HBF-18 (CGMCC 2070), which has previously been shown to encode the cry8Ga toxin gene, is active against both Holotrichia oblita and Holotrichia parallela. Recombinant Cry8Ga however is only weakly toxic to these insect pests suggesting the involvement of additional toxins in the native strain. We report that through the use of Illumina sequencing three additional, and novel, genes, namely vip1Ad1, vip2Ag1, and cry8-like, were identified in this strain. Although no protein corresponding to these genes could be identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the HBF-18 proteome, reverse transcription (RT)-PCR indicated that all three genes were transcribed in the native strain. The two vip genes were cloned and expressed and, as with other Vip1/2 toxins, appeared to function as a binary toxin and showed strong activity against H. oblita, H. parallela and Anomala corpulenta. This is the first report to demonstrate that the Vip1/Vip2 binary toxin is active against these Scarabaeoidea larvae. The cry8-like gene appeared to be a C-terminally truncated form of a typical cry8 gene and was not expressed in our usual recombinant Bt expression system. When however the missing C-terminal region was replaced with the corresponding sequence from cry8Ea, the resulting hybrid expressed well and the toxin was active against the three test insects.
Collapse
Affiliation(s)
- Yang Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 2010; 76:6150-5. [PMID: 20656876 DOI: 10.1128/aem.00797-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of the known cry gene sequences of Bacillus thuringiensis, three sets of primers were designed from four conserved blocks found in the delta-endotoxin-coding region. The primer pairs designed amplify the regions between blocks 1 and 5, 2 and 5, and 1 and 4. In silico analyses indicated that 100% of the known three-domain cry gene sequences can be amplified by these sets of primers. To test their ability to amplify known and unknown cry gene sequences, 27 strains from the CINVESTAV (LBIT series) collection showing atypical crystal morphology were selected. Their DNA was used as the template with the new primer system, and after a systematic amplification and sequencing of the amplicons, each strain showed one or more cry-related sequences, totaling 54 different sequences harbored by the 27 strains. Seven sequences were selected on the basis of their low level of identity to the known cry sequences, and once cloning and sequencing of the complete open reading frames were done, three new cry-type genes (primary ranks) were identified and the toxins that they encode were designated Cry57Aa1, Cry58Aa1, and Cry59Aa1 by the B. thuringiensis Toxin Nomenclature Committee. The rest of the seven sequences were classified Cry8Ka2, Cry8-like, Cry20Ba1, and Cry1Ma1 by the committee. The crystal morphology of the selected strains and analysis of the new Cry protein sequences showed interesting peculiarities.
Collapse
|
21
|
Kleter GA, Peijnenburg AACM, Aarts HJM. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol 2010; 2005:326-52. [PMID: 16489267 PMCID: PMC1364539 DOI: 10.1155/jbb.2005.326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential effects of horizontal gene transfer on human health
are an important item in the safety assessment of genetically
modified organisms. Horizontal gene transfer from genetically
modified crops to gut microflora most likely occurs with
transgenes of microbial origin. The characteristics of microbial
transgenes other than antibiotic-resistance genes in
market-approved genetically modified crops are reviewed. These
characteristics include the microbial source, natural function,
function in genetically modified crops, natural prevalence,
geographical distribution, similarity to other microbial genes,
known horizontal transfer activity, selective conditions and
environments for horizontally transferred genes, and potential
contribution to pathogenicity and virulence in humans and animals.
The assessment of this set of data for each of the microbial genes
reviewed does not give rise to health concerns. We recommend
including the above-mentioned items into the premarket safety
assessment of genetically modified crops carrying transgenes other
than those reviewed in the present study.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT, Institute of Food Safety, Wageningen University and Research Center, Wageningen, The Netherlands.
| | | | | |
Collapse
|
22
|
Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol 2009; 102:101-9. [DOI: 10.1016/j.jip.2009.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 07/08/2009] [Accepted: 07/13/2009] [Indexed: 11/22/2022]
|
23
|
Shu C, Yan G, Wang R, Zhang J, Feng S, Huang D, Song F. Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Appl Microbiol Biotechnol 2009; 84:701-7. [PMID: 19399496 DOI: 10.1007/s00253-009-1971-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/14/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
A new polymerase chain reaction-restriction fragment length polymorphism method for the identification of cry8-type genes from Bacillus thuringiensis has been established by designing a pair of new universal primers. By this method, a novel gene, cry8Ga1, encoding a polypeptide of 1,157 amino acids with a deduced molecular mass of 131.2 kDa was identified and cloned from B. thuringiensis HBF-18. Recombinant B. thuringiensis strain HD8G, harboring cry8Ga1, has insecticidal activity against larvae of Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. This is the first report of a Cry toxin that has insecticidal activity to Melolonthidae pest H. oblita.
Collapse
Affiliation(s)
- Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Frankenhuyzen KV. Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 2009; 101:1-16. [DOI: 10.1016/j.jip.2009.02.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/22/2009] [Indexed: 10/21/2022]
|
25
|
Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F. Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 2009; 58:389-92. [PMID: 19130127 DOI: 10.1007/s00284-008-9338-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/18/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Two novel cry8-type genes, cry8Ea1 and cry8Fa1, obtained from a Holotrichia parallela-specific Bacillus thuringiensis strain, BT185, were characterized. Findings showed that cry8Ea1 and cry8Fa1 encoded polypeptides of 1164 and 1174 amino acid residues, respectively. The deduced amino acid sequences of both Cry8Ea1 and Cry8Fa1 polypeptides are the most similar to that of Cry8Ba1. Eight conserved blocks (blocks 1-8) exist in Cry8Ea1 and Cry8Fa1 polypeptides compared with known Cry proteins. Cry8Ea1 and the Cry8Fa1 toxins could form spheric crystals when they were expressed in the acrystalliferous mutant strain HD73(-). The spores and crystals from the recombinant strain containing cry8Ea1 were toxic to Holotrichia parallela, with an LC(50) of 0.0875 x 10(8) colony-forming units (CFU)/g. However, Cry8Fa1 expressed in the recombinant strain was not toxic to H. parallela, Anomala corpulenta, or H. oblita.
Collapse
Affiliation(s)
- Changlong Shu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Frutos R, Rang C, Royer M. Managing Insect Resistance to Plants ProducingBacillus thuringiensisToxins. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229251] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Yan M, Roehrl MH, Wang JY. Discovery of crystalline inclusions in Bacillus licheniformis that resemble parasporal crystals of Bacillus thuringiensis. Can J Microbiol 2007; 53:1111-5. [DOI: 10.1139/w07-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystalline inclusions were discovered in stationary and sporulating cells of the spore-forming bacterium Bacillus licheniformis ATCC 9945a. As detected by electron microscopy, dying or sporulating bacterial cells contain a single crystal of strikingly large size. The crystals in sporulating cells are located next to nascent spores and can be several times larger than the spores. Morphologically, most crystals are rhomboid with uniformly spaced grids. These newly discovered crystalline inclusions of B. licheniformis closely resemble parasporal crystals of Bacillus thuringiensis that are formed by insecticidal toxin proteins and used widely as biopesticides. The taxonomic identity of this strain was verified by its 16S rRNA gene sequence and its fatty acid profile. The finding of crystal proteins in B. licheniformis may lead to the discovery of new protein toxins and may expand our pool of biopesticides.
Collapse
Affiliation(s)
- Ming Yan
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael H. Roehrl
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Julia Y. Wang
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
28
|
Yu H, Zhang J, Huang D, Gao J, Song F. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer: Holotrichia parallela. Curr Microbiol 2006; 53:13-7. [PMID: 16775781 DOI: 10.1007/s00284-005-0097-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 09/30/2005] [Indexed: 11/28/2022]
Abstract
A new Bacillus thuringiensis strain, Bt185, was isolated from HeBei soil samples in China. Observations after transmission electron microscopy found that the strain produced spherical parasporal inclusions similar to that of the B. thuringiensis subsp. japonensis Buibui strain, which showed toxicity to both Anomala corpulenta and Popillia japonica. The plasmid profile seen on an agarose gel revealed that Bt185 contained six large bands of 191 kb, 161 kb, 104 kb, 84 kb, 56 kb, and 37 kb. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed one major band with an estimated molecular mass of 130 kDa. Polymerase chain reaction-restriction fragment length polymorphism results showed that a novel cry8-type gene sequence was found in the Bt185 strain. When we screened for this novel gene sequence, an additional novel cry8-type gene was isolated, having a partial sequence of 2340 bp and encoding a protein of 780 amino acids. Bioassay results showed that Bt185 had no toxicity against several Coleopteran and Lepidopteran pests. However, Bt185 exhibited toxicity against larvae of the Asian cockchafer, Holotrichia parallela. This is the first report of the occurrence of a Bacillus strain that has insecticidal activity against Holotrichia parallela larvae.
Collapse
MESH Headings
- Animals
- Bacillus thuringiensis/genetics
- Bacillus thuringiensis/metabolism
- Bacillus thuringiensis/ultrastructure
- Bacillus thuringiensis Toxins
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/toxicity
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Bacterial Toxins/toxicity
- Cloning, Molecular
- Coleoptera/drug effects
- Coleoptera/growth & development
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Electrophoresis, Polyacrylamide Gel
- Endotoxins/genetics
- Endotoxins/metabolism
- Endotoxins/toxicity
- Hemolysin Proteins
- Larva/drug effects
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Plasmids/genetics
- Polymerase Chain Reaction
- Sequence Analysis, DNA
- Spores, Bacterial/genetics
- Spores, Bacterial/metabolism
- Spores, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR, China
| | | | | | | | | |
Collapse
|
29
|
de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 2004; 37:409-33. [PMID: 14616068 DOI: 10.1146/annurev.genet.37.110801.143042] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures and modes of action. In many cases, the toxins consist of unique folds or novel combinations of domains having known protein folds. Some of the toxins display a similar structure and mode of action to certain toxins of mammalian pathogens, suggesting a common evolutionary origin. Most of these toxins are produced in large amounts during sporulation and have the remarkable feature that they are localized in parasporal crystals. Localization of multiple toxin-encoding genes on plasmids together with mobilizable elements enables bacteria to shuffle their armory of toxins. Recombination between toxin genes and sequence divergence has resulted in a wide range of host specificities.
Collapse
Affiliation(s)
- Ruud A de Maagd
- Plant Research International B.V., 6700 AA Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Yokoyama T, Tanaka M, Hasegawa M. Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae. J Invertebr Pathol 2004; 85:25-32. [PMID: 14992857 DOI: 10.1016/j.jip.2003.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 12/23/2003] [Indexed: 11/16/2022]
Abstract
A positive clone was selected from a library of total cell DNA of Paenibacillus lentimorbus strain Semadara that reacted with an antiserum that was raised against parasporal crystal proteins produced by this strain. The positive clone had a DNA insert containing two whole cry genes (cry43Aa1, cry43Ba1), one partial cry gene (cry43-like), and three smaller genes located upstream. Eight blocks that are conserved in the Cry proteins of Bacillus thuringiensis [Microbiol. Mol. Biol. Rev. 62 (1998) 775] were detected in their deduced amino acid sequences. The Escherichia coli transformant expressing cry43Aa1 caused inhibition of ingestion and 90% mortality in the first stadium larvae of Anomala cuprea. A low concentration of sporangia mixed with the transformant expressing cry43Aa1 easily infected the larvae of A. cuprea. The protein of approximately 150 kDa produced by the transformants expressing the cry genes reacted with antiserum specific for the parasporal crystal proteins. Southern hybridization analysis demonstrated that the cry genes were located on the chromosomal DNA of this strain, which possessed at least four cry genes.
Collapse
Affiliation(s)
- Tomoko Yokoyama
- Chiba Prefectural Agricultural Research Center, Chiba 266-0006, Japan.
| | | | | |
Collapse
|
31
|
Harrison H, Patel R, Yousten AA. Paenibacillus associated with milky disease in Central and South American scarabs. J Invertebr Pathol 2000; 76:169-75. [PMID: 11023744 DOI: 10.1006/jipa.2000.4969] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty-one isolates of bacteria causing milky disease in scarab larvae collected in Central and South America were identified as Paenibacillus popilliae or Paenibacillus lentimorbus by use of DNA similarity analysis. The isolates were more similar to each other than to the North American isolates that are the type strains of the species. All of the bacteria of both species produced parasporal bodies, a characteristic previously believed to be unique to P. popilliae. Screening of the bacteria using PCR with parasporal protein primers revealed differences among the parasporal protein genes of P. popilliae isolates and between the parasporal genes of P. popilliae and P. lentimorbus. In contrast to P. popilliae from North America, none of the isolates from Central and South America was resistant to vancomycin, an indication of an interesting geographic distribution of the resistance genes.
Collapse
Affiliation(s)
- H Harrison
- Microbiology Section, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
32
|
Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:807-13. [PMID: 9729610 PMCID: PMC98935 DOI: 10.1128/mmbr.62.3.807-813.1998] [Citation(s) in RCA: 484] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal proteins of Bacillus thuringiensis have been extensively studied because of their pesticidal properties and their high natural levels of production. The increasingly rapid characterization of new crystal protein genes, triggered by an effort to discover proteins with new pesticidal properties, has resulted in a variety of sequences and activities that no longer fit the original nomenclature system proposed in 1989. Bacillus thuringiensis pesticidal crystal protein (Cry and Cyt) nomenclature was initially based on insecticidal activity for the primary ranking criterion. Many exceptions to this systematic arrangement have become apparent, however, making the nomenclature system inconsistent. Additionally, the original nomenclature, with four activity-based primary ranks for 13 genes, did not anticipate the current 73 holotype sequences that form many more than the original four subgroups. A new nomenclature, based on hierarchical clustering using amino acid sequence identity, is proposed. Roman numerals have been exchanged for Arabic numerals in the primary rank (e.g., Cry1Aa) to better accommodate the large number of expected new sequences. In this proposal, 133 crystal proteins comprising 24 primary ranks are systematically arranged.
Collapse
Affiliation(s)
- N Crickmore
- School of Biological Sciences, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang J, Schairer HU, Schnetter W, Lereclus D, Agaisse H. Bacillus popilliae cry18Aa operon is transcribed by sigmaE and sigmaK forms of RNA polymerase from a single initiation site. Nucleic Acids Res 1998; 26:1288-93. [PMID: 9469839 PMCID: PMC147395 DOI: 10.1093/nar/26.5.1288] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacillus popilliae is an obligate pathogen for larvae of the insect family Scarabaeidae (Coleoptera). It forms parasporal crystals upon sporulation. The gene cry18Aa coding for the parasporal crystal protein and an upstream open reading frame, orf1, were previously isolated from B.popilliae. Here we report an analysis of cry18Aa transcription in Bacillus thuringiensis. The only transcriptional start site of cry18Aa was found 29 bp upstream of the open reading frame orf1, suggesting that orf1 and cry18Aa are transcribed as an operon. lacZ fusion to the cry18Aa promoter was used to follow the time-course of cry18Aa transcription in wild type B.thuringiensis and in various B.thuringiensis sporulation-deficient mutants (spo0A, sigE or sigK). In wild type B.thuringiensis, the cry18Aa promoter was activated 2 h after the end of exponential growth and the expression lasted to the late sporulation phase. The results of promoter activity in Spo+or Spo-backgrounds together with the results of primer extension experiments suggest that the transcription from this promoter can be driven by both sigmaE and sigmaK types of RNA polymerase at a single start site. The promoter region of cry18Aa operon fits the consensus sequences of both sigmaE and sigmaK dependent promoters of Bacillus.
Collapse
Affiliation(s)
- J Zhang
- Zentrum für Molekularbiologie Heidelberg and Zoologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|