1
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from
Streptomyces
sp.**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Effect of Vancomycin on Cytoplasmic Peptidoglycan Intermediates and van Operon mRNA Levels in VanA-Type Vancomycin-Resistant Enterococcus faecium. J Bacteriol 2021; 203:e0023021. [PMID: 34060906 DOI: 10.1128/jb.00230-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Resistance in VanA-type vancomycin-resistant Enterococcus faecium (VREfm) is due to an inducible gene cassette encoding seven proteins (vanRSHAXYZ). This provides for an alternative peptidoglycan (PG) biosynthesis pathway whereby D-Ala-D-Ala is replaced by D-Ala-d-lactate (Lac), to which vancomycin cannot bind effectively. This study aimed to quantify cytoplasmic levels of normal and alternative pathway PG intermediates in VanA-type VREfm by liquid chromatography-tandem mass spectrometry before and after vancomycin exposure and to correlate these changes with changes in vanA operon mRNA levels measured by real-time quantitative PCR (RT-qPCR). Normal pathway intermediates predominated in the absence of vancomycin, with low levels of alternative pathway intermediates. Extended (18-h) vancomycin exposure resulted in a mixture of the terminal normal (UDP-N-acetylmuramic acid [NAM]-l-Ala-D-Glu-l-Lys-D-Ala-D-Ala [UDP-Penta]) and alternative (UDP-NAM-l-Ala-γ-D-Glu-l-Lys-D-Ala-D-Lac [UDP-Pentadepsi]) pathway intermediates (2:3 ratio). Time course analyses revealed normal pathway intermediates responding rapidly (peaking in 3 to 10 min) and alternative pathway intermediates responding more slowly (peaking in 15 to 45 min). RT-qPCR demonstrated that vanA operon mRNA transcript levels increased rapidly after exposure, reaching maximal levels in 15 min. To resolve the effect of increased van operon protein expression on PG metabolite levels, linezolid was used to block protein biosynthesis. Surprisingly, linezolid dramatically reduced PG intermediate levels when used alone. When used in combination with vancomycin, linezolid only modestly reduced alternative UDP-linked PG intermediate levels, indicating substantial alternative pathway presence before vancomycin exposure. Comparison of PG intermediate levels between VREfm, vancomycin-sensitive Enterococcus faecium, and methicillin-resistant Staphylococcus aureus after vancomycin exposure demonstrated substantial differences between S. aureus and E. faecium PG biosynthesis pathways. IMPORTANCE VREfm is highly resistant to vancomycin due to the presence of a vancomycin resistance gene cassette. Exposure to vancomycin induces the expression of genes in this cassette, which encode enzymes that provide for an alternative PG biosynthesis pathway. In VanA-type resistance, these alternative pathway enzymes replace the D-Ala-D-Ala terminus of normal PG intermediates with D-Ala-D-Lac terminated intermediates, to which vancomycin cannot bind. While the general features of this resistance mechanism are well known, the details of the choreography between vancomycin exposure, vanA gene induction, and changes in the normal and alternative pathway intermediate levels have not been described previously. This study comprehensively explores how VREfm responds to vancomycin exposure at the mRNA and PG intermediate levels.
Collapse
|
3
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.*. Angew Chem Int Ed Engl 2021; 60:18694-18703. [PMID: 34009717 DOI: 10.1002/anie.202104528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/10/2022]
Abstract
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
Collapse
Affiliation(s)
- Anton P Tyurin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Maxim V Shuvalov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | | | - Eugene A Rogozhin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Y Zherebker
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Anna A Baranova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail V Biryukov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Igor A Prokhorenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | | | - Tatyana V Kravchenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Elena B Isakova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena G Gladkikh
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Aleksey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Valeriya V Kulyaeva
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Dmitry E Tsvetkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Alexander S Apt
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Konstantin B Majorov
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Svetlana S Efimova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Olga S Ostroumova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Genrikh S Katrukha
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olda A Lapchinskaya
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| |
Collapse
|
4
|
Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd. Appl Microbiol Biotechnol 2018; 102:2621-2633. [DOI: 10.1007/s00253-018-8748-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
|
5
|
Binda E, Carrano L, Marcone GL, Marinelli F. Extraction and Analysis of Peptidoglycan Cell Wall Precursors. Methods Mol Biol 2016; 1440:153-70. [PMID: 27311671 DOI: 10.1007/978-1-4939-3676-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Extraction and analysis by LC-MS of peptidoglycan precursors represent a valuable method to study antibiotic mode of action and resistance in bacteria. Here, we describe how to apply this method for: (1) testing the action of different classes of antibiotics inhibiting cell wall biosynthesis in Bacillus megaterium; (2) studying the mechanism of self-resistance in mycelial actinomycetes producing glycopeptide antibiotics.
Collapse
Affiliation(s)
- Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, Varese, 3-21100, Italy.,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano University of Insubria, Via Dunant, Varese, 3-21100, Italy
| | - Lùcia Carrano
- Fondazione Istituto Insubrico Ricerca per la Vita (F.I.I.R.V.), Via R. Lepetit 32, Gerenzano, 21100, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, Varese, 3-21100, Italy.,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano University of Insubria, Via Dunant, Varese, 3-21100, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, Varese, 3-21100, Italy. .,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano University of Insubria, Via Dunant, Varese, 3-21100, Italy.
| |
Collapse
|
6
|
Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent. BIOMED RESEARCH INTERNATIONAL 2015; 2015:284354. [PMID: 25699267 PMCID: PMC4324493 DOI: 10.1155/2015/284354] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022]
Abstract
Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as 67/68Ga-citrate or 18F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with 68Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by 68Gallium-radiolabeling. µPET/CT using 68Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. 68Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV = 1.3–2.4) > noninfected thighs (P = 0.322) > forearm muscles (P = 0.092) > background (P = 0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector.
Collapse
|
7
|
Kwon SY, Kwon HJ. The Possible Role of SCO3388, a tmrB-like Gene of Streptomyces coelicolor, in Germination and Stress Survival of Spores. ACTA ACUST UNITED AC 2013. [DOI: 10.3839/jabc.2013.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
9
|
Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E, Parenti F. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. ACTA ACUST UNITED AC 2008; 15:22-31. [PMID: 18215770 DOI: 10.1016/j.chembiol.2007.11.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 10/16/2007] [Accepted: 11/06/2007] [Indexed: 11/29/2022]
Abstract
Antibiotics blocking bacterial cell wall assembly (beta-lactams and glycopeptides) are facing a challenge from the progressive spread of resistant pathogens. Lantibiotics are promising candidates to alleviate this problem. Microbisporicin, the most potent antibacterial among known comparable lantibiotics, was discovered during a screening applied to uncommon actinomycetes. It is produced by Microbispora sp. as two similarly active and structurally related polypeptides (A1, 2246-Da and A2, 2230-Da) of 24 amino acids linked by 5 intramolecular thioether bridges. Microbisporicin contains two posttranslational modifications that have never been reported previously in lantibiotics: 5-chloro-trypthopan and mono- (in A2) or bis-hydroxylated (in A1) proline. Consistent with screening criteria, microbisporicin selectively blocks peptidoglycan biosynthesis, causing cytoplasmic UDP-linked precursor accumulation. Considering its spectrum of activity and its efficacy in vivo, microbisporicin represents a promising antibiotic to treat emerging infections.
Collapse
Affiliation(s)
- Franca Castiglione
- Vicuron Pharmaceuticals, Via R. Lepetit 34, 21040 Gerenzano, Varese, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This review is an attempt to bring together and critically evaluate the now-abundant but dispersed data concerning the lipid intermediates of the biosynthesis of bacterial peptidoglycan. Lipid I, lipid II, and their modified forms play a key role not only as the specific link between the intracellular synthesis of the peptidoglycan monomer unit and the extracytoplasmic polymerization reactions but also in the attachment of proteins to the bacterial cell wall and in the mechanisms of action of antibiotics with which they form specific complexes. The survey deals first with their detection, purification, structure, and preparation by chemical and enzymatic methods. The recent important advances in the study of transferases MraY and MurG, responsible for the formation of lipids I and II, are reported. Various modifications undergone by lipids I and II are described, especially those occurring in gram-positive organisms. The following section concerns the cellular location of the lipid intermediates and the translocation of lipid II across the cytoplasmic membrane. The great efforts made since 2000 in the study of the glycosyltransferases catalyzing the glycan chain formation with lipid II or analogues are analyzed in detail. Finally, examples of antibiotics forming complexes with the lipid intermediates are presented.
Collapse
|
11
|
Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:386-408. [PMID: 18266857 DOI: 10.1111/j.1574-6976.2007.00097.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acquisition of resistance to the two classes of antibiotics therapeutically used against Gram-positive bacteria, the glycopeptides and the beta-lactams, has revealed an unexpected flexibility in the peptidoglycan assembly pathway. Glycopeptides select for diversification of the fifth position of stem pentapeptides because replacement of D-Ala by D-lactate or D-Ser at this position prevents binding of the drugs to peptidoglycan precursors. The substitution is generally well tolerated by the classical D,D-transpeptidases belonging to the penicillin-binding protein family, except by low-affinity enzymes. Total elimination of the fifth residue by a D,D-carboxypeptidase requires a novel cross-linking enzyme able to process the resulting tetrapeptide stems. This enzyme, an L,D-transpeptidase, confers cross-resistance to beta-lactams and glycopeptides. Diversification of the side chain of the precursors, presumably in response to the selective pressure of peptidoglycan endopeptidases, is controlled by aminoacyl transferases of the Fem family that redirect specific aminoacyl-tRNAs from translation to peptidoglycan synthesis. Diversification of the side chains has been accompanied by a parallel divergent evolution of the substrate specificity of the L,D-transpeptidases, in contrast to the D,D-transpeptidases, which display an unexpected broad specificity. This review focuses on the role of antibiotics in selecting or counter-selecting diversification of the structure of peptidoglycan precursors and their mode of polymerization.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | |
Collapse
|
12
|
Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 2007; 32:208-33. [PMID: 18081839 DOI: 10.1111/j.1574-6976.2007.00089.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process involving many different steps taking place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner and outer sides of the cytoplasmic membrane (assembly and polymerization of the disaccharide-peptide monomer unit, respectively). This review summarizes the current knowledge on the membrane steps leading to the formation of the lipid II intermediate, i.e. the substrate of the polymerization reactions. It makes the point on past and recent data that have significantly contributed to the understanding of the biosynthesis of undecaprenyl phosphate, the carrier lipid required for the anchoring of the peptidoglycan hydrophilic units in the membrane, and to the characterization of the MraY and MurG enzymes which catalyze the successive transfers of the N-acetylmuramoyl-peptide and N-acetylglucosamine moieties onto the carrier lipid, respectively. Enzyme inhibitors and antibacterial compounds interfering with these essential metabolic steps and interesting targets are presented.
Collapse
Affiliation(s)
- Ahmed Bouhss
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Univ Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
13
|
Villet R, Fonvielle M, Busca P, Chemama M, Maillard AP, Hugonnet JE, Dubost L, Marie A, Josseaume N, Mesnage S, Mayer C, Valéry JM, Ethève-Quelquejeu M, Arthur M. Idiosyncratic features in tRNAs participating in bacterial cell wall synthesis. Nucleic Acids Res 2007; 35:6870-83. [PMID: 17932062 PMCID: PMC2175331 DOI: 10.1093/nar/gkm778] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The FemX(Wv) aminoacyl transferase of Weissella viridescens initiates the synthesis of the side chain of peptidoglycan precursors by transferring l-Ala from Ala-tRNA(Ala) to UDP-MurNAc-pentadepsipeptide. FemX(Wv) is an attractive target for the development of novel antibiotics, since the side chain is essential for the last cross-linking step of peptidoglycan synthesis. Here, we show that FemX(Wv) is highly specific for incorporation of l-Ala in vivo based on extensive analysis of the structure of peptidoglycan. Comparison of various natural and in vitro-transcribed tRNAs indicated that the specificity of FemX(Wv) depends mainly upon the sequence of the tRNA although additional specificity determinants may include post-transcriptional modifications and recognition of the esterified amino acid. Site-directed mutagenesis identified cytosines in the G1-C72 and G2-C71 base pairs of the acceptor stem as critical for FemX(Wv) activity in agreement with modeling of tRNA(Ala) in the catalytic cavity of the enzyme. In contrast, semi-synthesis of Ala-tRNA(Ala) harboring nucleotide substitutions in the G3-U70 wobble base pair showed that this main identity determinant of alanyl-tRNA synthetase is non-essential for FemX(Wv). The different modes of recognition of the acceptor stem indicate that specific inhibition of FemX(Wv) could be achieved by targeting the distal portion of tRNA(Ala) for the design of substrate analogues.
Collapse
Affiliation(s)
- Régis Villet
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Matthieu Fonvielle
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Patricia Busca
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Maryline Chemama
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Antoine P. Maillard
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Jean-Emmanuel Hugonnet
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Lionel Dubost
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Arul Marie
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Nathalie Josseaume
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Stéphane Mesnage
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Claudine Mayer
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Jean-Marc Valéry
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Mélanie Ethève-Quelquejeu
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
| | - Michel Arthur
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Pôle 4, Equipe 12, Paris, F-75006, Université Pierre et Marie Curie—Paris6, UMR S 872, Paris, F-75006, Université Paris Descartes, UMR S 872, Paris, F-75006, CNRS UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, Université Pierre et Marie Curie—Paris6, UMR 7613, Paris, F-75005, Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, Département Recherche Développement et Diversité Moléculaire, Paris, F-75005 and UMR5154,CNRS-MNHN, Paris, F-75005 France
- * To whom correspondence should be addressed. +33 01 43 25 00 33+33 01 43 25 68 12
| |
Collapse
|
14
|
Mainardi JL, Hugonnet JE, Rusconi F, Fourgeaud M, Dubost L, Moumi AN, Delfosse V, Mayer C, Gutmann L, Rice LB, Arthur M. Unexpected Inhibition of Peptidoglycan LD-Transpeptidase from Enterococcus faecium by the β-Lactam Imipenem. J Biol Chem 2007; 282:30414-22. [PMID: 17646161 DOI: 10.1074/jbc.m704286200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-lactam antibiotics mimic the D-alanyl(4)-D-alanine(5) extremity of peptidoglycan precursors and act as "suicide" substrates of the DD-transpeptidases that catalyze the last cross-linking step of peptidoglycan synthesis. We have previously shown that bypass of the dd-transpeptidases by the LD-transpeptidase of Enterococcus faecium (Ldt(fm)) leads to high level resistance to ampicillin. Ldt(fm) is specific for the L-lysyl(3)-D-alanine(4) bond of peptidoglycan precursors containing a tetrapeptide stem lacking D-alanine(5). This specificity was proposed to account for resistance, because the substrate of Ldt(fm) does not mimic beta-lactams in contrast to the D-alanyl(4)-D-alanine(5) extremity of pentapeptide stems used by the DD-transpeptidases. Here, we unexpectedly show that imipenem, a beta-lactam of the carbapenem class, totally inhibited Ldt(fm) at a low drug concentration that was sufficient to inhibit growth of the bacteria. Peptidoglycan cross-linking was also inhibited, indicating that Ldt(fm) is the in vivo target of imipenem. Stoichiometric and covalent modification of Ldt(fm) by imipenem was detected by mass spectrometry. The modification was mapped into the trypsin fragment of Ldt(fm) containing the catalytic Cys residue, and the Cys to Ala substitution prevented imipenem binding. The mass increment matched the mass of imipenem, indicating that inactivation of Ldt(fm) is likely to involve rupture of the beta-lactam ring and acylation of the catalytic Cys residue. Thus, the spectrum of activity of beta-lactams is not restricted to transpeptidases of the DD-specificity, as previously thought. Combination therapy with imipenem and ampicillin could therefore be active against E. faecium strains having the dual capacity to manufacture peptidoglycan with transpeptidases of the LD- and DD-specificities.
Collapse
|
15
|
Vasudevan P, Weaver A, Reichert ED, Linnstaedt SD, Popham DL. Spore cortex formation in Bacillus subtilis is regulated by accumulation of peptidoglycan precursors under the control of sigma K. Mol Microbiol 2007; 65:1582-94. [PMID: 17714441 DOI: 10.1111/j.1365-2958.2007.05896.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bacterial endospore cortex peptidoglycan is synthesized between the double membranes of the developing forespore and is required for attainment of spore dehydration and dormancy. The Bacillus subtilis spoVB, spoVD and spoVE gene products are expressed in the mother cell compartment early during sporulation and play roles in cortex synthesis. Here we show that mutations in these genes block synthesis of cortex peptidoglycan and cause accumulation of peptidoglycan precursors, indicating a defect at the earliest steps of peptidoglycan polymerization. Loss of spoIV gene products involved in activation of later, sigma(K)-dependent mother cell gene expression results in decreased synthesis of cortex peptidoglycan, even in the presence of the SpoV proteins that were synthesized earlier, apparently due to decreased precursor production. Data show that activation of sigma(K) is required for increased synthesis of the soluble peptidoglycan precursors, and Western blot analyses show that increases in the precursor synthesis enzymes MurAA, MurB, MurC and MurF are dependent on sigma(K) activation. Overall, our results indicate that a decrease in peptidoglycan precursor synthesis during early sporulation, followed by renewed precursor synthesis upon sigma(K) activation, serves as a regulatory mechanism for the timing of spore cortex synthesis.
Collapse
Affiliation(s)
- Pradeep Vasudevan
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall MC0406, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
16
|
Bellais S, Arthur M, Dubost L, Hugonnet JE, Gutmann L, van Heijenoort J, Legrand R, Brouard JP, Rice L, Mainardi JL. Aslfm, the D-aspartate ligase responsible for the addition of D-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. J Biol Chem 2006; 281:11586-94. [PMID: 16510449 DOI: 10.1074/jbc.m600114200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-aspartate ligase has remained the last unidentified peptide bond-forming enzyme in the peptidoglycan assembly pathway of Gram-positive bacteria. Here we show that a two-gene cluster of Enterococcus faecium encodes aspartate racemase (Racfm) and ligase (Aslfm) for incorporation of D-Asp into the side chain of the peptidoglycan precursor. Aslfm was identified as a new member of the ATP-grasp protein superfamily, which includes a diverse set of enzymes catalyzing ATP-dependent carboxylate-amine ligation reactions. Aslfm specifically ligated the beta-carboxylate of D-Asp to the epsilon-amino group of L-Lys in the nucleotide precursor UDP-N-acetylmuramyl-pentapeptide. D-iso-asparagine was not a substrate of Aslfm, indicating that the presence of this amino acid in the peptidoglycan of E. faecium results from amidation of the alpha-carboxyl of D-Asp after its addition to the precursor. Heterospecific expression of the genes encoding Racfm and Aslfm in Enterococcus faecalis led to production of stem peptides substituted by D-Asp instead of L-Ala2, providing evidence for the in vivo specificity and function of these enzymes. Strikingly, sequencing of the cross-bridges revealed that substitution of L-Ala2 by D-Asp is tolerated by the d,d-transpeptidase activity of the penicillin-binding proteins both in the acceptor and in the donor substrates. The Aslfm ligase appears as an attractive target for the development of narrow spectrum antibiotics active against multiresistant E. faecium.
Collapse
|
17
|
Mainardi JL, Fourgeaud M, Hugonnet JE, Dubost L, Brouard JP, Ouazzani J, Rice LB, Gutmann L, Arthur M. A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J Biol Chem 2005; 280:38146-52. [PMID: 16144833 DOI: 10.1074/jbc.m507384200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-lactam antibiotics remain the most commonly used to treat severe infections. Because of structural similarity between the beta-lactam ring and the d-alanyl(4)-d-alanine(5) extremity of bacterial cell wall precursors, the drugs act as suicide substrates of the dd-transpeptidases that catalyze the last cross-linking step of cell wall assembly. Here, we show that this mechanism of action can be defeated by a novel type of transpeptidase identified for the first time by reverse genetics in abeta-lactam-resistant mutant of Enterococcus faecium. The enzyme, Ldt(fm), catalyzes in vitro the cross-linking of peptidoglycan subunits in a beta-lactam-insensitive ld-transpeptidation reaction. The specificity of Ldt(fm) for the l-lysyl(3)-d-alanine(4) peptide bond of tetrapeptide donors accounts for resistance because the substrate does not mimic beta-lactams in contrast to d-alanyl(4)-d-alanine(5) in the pentapeptide donors required for dd-transpeptidation. Ldt(fm) homologues are encountered sporadically among taxonomically distant bacteria, indicating that ld-transpeptidase-mediated resistance may emerge in various pathogens.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM, U655-Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick DC. Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 2005; 187:2747-57. [PMID: 15805521 PMCID: PMC1070386 DOI: 10.1128/jb.187.8.2747-2757.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural analysis of compounds identified as lipid I and II from Mycobacterium smegmatis demonstrated that the lipid moiety is decaprenyl phosphate; thus, M. smegmatis is the first bacterium reported to utilize a prenyl phosphate other than undecaprenyl phosphate as the lipid carrier involved in peptidoglycan synthesis. In addition, mass spectrometry showed that the muropeptides from lipid I are predominantly N-acetylmuramyl-L-alanine-D-glutamate-meso-diaminopimelic acid-D-alanyl-D-alanine, whereas those isolated from lipid II form an unexpectedly complex mixture in which the muramyl residue and the pentapeptide are modified singly and in combination. The muramyl residue is present as N-acetylmuramic acid, N-glycolylmuramic acid, and muramic acid. The carboxylic functions of the peptide side-chains of lipid II showed three types of modification, with the dominant one being amidation. The preferred site for amidation is the free carboxyl group of the meso-diaminopimelic acid residue. Diamidated species were also observed. The carboxylic function of the terminal D-alanine of some molecules is methylated, as are all three carboxylic acid functions of other molecules. This study represents the first structural analysis of mycobacterial lipid I and II and the first report of extensive modifications of these molecules. The observation that lipid I was unmodified strongly suggests that the lipid II intermediates of M. smegmatis are substrates for a variety of enzymes that introduce modifications to the sugar and amino acid residues prior to the synthesis of peptidoglycan.
Collapse
Affiliation(s)
- Sebabrata Mahapatra
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mahapatra S, Scherman H, Brennan PJ, Crick DC. N Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol 2005; 187:2341-7. [PMID: 15774877 PMCID: PMC1065221 DOI: 10.1128/jb.187.7.2341-2347.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidoglycan of Mycobacterium spp. reportedly has some unique features, including the occurrence of N-glycolylmuramic rather than N-acetylmuramic acid. However, very little is known of the actual biosynthesis of mycobacterial peptidoglycan, including the extent and origin of N glycolylation. In the present work, we have isolated and analyzed muramic acid residues located in peptidoglycan and UDP-linked precursors of peptidoglycan from Mycobacterium tuberculosis and Mycobacterium smegmatis. The muramic acid residues isolated from the mature peptidoglycan of both species were shown to be a mixture of the N-acetyl and N-glycolyl derivatives, not solely the N-glycolylated product as generally reported. The isolated UDP-linked N-acylmuramyl-pentapeptide precursor molecules also contain a mixture of N-acetyl and N-glycolyl muramyl residues in apparent contrast to previous observations in which the precursors isolated after treatment with d-cycloserine consisted entirely of N-glycolyl muropeptides. However, nucleotide-linked peptidoglycan precursors isolated from M. tuberculosis treated with d-cycloserine contained only N-glycolylmuramyl-tripeptide precursors, whereas those from similarly treated M. smegmatis consisted of a mixture of N-glycolylated and N-acetylated residues. The full pentapeptide intermediate, isolated following vancomycin treatment of M. smegmatis, consisted of the N-glycolyl derivative only, whereas the corresponding M. tuberculosis intermediate was a mixture of both the N-glycolyl and N-acetyl products. Thus, treatment with vancomycin and d-cylcoserine not only caused an accumulation of nucleotide-linked intermediate compounds but also altered their glycolylation status, possibly by altering the normal equilibrium maintained by de novo biosynthesis and peptidoglycan recycling.
Collapse
Affiliation(s)
- Sebabrata Mahapatra
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
20
|
Price NP, Momany FA. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 2005; 15:29R-42R. [PMID: 15843595 DOI: 10.1093/glycob/cwi065] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein N-glycosylation in eukaryotes and peptidoglycan biosynthesis in bacteria are both initiated by the transfer of a D-N-acetylhexosamine 1-phosphate to a membrane-bound polyprenol phosphate. These reactions are catalyzed by a family of transmembrane proteins known as the UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-phosphate transferases. The sole eukaryotic member of this family, the d-N-acetylglucosamine 1-phosphate transferase (GPT), is specific for UDP-GlcNAc as the donor substrate and uses dolichol phosphate as the membrane-bound acceptor. The bacterial translocases, MraY, WecA, and WbpL, utilize undecaprenol phosphate as the acceptor substrate, but differ in their specificity for the UDP-sugar donor substrate. The structural basis of this sugar nucleotide specificity is uncertain. However, potential carbohydrate recognition (CR) domains have been identified within the C-terminal cytoplasmic loops of MraY, WecA, and WbpL that are highly conserved in family members with the same UDP-N-acetylhexosamine specificity. This review focuses on the catalytic mechanism and substrate specificity of these bacterial UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-P transferases and may provide insights for the development of selective inhibitors of cell wall biosynthesis.
Collapse
Affiliation(s)
- Neil P Price
- USDA-ARS-NCAUR, Bioproducts and Biocatalysis Research Unit, Peoria, IL, USA.
| | | |
Collapse
|
21
|
Kramer NE, Smid EJ, Kok J, de Kruijff B, Kuipers OP, Breukink E. Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. FEMS Microbiol Lett 2004; 239:157-61. [PMID: 15451114 DOI: 10.1016/j.femsle.2004.08.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/19/2004] [Accepted: 08/24/2004] [Indexed: 11/18/2022] Open
Abstract
Lipid II is essential for nisin-mediated pore formation at nano-molar concentrations. We tested whether nisin resistance could result from different Lipid II levels, by comparing the maximal Lipid II pool in Micrococcus flavus (sensitive) and Listeria monocytogenes (relatively insensitive) and their nisin-resistant variants, with a newly developed method. No correlation was observed between the maximal Lipid II pool and nisin sensitivity, as was further corroborated by using spheroplasts of nisin-resistant and wild-type strains of M. flavus, which were equally sensitive to nisin.
Collapse
Affiliation(s)
- Naomi E Kramer
- NIZO Food Research, P.O. Box 20, 6710 BA, Ede, Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
David V, Bozdogan B, Mainardi JL, Legrand R, Gutmann L, Leclercq R. Mechanism of intrinsic resistance to vancomycin in Clostridium innocuum NCIB 10674. J Bacteriol 2004; 186:3415-22. [PMID: 15150227 PMCID: PMC415764 DOI: 10.1128/jb.186.11.3415-3422.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the basis for intrinsic resistance to low levels of vancomycin in Clostridium innocuum NCIB 10674 (MIC = 8 microg/ml). Analysis by high-pressure liquid chromatography (HPLC) and mass spectrometry of peptidoglycan nucleotide precursors pools revealed the presence of two types of UDP-MurNac-pentapeptide precursors constitutively produced, an UDP-MurNAc-pentapeptide with a serine at the C terminus which represented 93% of the pool and an UDP-MurNAc-pentapeptide with an alanine at the C terminus which represented the rest of the pool. C. innocuum cell wall muropeptides containing pentapeptide[Ser], either dialanine substituted on the epsilon amino group of lysine or not, were identified and represented about 10% of the monomers while only 1% of pentapeptide[D-Ala] monomers were found. The sequence of a 2,465-bp chromosomal fragment from C. innocuum was determined and revealed the presence of ddl(c. innocuum) and C. innocuum racemase genes putatively encoding homologues of D-Ala:D-X ligases and amino acid racemases, respectively. Analysis of the pool of precursors of Enterococcus faecalis JH2-2, containing cloned ddl(c. innocuum) and C. innocuum racemase genes showed in addition to the UDP-MurNAc-pentapeptide[D-Ala], the presence of an UDP-MurNAc-pentapeptide[D-Ser] precursor. However, the expression of low-level resistance to vancomycin was observed only when both genes were cloned in E. faecalis JH2-2 together with the vanXYc gene from Enterococcus gallinarum BM4174 which encodes a d,d-peptidase which eliminates preferentially the high affinity vancomycin UDP-MurNAc-pentapeptide [D-Ala] precursors produced by the host. We conclude that resistance to vancomycin in C. innocuum NCIB 10674 was related to the presence of the two chromosomal ddl(c. innocuum) and C. innocuum racemase genes allowing the synthesis of a peptidoglycan precursor terminating in serine with low affinity for vancomycin.
Collapse
Affiliation(s)
- Véronique David
- Service de Bactériologie-Virologie, Hôpital Henri Mondor-Université Paris XII, Crétil, France
| | | | | | | | | | | |
Collapse
|
23
|
McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W. Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 2003; 66:261-84. [PMID: 12491539 DOI: 10.1002/bip.10296] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The peptide antibiotic ramoplanin factor A2 is a promising clinical candidate for treatment of Gram-positive bacterial infections that are resistant to antibiotics such as glycopeptides, macrolides, and penicillins. Since its discovery in 1984, no clinical or laboratory-generated resistance to this antibiotic has been reported. The mechanism of action of ramoplanin involves sequestration of peptidoglycan biosynthesis Lipid intermediates, thus physically occluding these substrates from proper utilization by the late-stage peptidoglycan biosynthesis enzymes MurG and the transglycosylases (TGases). Ramoplanin is structurally related to two cell wall active lipodepsipeptide antibiotics, janiemycin, and enduracidin, and is functionally related to members of the lantibiotic class of antimicrobial peptides (mersacidin, actagardine, nisin, and epidermin) and glycopeptide antibiotics (vancomycin and teicoplanin). Peptidomimetic chemotherapeutics derived from the ramoplanin sequence may find future use as antibiotics against vancomycin-resistant Enterococcus faecium (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and related pathogens. Here we review the chemistry and biology of the ramoplanins including its discovery, structure elucidation, biosynthesis, antimicrobial activity, mechanism of action, and total synthesis.
Collapse
Affiliation(s)
- Dewey G McCafferty
- Department of Biochemistry and Biophysics and the Johnson Research Foundation, The University of Pennsylvania School of Medicine, Philadelphia 19104-6059, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Mainardi JL, Morel V, Fourgeaud M, Cremniter J, Blanot D, Legrand R, Frehel C, Arthur M, Van Heijenoort J, Gutmann L. Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. J Biol Chem 2002; 277:35801-7. [PMID: 12077139 DOI: 10.1074/jbc.m204319200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The d,d-transpeptidase activity of high molecular weight penicillin-binding proteins (PBPs) is essential to maintain cell wall integrity as it catalyzes the final cross-linking step of bacterial peptidoglycan synthesis. We investigated a novel beta-lactam resistance mechanism involving by-pass of the essential PBPs by l,d-transpeptidation in Enterococcus faecium. Determination of the peptidoglycan structure by reverse phase high performance liquid chromatography coupled to mass spectrometry revealed that stepwise selection for ampicillin resistance led to the gradual replacement of the usual cross-links generated by the PBPs (d-Ala(4) --> d-Asx-Lys(3)) by cross-links resulting from l,d-transpeptidation (l-Lys(3) --> d-Asx-Lys(3)). This was associated with no modification of the level of production of the PBPs or of their affinity for beta-lactams, indicating that altered PBP activity was not required for ampicillin resistance. A beta-lactam-insensitive l,d-transpeptidase was detected in membrane preparations of the parental susceptible strain. Acquisition of resistance was not because of variation of this activity. Instead, selection led to production of a beta-lactam-insensitive d,d-carboxypeptidase that cleaved the C-terminal d-Ala residue of pentapeptide stems in vitro and caused massive accumulation of cytoplasmic precursors containing a tetrapeptide stem in vivo. The parallel dramatic increase in the proportion of l-Lys(3) --> d-Asx-Lys(3) cross-links showed that the enzyme was activating the resistance pathway by generating the substrate for the l,d-transpeptidase.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM EMI-U 0004 Laboratoire de Recherche Moléculaire sur les Antibiotiques, UFR Broussais-Hôtel Dieu, Université Paris VI, 75270 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ruzin A, Severin A, Ritacco F, Tabei K, Singh G, Bradford PA, Siegel MM, Projan SJ, Shlaes DM. Further evidence that a cell wall precursor [C(55)-MurNAc-(peptide)-GlcNAc] serves as an acceptor in a sorting reaction. J Bacteriol 2002; 184:2141-7. [PMID: 11914345 PMCID: PMC134952 DOI: 10.1128/jb.184.8.2141-2147.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies suggested that a Gly-containing branch of cell wall precursor [C(55)-MurNAc-(peptide)-GlcNAc], which is often referred to as lipid II, might serve as a nucleophilic acceptor in sortase-catalyzed anchoring of surface proteins in Staphylococcus aureus. To test this hypothesis, we first simplified the procedure for in vitro biosynthesis of Gly-containing lipid II by using branched UDP-MurNAc-hexapeptide isolated from the cytoplasm of Streptomyces spp. Second, we designed a thin-layer chromatography-based assay in which the mobility of branched but not linear lipid II is shifted in the presence of both sortase and LPSTG-containing peptide. These results and those of additional experiments presented in this study further suggest that lipid II indeed serves as a natural substrate in a sorting reaction.
Collapse
Affiliation(s)
- Alexey Ruzin
- Department of Infectious Disease, Wyeth-Ayerst Research, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bouhss A, Josseaume N, Allanic D, Crouvoisier M, Gutmann L, Mainardi JL, Mengin-Lecreulx D, van Heijenoort J, Arthur M. Identification of the UDP-MurNAc-pentapeptide:L-alanine ligase for synthesis of branched peptidoglycan precursors in Enterococcus faecalis. J Bacteriol 2001; 183:5122-7. [PMID: 11489865 PMCID: PMC95388 DOI: 10.1128/jb.183.17.5122-5127.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many species of gram-positive bacteria produce branched peptidoglycan precursors resulting from the transfer of various L-amino acids or glycine from amino acyl-tRNA to the epsilon-amino group of L-lysine. The UDP-MurNAc-pentapeptide:L-alanine ligase and alanyl-tRNA synthetase genes from Enterococcus faecalis were identified, cloned, and overexpressed in Escherichia coli. The purified enzymes were necessary and sufficient for tRNA-dependent addition of L-alanine to UDP-MurNAc-pentapeptide in vitro. The ligase belonged to the Fem family of proteins, which were initially identified genetically as factors essential for methicillin resistance in Staphylococcus aureus.
Collapse
Affiliation(s)
- A Bouhss
- INSERM E0004-LRMA, UFR Broussais-Hôtel Dieu, Université Paris VI, 75270 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Gram-positive cocci still predominate as a cause of nosocomial- and community-acquired infections. These organisms frequently reveal a high natural, intrinsic resistance to antimicrobials. Additionally, these bacteria are able to acquire resistance to frequently used drugs rapidly through selective pressure of the environment and via the genetic evolution of bacteria. The wide application of antimicrobials in medical and veterinary practice, usage of antibiotics in agriculture and common usage of antiseptics and disinfectants result in selective pressure. The use of antibiotics directly selects resistant variants to different antibiotics or disinfectants. The same genetic element (e.g. qac or smr) conferring resistance to some disinfectants are often present on the same plasmid conferring resistance to antibiotics. Selection of resistant variants occurs most frequently in the hospital environment. Staphylococcus aureus and enterococci are the most commonly isolated bacteria causing nosocomial infections. Among those giving therapeutic problems are methicillin-resistant staphylococci and vancomycin-resistant enterococci. Resistance to high levels of aminoglycosides or penicillins among hospital enterococcal strains can completely abolish synergism of the drugs. In these cases glycopeptides will be the drugs of choice in the treatment of serious infections. Recently S. aureus strains with decreased susceptibility to vancomycin has appeared. A mechanism for this elevated resistance, although intensively investigated, still remains unknown.
Collapse
Affiliation(s)
- J Jeljaszewicz
- National Institute of Hygiene, Medical University of Warsaw, 24 Chocimska, 00-791 Warsaw, Poland
| | | | | |
Collapse
|
28
|
Baizman ER, Branstrom AA, Longley CB, Allanson N, Sofia MJ, Gange D, Goldman RC. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3129-3140. [PMID: 11101671 DOI: 10.1099/00221287-146-12-3129] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Moenomycin is a natural product glycolipid that inhibits the growth of a broad spectrum of Gram-positive bacteria. In Escherichia coli, moenomycin inhibits peptidoglycan synthesis at the transglycosylation stage, causes accumulation of cell-wall intermediates, and leads to lysis and cell death. However, unlike Esc. coli, where 5-6 log units of killing are observed, 0-2 log units of killing occurred when Gram-positive bacteria were treated with similar multiples of the MIC. In addition, bulk peptidoglycan synthesis in intact Gram-positive cells was resistant to the effects of moenomycin. In contrast, synthetic disaccharides based on the moenomycin disaccharide core structure were identified that were bactericidal to Gram-positive bacteria, inhibited cell-wall synthesis in intact cells, and were active on both sensitive and vancomycin-resistant enterococci. These disaccharide analogues do not inhibit the formation of N:-acetylglucosamine-ss-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II), but do inhibit the polymerization of lipid II into peptidoglycan in Esc. coli. In addition, cell growth was required for bactericidal activity. The data indicate that synthetic disaccharide analogues of moenomycin inhibit cell-wall synthesis at the transglycosylation stage, and that their activity on Gram-positive bacteria differs from moenomycin due to differential targeting of the transglycosylation process. Inhibition of the transglycosylation process represents a promising approach to the design of new antibacterial agents active on drug-resistant bacteria.
Collapse
Affiliation(s)
- Eugene R Baizman
- Advanced Medicine East Inc., 8 Clarke Drive, Cranbury, NJ 08512, USA1
| | | | | | - Nigel Allanson
- Advanced Medicine East Inc., 8 Clarke Drive, Cranbury, NJ 08512, USA1
| | - Michael J Sofia
- Advanced Medicine East Inc., 8 Clarke Drive, Cranbury, NJ 08512, USA1
| | - David Gange
- Advanced Medicine East Inc., 8 Clarke Drive, Cranbury, NJ 08512, USA1
| | - Robert C Goldman
- Advanced Medicine East Inc., 8 Clarke Drive, Cranbury, NJ 08512, USA1
| |
Collapse
|
29
|
Goldman RC, Baizman ER, Longley CB, Branstrom AA. Chlorobiphenyl-desleucyl-vancomycin inhibits the transglycosylation process required for peptidoglycan synthesis in bacteria in the absence of dipeptide binding. FEMS Microbiol Lett 2000; 183:209-14. [PMID: 10675585 DOI: 10.1111/j.1574-6968.2000.tb08959.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Novel glycopeptide analogs are known that have activity on vancomycin resistant enterococci despite the fact that the primary site for drug interaction, D-ala-D-ala, is replaced with D-ala-D-lactate. The mechanism of action of these compounds may involve dimerization and/or membrane binding, thus enhancing interaction with D-ala-D-lactate, or a direct interaction with the transglycosylase enzymes involved in peptidoglycan polymerization. We evaluated the ability of vancomycin (V), desleucyl-vancomycin (desleucyl-V), chlorobiphenyl-vancomycin (CBP-V), and chlorobiphenyl-desleucyl-vancomycin (CBP-desleucyl-V) to inhibit (a) peptidoglycan synthesis in vitro using UDP-muramyl-pentapeptide and UDP-muramyl-tetrapeptide substrates and (b) growth and peptidoglycan synthesis in vancomycin resistant enterococci. Compared to V or CBP-V, CBP-desleucyl-V retained equivalent potency in these assays, whereas desleucyl-V was inactive. In addition, CBP-desleucyl-V caused accumulation of N-acetylglucosamine-beta-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II). These data show that CBP-desleucyl-V inhibits peptidoglycan synthesis at the transglycosylation stage in the absence of binding to dipeptide.
Collapse
Affiliation(s)
- R C Goldman
- Incara Research Laboratories, 8 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| | | | | | | |
Collapse
|
30
|
Pfeltz RF, Singh VK, Schmidt JL, Batten MA, Baranyk CS, Nadakavukaren MJ, Jayaswal RK, Wilkinson BJ. Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 2000; 44:294-303. [PMID: 10639353 PMCID: PMC89674 DOI: 10.1128/aac.44.2.294-303.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of 12 Staphylococcus aureus strains of various genetic backgrounds, methicillin resistance levels, and autolytic activities were subjected to selection for the glycopeptide-intermediate S. aureus (GISA) susceptibility phenotype on increasing concentrations of vancomycin. Six strains acquired the phenotype rapidly, two did so slowly, and four failed to do so. The vancomycin MICs for the GISA strains ranged from 4 to 16 microg/ml, were stable to 20 nonselective passages, and expressed resistance homogeneously. Neither ease of acquisition of the GISA phenotype nor the MIC attained correlated with methicillin resistance hetero- versus homogeneity or autolytic deficiency or sufficiency. Oxacillin MICs were generally unchanged between parent and GISA strains, although the mec members of both isogenic methicillin-susceptible and methicillin-resistant pairs acquired the GISA phenotype more rapidly and to higher MICs than did their susceptible counterparts. Transmission electron microscopy revealed that the GISA strains appeared normal in the absence of vancomycin but had thickened and diffuse cell walls when grown with vancomycin at one-half the MIC. Common features among GISAs were reduced doubling times, decreased lysostaphin susceptibilities, and reduced whole-cell and zymographic autolytic activities in the absence of vancomycin. This, with surface hydrophobicity differences, indicated that even in the absence of vancomycin the GISA cell walls differed from those of the parents. Autolytic activities were further reduced by the inclusion of vancomycin in whole-cell and zymographic studies. The six least vancomycin-susceptible GISA strains exhibited an increased capacity to remove vancomycin from the medium versus their parent lines. This study suggests that while some elements of the GISA phenotype are strain specific, many are common to the phenotype although their expression is influenced by genetic background. GISA strains with similar glycopeptide MICs may express individual components of the phenotype to different extents.
Collapse
Affiliation(s)
- R F Pfeltz
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bouhss A, Mengin-Lecreulx D, Le Beller D, Van Heijenoort J. Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol Microbiol 1999; 34:576-85. [PMID: 10564498 DOI: 10.1046/j.1365-2958.1999.01623.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two-dimensional membrane topology of the Escherichia coli and Staphylococcus aureus MraY transferases, which catalyse the formation of the first lipid intermediate of peptidoglycan synthesis, was established using the beta-lactamase fusion system. All 28 constructed mraY-blaM fusions produced hybrid proteins. Analysis of the ampicillin resistance of the strains with hybrids led to a common topological model possessing 10 transmembrane segments, five cytoplasmic domains and six periplasmic domains including the N- and C-terminal ends. The agreement between the topologies of E. coli and S. aureus, their agreement to a fair extent with predicted models and a number of features arising from the comparative analysis of 25 orthologue sequences strongly suggested the validity of the model for all eubacterial MraYs. The primary structure of the 10 transmembrane segments diverged among orthologues, but they retained their hydrophobicity, number and size. The similarity of the sequences and distribution of the five cytoplasmic domains in both models, as well as their conservation among the MraY orthologues, clearly suggested their possible involvement in substrate recognition and in the catalytic process. Complementation tests showed that only fusions with untruncated mraY restored growth. It was noteworthy that S. aureus MraY was functional in E. coli. An increased MraY transferase activity was observed only with the untruncated hybrids from both organisms.
Collapse
Affiliation(s)
- A Bouhss
- Biochimie Structurale et Cellulaire, CNRS, Bâtiment 430, Université Paris-Sud, F-91405, Orsay, France
| | | | | | | |
Collapse
|
32
|
Arthur M, Depardieu F, Cabanié L, Reynolds P, Courvalin P. Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci. Mol Microbiol 1998; 30:819-30. [PMID: 10094630 DOI: 10.1046/j.1365-2958.1998.01114.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transposon Tn 1546 confers resistance to glycopeptide antibiotics in enterococci and encodes two D,D-peptidases (VanX and VanY) in addition to the enzymes for the synthesis of D-alanyl-D-lactate (D-Ala-D-Lac). VanY was produced in the baculovirus expression system and purified as a proteolytic fragment that lacked the putative N-terminal membrane anchor of the protein. The enzyme was a Zn2+-dependent D,D-carboxypeptidase that cleaved the C-terminal residue of peptidoglycan precursors ending in R-D-Ala-D-Ala or R-D-Ala-D-Lac but not the dipeptide D-Ala-D-Ala. The specificity constants kcat/Km were 17- to 67-fold higher for substrates ending in the R-D-Ala-D-Ala target of glycopeptides. In Enterococcus faecalis, VanY was present in membrane and cytoplasmic fractions, produced UDP-MurNAc-tetrapeptide from cytoplasmic peptidoglycan precursors and was required for high-level glycopeptide resistance in a medium supplemented with D-Ala. The enzyme could not replace the VanX D,D-dipeptidase for the expression of glycopeptide resistance but a G237D substitution in the host D-Ala:D-Ala ligase restored resistance in a vanX null mutant. Deletion of the membrane anchor of VanY led to an active D,D-carboxypeptidase exclusively located in the cytoplasmic fraction that did not contribute to glycopeptide resistance in a D-Ala-containing medium. Thus, VanX and VanY had non-overlapping functions involving the hydrolysis of D-Ala-D-Ala and the removal of D-Ala from membrane-bound lipid intermediates respectively.
Collapse
Affiliation(s)
- M Arthur
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|