1
|
Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose. Metab Eng 2024; 83:193-205. [PMID: 38631458 DOI: 10.1016/j.ymben.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different β-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the β-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.
Collapse
Affiliation(s)
- Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA.
| | - Trevor Croft
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lauren R Magnusson
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Luis H Reyes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA; Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Xiaowen Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Emily J Miller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Danielle M Riley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Sunnyjoy Dupuis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Kathrin A Laramore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lisa M Keller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Dirk Winkelman
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| |
Collapse
|
2
|
Wang X, Nong S, Li J, Liu Y, Wu Q, Huang Z, Xu B, Ding J. Biochemical characterization of an acetylesterase from Bacillus subtilis and its application for 7-aminocephalosporanic acid deacetylation. Front Microbiol 2023; 14:1164815. [PMID: 37206334 PMCID: PMC10189120 DOI: 10.3389/fmicb.2023.1164815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
Deacetyl-7-aminocephalosporanic acid (D-7-ACA), which could be converted from 7-aminocephalosporanic acid (7-ACA), is a crucial starting material that is used for synthesizing industrial semisynthetic β-lactam antibiotics. Enzymes involved in the conversion from 7-ACA to D-7-ACA present critical resources in the pharmaceutical industry. In the present study, a putative acetylesterase, EstSJ, identified from Bacillus subtilis KATMIRA1933, was first heterologously expressed in Escherichia coli BL21(DE3) cells and biochemically characterized. EstSJ belongs to carbohydrate esterase family 12 and is active on short-chain acyl esters from p-NPC2 to p-NPC6. Multiple sequence alignments showed that EstSJ was also an SGNH family esterase with a typical GDS(X) motif at its N-terminal end and a catalytic triad composed of Ser186-Asp354-His357. The purified EstSJ displayed the highest specific activity of 1,783.52 U mg-1 at 30°C and pH 8.0, and was stable within the pH range of 5.0-11.0. EstSJ can deacetylate the C3' acetyl group of 7-ACA to generate D-7-ACA, and the deacetylation activity was 4.50 U mg-1. Based on the structural and molecular docking with 7-ACA, the catalytic active sites (Ser186-Asp354-His357) together with four substrate-binding residues (Asn259, Arg295, Thr355, and Leu356) of EstSJ are revealed. This study provided a promising 7-ACA deacetylase candidate that could be applied to produce D-7-ACA from 7-ACA in the pharmaceutical industry.
Collapse
|
3
|
Embaby AM, Mahmoud HE. Recombinant acetylxylan esterase of Halalkalibacterium halodurans NAH-Egypt: molecular and biochemical study. AMB Express 2022; 12:135. [DOI: 10.1186/s13568-022-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAcetylxylan esterase plays a crucial role in xylan hydrolysis as the acetyl side-groups restrict endoxylanase action by stearic hindrance. In this study, an acetylxylan esterase (AXE-HAS10: 960 bp & 319 a.a) putative ORF from Halalkalibacterium halodurans NAH-Egypt was extensively studied through heterologous overexpression in Escherichia coli, biochemical characterization, and structural modeling. The AXE-HAS10 tertiary structure was predicted by the Local Meta Threading Server. AXE-HAS10 belongs to the carbohydrate esterase Family 7. Purified to homogeneity AXE-HAS10 showed specific activity (36.99 U/mg), fold purification (11.42), and molecular mass (41.39 kDa). AXE-HAS10 showed optimal pH (8.5) and temperature (40 oC). After 15 h of incubation at pH 7.0–9.0, AXE-HAS10 maintained 100% activity. After 120 min at 35 and 40 oC, the retained activity was 80 and 50%, respectively. At 10 mM Mn2+, Fe3+, K+, and Ca2+ after 30 min, retained activity was 329 ± 15, 212 ± 5.2, 123 ± 1.4, and 120 ± 3.0%, respectively. After 30 min of preincubation with triton x-100, SDS, and CTAB at 0.1% (v/v), the retained activity was 150 ± 19, 88 ± 4, and 82 ± 7%, respectively. At 6.0 M NaCl after 30 min, retained activity was 58%. A 1.44-fold enhancement of beechwood xylan hydrolysis was achieved by AXE-HAS10 and Penicillium chrysogenum DSM105774 β-xylanase concurrently. Present data underpins AXE-HAS10 as a promising AXE for industrial exploitation.
Collapse
|
4
|
Ding J, Zhou Y, Zhu H, Deng M, Gao Y, Yang Y, Huang Z. Characterization of EstZY: A new acetylesterase with 7-aminocephalosporanic acid deacetylase activity from Alicyclobacillus tengchongensis. Int J Biol Macromol 2020; 148:333-341. [DOI: 10.1016/j.ijbiomac.2020.01.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 02/03/2023]
|
5
|
Identification and characterization of an acetyl esterase from Paenibacillus sp. XW-6-66 and its novel function in 7-aminocephalosporanic acid deacetylation. Biotechnol Lett 2019; 41:1059-1065. [PMID: 31302814 DOI: 10.1007/s10529-019-02709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To obtain a new acetyl esterase from Paenibacillus sp. XW-6-66 and apply the enzyme to 7-aminocephalosporanic acid (7-ACA) deacetylation. RESULTS The acetyl esterase AesZY was identified from Paenibacillus sp. XW-6-66, and its enzymatic properties were investigated. With the putative catalytic triad Ser114-Asp203-His235, AesZY belongs to the Acetyl esterase (Aes) family which is included in the α/β hydrolase superfamily and contains the consensus Gly-X-Ser-X-Gly motif. The maximum activity of AesZY was detected at pH 8.0 and 40 °C. AesZY was stable at different pH values ranging from 5.0 to 12.0, and was tolerant to several metal ions. Furthermore, the deacetylation activity of AesZY toward 7-ACA was approximately 7.5 U/mg, and the Kcat/Km value was 2.04 s-1 mM-1. CONCLUSIONS Our results demonstrate the characterization of a new acetyl esterase belonging to the Aes family with potential biotechnological applications.
Collapse
|
6
|
Adesioye FA, Makhalanyane TP, Vikram S, Sewell BT, Schubert WD, Cowan DA. Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family. Appl Environ Microbiol 2018; 84:e02695-17. [PMID: 29453256 PMCID: PMC5881061 DOI: 10.1128/aem.02695-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/04/2023] Open
Abstract
A hot desert hypolith metagenomic DNA sequence data set was screened in silico for genes annotated as acetyl xylan esterases (AcXEs). One of the genes identified encoded an ∼36-kDa protein (Axe1NaM1). The synthesized gene was cloned and expressed, and the resulting protein was purified. NaM1 was optimally active at pH 8.5 and 30°C and functionally stable at salt concentrations of up to 5 M. The specific activity and catalytic efficiency were 488.9 U mg-1 and 3.26 × 106 M-1 s-1, respectively. The crystal structure of wild-type NaM1 was solved at a resolution of 2.03 Å, and a comparison with the structures and models of more thermostable carbohydrate esterase 7 (CE7) family enzymes and variants of NaM1 from a directed evolution experiment suggests that reduced side-chain volume of protein core residues is relevant to the thermal stability of NaM1. Surprisingly, a single point mutation (N96S) not only resulted in a simultaneous improvement in thermal stability and catalytic efficiency but also increased the acyl moiety substrate range of NaM1.IMPORTANCE AcXEs belong to nine carbohydrate esterase families (CE1 to CE7, CE12, and CE16), of which CE7 enzymes possess a unique and narrow specificity for acetylated substrates. All structurally characterized members of this family are moderately to highly thermostable. The crystal structure of a novel, mesophilic CE7 AcXE (Axe1NaM1), from a soil metagenome, provides a basis for comparisons with thermostable CE7 enzymes. Using error-prone PCR and site-directed mutagenesis, we enhanced both the stability and activity of the mesophilic AcXE. With comparative structural analyses, we have also identified possible thermal stability determinants. These are valuable for understanding the thermal stability of enzymes within this family and as a guide for future protein engineering of CE7 and other α/β hydrolase enzymes.
Collapse
Affiliation(s)
- Fiyinfoluwa A Adesioye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Bryan T Sewell
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Singh MK, Shivakumaraswamy S, Gummadi SN, Manoj N. Role of an N-terminal extension in stability and catalytic activity of a hyperthermostable α/β hydrolase fold esterase. Protein Eng Des Sel 2017; 30:559-570. [PMID: 28967962 DOI: 10.1093/protein/gzx049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The carbohydrate esterase family 7 (CE7) enzymes catalyze the deacetylation of acetyl esters of a broad range of alcohols and is unique in its activity towards cephalosporin C. The CE7 fold contains a conserved N-terminal extension that distinguishes it from the canonical α/β hydrolase fold. The hexameric quaternary structure indicates that the N-terminus may affect activity and specificity by controlling access of substrates to the buried active sites via an entrance tunnel. In this context, we characterized the catalytic parameters, conformation and thermal stability of two truncation variants lacking four and ten residues of the N-terminal region of the hyperthermostable Thermotoga maritima CE7 acetyl esterase (TmAcE). The truncations did not affect the secondary structure or the fold but modulated the oligomerization dynamics. A modest increase was observed in substrate specificity for acetylated xylose compared with acetylated glucose. A drastic reduction of ~30-40°C in the optimum temperature for activity of the variants indicated lower thermal stability. The loss of hyperthermostability appears to be an indirect effect associated with an increase in the conformational flexibility of an otherwise rigid neighboring loop containing a catalytic triad residue. The results suggest that the N-terminal extension was evolutionarily selected to preserve the stability of the enzyme.
Collapse
Affiliation(s)
- Mrityunjay K Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Santosh Shivakumaraswamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Singh MK, Manoj N. Structural role of a conserved active sitecisproline in theThermotoga maritimaacetyl esterase from the carbohydrate esterase family 7. Proteins 2017; 85:694-708. [DOI: 10.1002/prot.25249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Mrityunjay K. Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| |
Collapse
|
9
|
Mustafa G, Kousar S, Rajoka MI, Jamil A. Molecular cloning and comparative sequence analysis of fungal β-Xylosidases. AMB Express 2016; 6:30. [PMID: 27080227 PMCID: PMC5471287 DOI: 10.1186/s13568-016-0202-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023] Open
Abstract
Commercial scale degradation of hemicelluloses into easily accessible sugar residues is practically crucial in industrial as well as biochemical processes. Xylanolytic enzymes have a great number of possible applications in many biotechnological processes and therefore, these enzymes are continuously attracting the attention of scientists. Due to this fact, different β-Xylosidases have been isolated, purified and characterized from several bacteria and fungi. Microorganisms in this respect have gained much momentum for production of these significant biocatalysts with remarkable features. It is difficult to propagate microorganisms for efficient and cost-competitive production of β-Xylosidase from hemicelluloses due to expensive conditions of fermentation. The screening of new organisms with an enhanced production of β-Xylosidases has been made possible with the help of recombinant DNA technology. β-Xylosidase genes haven been cloned and expressed on large scale in both homologous and heterologous hosts with the advent of genetic engineering. Therefore, we have reviewed the literature regarding cloning of β-Xylosidase genes into various hosts for their heterologous production along with sequence similarities among different β-Xylosidases. The study provides insight into the current status of cloning, expression and sequence analysis of β-Xylosidases for industrial applications.
Collapse
|
10
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
11
|
Singh MK, Manoj N. Crystal structure of Thermotoga maritima acetyl esterase complex with a substrate analog: Insights into the distinctive substrate specificity in the CE7 carbohydrate esterase family. Biochem Biophys Res Commun 2016; 476:63-8. [PMID: 27181355 DOI: 10.1016/j.bbrc.2016.05.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 11/27/2022]
Abstract
The carbohydrate esterase family 7 (CE7) members are acetyl esterases that possess unusual substrate specificity for cephalosporin C and 7-amino-cephalosporanic acid. This family containing the α/β hydrolase fold has a distinctive substrate profile that allows it to carry out hydrolysis of esters containing diverse alcohol moieties while maintaining narrow specificity for an acetate ester. Here we investigate the structural basis of this preference for small acyl groups using the crystal structure of the thermostable Thermotoga maritima CE7 acetyl esterase (TmAcE) complexed with a non-cognate substrate analog. The structure determined at 1.86 Å resolution provides direct evidence for the location of the largely hydrophobic and rigid substrate binding pocket in this family. Furthermore, a three-helix insertion domain near the catalytic machinery shapes the substrate binding site. The structure reveals two residues (Pro228 and Ile276) which constitute a hydrophobic rigid binding surface for the acyl group of the ester and thus restricts the size of the acyl group that be accommodated. In combination with previous literature on kinetic properties of the enzyme, our studies suggest that these residues determine the unique specificity of the TmAcE for short straight chain esters. The structure provides a template for focused attempts to engineer the CE7 enzymes for enhanced stability, selectivity or activity for biocatalytic applications.
Collapse
Affiliation(s)
- Mrityunjay K Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
12
|
Identification and Characterization of a New 7-Aminocephalosporanic Acid Deacetylase from Thermophilic Bacterium Alicyclobacillus tengchongensis. J Bacteriol 2016; 198:311-20. [PMID: 26527640 DOI: 10.1128/jb.00471-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deacetylation of 7-aminocephalosporanic acid (7-ACA) at position C-3 provides valuable starting material for producing semisynthetic β-lactam antibiotics. However, few enzymes have been characterized in this process before now. Comparative analysis of the genome of the thermophilic bacterium Alicyclobacillus tengchongensis revealed a hypothetical protein (EstD1) with typical esterase features. The EstD1 protein was functionally cloned, expressed, and purified from Escherichia coli BL21(DE3). It indeed displayed esterase activity, with optimal activity at around 65°C and pH 8.5, with a preference for esters with short-chain acyl esters (C2 to C4). Sequence alignment revealed that EstD1 is an SGNH hydrolase with the putative catalytic triad Ser15, Asp191, and His194, which belongs to carbohydrate esterase family 12. EstD1 can hydrolyze acetate at the C-3 position of 7-aminocephalosporanic acid (7-ACA) to form deacetyl-7-ACA, which is an important starting material for producing semisynthetic β-lactam antibiotics. EstD1 retained more than 50% of its initial activity when incubated at pH values ranging from 4 to 11 at 65°C for 1 h. To the best of our knowledge, this enzyme is a new SGNH hydrolase identified from thermophiles that is able to hydrolyze 7-ACA. IMPORTANCE Deacetyl cephalosporins are highly valuable building blocks for the industrial production of various kinds of semisynthetic β-lactam antibiotics. These compounds are derived mainly from 7-ACA, which is obtained by chemical or enzymatic processes from cephalosporin C. Enzymatic transformation of 7-ACA is the main method because of the adverse effects chemical deacylation brought to the environment. SGNH hydrolases are widely distributed in plants. However, the tools for identifying and characterizing SGNH hydrolases from bacteria, especially from thermophiles, are rather limited. Here, our work demonstrates that EstD1 belongs to the SGNH family and can hydrolyze acetate at the C-3 position of 7-ACA. Moreover, this study can enrich our understanding of the functions of these enzymes from this family.
Collapse
|
13
|
Mokoena N, Mathiba K, Tsekoa T, Steenkamp P, Rashamuse K. Application of termite hindgut metagenome derived carboxyl ester hydrolases in the modification of cephalosporin substrates. Biochem Biophys Rep 2015; 4:44-51. [PMID: 29124186 PMCID: PMC5668906 DOI: 10.1016/j.bbrep.2015.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022] Open
Abstract
In the pharmaceutical industry, de-acetylated cephalosporins are highly valuable starting materials for producing semi-synthetic β-lactam antibiotics. In this study a fosmid metagenome library from termite hindgut symbionts was screened for carboxyl ester hydrolases capable of de-acetylating cephalosporins. Recombinant Escherichia coli clones with esterolytic phenotypes on tributyrin agar plates were selected and further tested for de-acetylating activity against Cephalothin and 7-aminocephalosporanic acid (7-ACA). Two clones displaying de-acetylating activity were sequenced and the corresponding two carboxyl ester hydrolase encoding genes (axeA and axeB) belonging to the carbohydrate esterase family 7 (CE7) were identified. The primary structure of both the axeA and axeB revealed the presence of G-X-S-X-G sequence motif and respective subunit molecular masses of 40 kDa. In addition to de-acetylating cephalosporin based molecules, the two enzymes were also shown to be true esterases based on their preferences for short chain length fatty acid esters. Esterases (AxeA and AxeB) contained classical G-X-S-x-G motif and showed deacetylating activities against cephalosporin substrates. AxeA and AxeB can be useful in the biocatalytic modification of cephalosporin molecules.
Collapse
Affiliation(s)
- Nobalanda Mokoena
- CSIR Biosciences, Biomanufacturing Technology Competence Area, Brummeria, Pretoria 0001, South Africa
| | - Kgama Mathiba
- CSIR Biosciences, Biomanufacturing Technology Competence Area, Brummeria, Pretoria 0001, South Africa
| | - Tsepo Tsekoa
- CSIR Biosciences, Biomanufacturing Technology Competence Area, Brummeria, Pretoria 0001, South Africa
| | - Paul Steenkamp
- CSIR Biosciences, Biomanufacturing Technology Competence Area, Brummeria, Pretoria 0001, South Africa.,Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Konanani Rashamuse
- CSIR Biosciences, Biomanufacturing Technology Competence Area, Brummeria, Pretoria 0001, South Africa
| |
Collapse
|
14
|
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose. Appl Environ Microbiol 2014; 80:5001-11. [PMID: 24907337 DOI: 10.1128/aem.00998-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars.
Collapse
|
15
|
Han X, Gao J, Shang N, Huang CH, Ko TP, Chen CC, Chan HC, Cheng YS, Zhu Z, Wiegel J, Luo W, Guo RT, Ma Y. Structural and functional analyses of catalytic domain of GH10 xylanase from Thermoanaerobacterium saccharolyticum
JW/SL-YS485. Proteins 2013; 81:1256-65. [DOI: 10.1002/prot.24286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Han
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Jian Gao
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Na Shang
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica; Taipei 11529 Taiwan
| | - Chun-Chi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Hsiu-Chien Chan
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Ya-Shan Cheng
- AsiaPac Biotechnology Co., Ltd.; Dongguan 523808 China
| | - Zhen Zhu
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Juergen Wiegel
- Department of Microbiology; University of Georgia; Athens Georgia 30602-2605
| | - Wenhua Luo
- College of Food Science; South China Agricultural University; Guangzhou 510642 China
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| |
Collapse
|
16
|
Anand A, Kumar V, Satyanarayana T. Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 2013; 17:357-66. [DOI: 10.1007/s00792-013-0524-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
17
|
The substrate/product-binding modes of a novel GH120 β-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biochem J 2013; 448:401-7. [PMID: 22992047 PMCID: PMC3507262 DOI: 10.1042/bj20121359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Xylan-1,4-β-xylosidase (β-xylosidase) hydrolyses xylo-oligomers at their non-reducing ends into individual xylose units. Recently, XylC, a β-xylosidase from Thermoanaerobacterium saccharolyticum JW/SL-YS485, was found to be structurally different from corresponding glycosyl hydrolases in the CAZy database (http://www.cazy.org/), and was subsequently classified as the first member of a novel family of glycoside hydrolases (GH120). In the present paper, we report three crystal structures of XylC in complex with Tris, xylobiose and xylose at 1.48-2.05 Å (1 Å=0.1 nm) resolution. XylC assembles into a tetramer, and each monomer comprises two distinct domains. The core domain is a right-handed parallel β-helix (residues 1-75 and 201-638) and the flanking region (residues 76-200) folds into a β-sandwich domain. The enzyme contains an open carbohydrate-binding cleft, allowing accommodation of longer xylo-oligosaccharides. On the basis of the crystal structures and in agreement with previous kinetic data, we propose that XylC cleaves the glycosidic bond by the retaining mechanism using two acidic residues Asp382 (nucleophile) and Glu405 (general acid/base). In addition to the active site, nine other xylose-binding sites were consistently observed in each of the four monomers, providing a possible reason for the high tolerance of product inhibition.
Collapse
|
18
|
Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions. Appl Environ Microbiol 2012; 78:8441-7. [PMID: 23023741 DOI: 10.1128/aem.02130-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C(5) and C(6) sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of β-xylosidase xylD slowed the growth of T. saccharolyticum on birchwood xylan and led to an accumulation of short-chain xylo-oligomers, no other single deletion, including the deletion of the previously characterized endoxylanase XynA, had a phenotype distinct from that of the wild type. This result indicates a multiplicity of xylanase enzymes which facilitate xylan degradation in T. saccharolyticum. Growth on xylan was prevented only when a previously uncharacterized endoxylanase encoded by xynC was also deleted in conjunction with xynA. Sequence analysis of xynC indicates that this enzyme, a low-molecular-weight endoxylanase with homology to glycoside hydrolase family 11 enzymes, is secreted yet untethered to the cell wall. Together, these observations expand our understanding of the enzymatic basis of xylan hydrolysis by T. saccharolyticum.
Collapse
|
19
|
Liu W, Sun Y, Ko TP, Wiegel J, Shao W, Lu F, Guo RT, Huang CH. Crystallization and preliminary X-ray diffraction analysis of a novel GH120 β-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:914-6. [PMID: 22869121 DOI: 10.1107/s1744309112025328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/04/2012] [Indexed: 11/10/2022]
Abstract
Xylosidases hydrolyze xylopolymers at the nonreducing end to free xylose units. The β-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485 was expressed in Escherichia coli and the recombinant protein was purified and crystallized. A BLASTP search with the XylC protein sequence showed that no similar structure had previously been solved. XylC was classified as a member of the new glycoside hydrolase family GH120 according to the CAZy website (http://www.cazy.org/). Crystals belonging to the monoclinic space group P2(1), with unit-cell parameters a = 88.36, b = 202.20, c = 99.87 Å, β = 99.04°, were obtained by the sitting-drop vapour-diffusion method and diffracted to 2.2 Å resolution. Structure determination using MIR and MAD methods is in progress.
Collapse
Affiliation(s)
- Wenting Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 2012; 30:1575-88. [PMID: 22580218 DOI: 10.1016/j.biotechadv.2012.04.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022]
Abstract
Several plant polysaccharides are partially esterified with acetic acid. One of the roles of this modification is protection of plant cell walls against invading microorganisms. Acetylation of glycosyl residues of polysaccharides prevents hydrolysis of their glycosidic linkages by the corresponding glycoside hydrolases. In this way the acetylation also represents an obstacle of enzymatic saccharification of plant hemicelluloses to fermentable sugars which appears to be a hot topic of current research. We can eliminate this obstacle by alkaline extraction or pretreatment leading to saponification of ester linkages. However, this task has been accomplished in a different way in the nature. The acetyl groups became targets of microbial carbohydrate esterases that evolved to overcome the complexity of the plant cell walls and that cooperate with glycoside hydrolases in plant polysaccharide degradation. This article concentrates on enzymes deacetylating plant hemicelluloses excluding pectin. They are currently grouped in at least 8 families, specifically in CE families 1-7 and 16, originally assigned as acetylxylan esterases, the enzymes acting on hardwood acetyl glucuronoxylan and its fragments generated by endo-β-1,4-xylanases. There are esterases deacetylating softwood galactoglucomannan, but they have not been classified yet. The enzymes present in CE families 1-7 differ in structure and substrate and positional specificity. There are families behaving as endo-type and exo-type deacetylates, i.e. esterases deacetylating internal sugar residues of partially acetylated polysaccharides and also esterases deacetylating non-reducing end sugar residues in oligosaccharides. With one exception, the enzymes of all mentioned CE families belong to serine type esterases. CE family 4 harbors enzymes that are metal-dependent aspartic esterases. Three-dimensional structures have been solved for members of the first seven CE families, however, there is still insufficient knowledge about their substrate specificity and real physiological role. Current knowledge on catalytic properties of the selected families of CEs is summarized in this review. Some of the families are emerging also as new biocatalysts for regioselective acylation and deacylation of carbohydrates.
Collapse
Affiliation(s)
- Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
21
|
Levisson M, Han GW, Deller MC, Xu Q, Biely P, Hendriks S, Ten Eyck LF, Flensburg C, Roversi P, Miller MD, McMullan D, von Delft F, Kreusch A, Deacon AM, van der Oost J, Lesley SA, Elsliger MA, Kengen SWM, Wilson IA. Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins 2012; 80:1545-59. [PMID: 22411095 DOI: 10.1002/prot.24041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 11/06/2022]
Abstract
TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity of TM0077 was investigated using 4-nitrophenyl-β-D-xylopyranoside monoacetates as substrates in a β-xylosidase-coupled assay. TM0077 hydrolyzes acetate at positions 2, 3, and 4 with equal efficiency. No activity was detected on xylan or acetylated xylan, which implies that TM0077 is an acetyl esterase and not an acetyl xylan esterase as currently annotated. Selenomethionine-substituted and native structures of TM0077 were determined at 2.1 and 2.5 Å resolution, respectively, revealing a classic α/β-hydrolase fold. TM0077 assembles into a doughnut-shaped hexamer with small tunnels on either side leading to an inner cavity, which contains the six catalytic centers. Structures of TM0077 with covalently bound phenylmethylsulfonyl fluoride and paraoxon were determined to 2.4 and 2.1 Å, respectively, and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188). Upon binding of inhibitor, the catalytic serine adopts an altered conformation, as observed in other esterase and lipases, and supports a previously proposed catalytic mechanism in which Ser hydroxyl rotation prevents reversal of the reaction and allows access of a water molecule for completion of the reaction.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Characterization of a novel beta-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 2010; 77:719-26. [PMID: 21131522 DOI: 10.1128/aem.01511-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 1,914-bp open reading frame of xylC from Thermoanaerobacterium saccharolyticum JW/SL-YS485 encodes a calculated 73-kDa β-xylosidase, XylC, different from any glycosyl hydrolase in the database and representing a novel glycohydrolase family. Hydrolysis occurred under retention of the anomeric configuration, and transglycosylation occurred in the presence of alcohols as acceptors. With the use of vector pHsh, expression of XylC, the third β-xylosidase in this bacterium, increased approximately 4-fold when a loop within the translational initiation region in the mRNA was removed by site-directed mutagenesis. The increased expression of xylC(m) is due to removal of a stem-loop structure without a change of the amino acid sequence of the heterologously expressed enzyme (XylC(rec)). When gel filtration was applied, purified XylC had molecular masses of 210 kDa and 265 kDa using native gradient gel electrophoresis. The protein consisted of 78-kDa subunits based on SDS gel electrophoresis and contained 6% carbohydrates. XylC and XylC(rec) exhibited maximum activity at 65°C and pH(65°C) 6.0, a 1-h half-life at 67°C, a K(m) for p-nitrophenyl-β-D-xyloside of 28 mM, and a V(max) of 276 U/mg and retained 70% activity in the presence of 200 mM xylose, suggesting potential for industrial applications.
Collapse
|
23
|
Drzewiecki K, Angelov A, Ballschmiter M, Tiefenbach KJ, Sterner R, Liebl W. Hyperthermostable acetyl xylan esterase. Microb Biotechnol 2009; 3:84-92. [PMID: 21255309 PMCID: PMC3815950 DOI: 10.1111/j.1751-7915.2009.00150.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An esterase which is encoded within a Thermotoga maritima chromosomal gene cluster for xylan degradation and utilization was characterized after heterologous expression of the corresponding gene in Escherichia coli and purification of the enzyme. The enzyme, designated AxeA, shares amino acid sequence similarity and its broad substrate specificity with the acetyl xylan esterase from Bacillus pumilus, the cephalosporin C deacetylase from Bacillus subtilis, and other (putative) esterases, allowing its classification as a member of carbohydrate esterase family 7. The recombinant enzyme displayed activity with p‐nitrophenyl‐acetate as well as with various acetylated sugar substrates such as glucose penta‐acetate, acetylated oat spelts xylan and DMSO (dimethyl sulfoxide)‐extracted beechwood xylan, and with cephalosporin C. Thermotoga maritimaAxeA represents the most thermostable acetyl xylan esterase known to date. In a 10 min assay at its optimum pH of 6.5 the enzyme's activity peaked at 90°C. The inactivation half‐life of AxeA at a protein concentration of 0.3 µg µl−1 in the absence of substrate was about 13 h at 98°C and about 67 h at 90°C. Differential scanning calorimetry analysis of the thermal stability of AxeA corroborated its extreme heat resistance. A multi‐phasic unfolding behaviour was found, with two apparent exothermic peaks at approximately 100–104°C and 107.5°C. In accordance with the crystal structure, gel filtration analysis at ambient temperature revealed that the enzyme has as a homohexameric oligomerization state, but a dimeric form was also found.
Collapse
Affiliation(s)
- Katharina Drzewiecki
- Institut f. Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Fan Z, Wagschal K, Lee CC, Kong Q, Shen KA, Maiti IB, Yuan L. The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol Bioeng 2009; 102:684-92. [DOI: 10.1002/bit.22112] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Engineering of a multifunctional hemicellulase. Biotechnol Lett 2009; 31:751-7. [DOI: 10.1007/s10529-009-9926-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/23/2008] [Accepted: 01/05/2009] [Indexed: 11/25/2022]
|
26
|
Sonawane VC. Enzymatic Modifications of Cephalosporins by Cephalosporin Acylase and Other Enzymes. Crit Rev Biotechnol 2008; 26:95-120. [PMID: 16809100 DOI: 10.1080/07388550600718630] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and beta-lactamase are also covered.
Collapse
|
27
|
Martínez-Martínez I, Navarro-Fernández J, Daniel Lozada-Ramírez J, García-Carmona F, Sánchez-Ferrer Á. YesT: A new rhamnogalacturonan acetyl esterase fromBacillus subtilis. Proteins 2008; 71:379-88. [DOI: 10.1002/prot.21705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Martínez-Martínez I, Montoro-García S, Lozada-Ramírez JD, Sánchez-Ferrer A, García-Carmona F. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate. Anal Biochem 2007; 369:210-7. [PMID: 17651681 DOI: 10.1016/j.ab.2007.06.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/13/2007] [Accepted: 06/18/2007] [Indexed: 11/22/2022]
Abstract
A bromothymol blue-based colorimetric assay has been devised to screen for acetyl xylan esterase or cephalosporin C (CPC) deacetylase activities using 7-amino cephalosporanic acid (7-ACA), CPC, or acetylated xylan as substrate. These enzymes are not screened with their natural substrates because of the tedious procedures available previously. Acetyl xylan esterase from Bacillus pumilus CECT 5072 was cloned, expressed in Escherichia coli Rosetta (DE3), and characterized using this assay. Similar K(M) values for 7-ACA and CPC were obtained when compared with those described using HPLC methods. The assay is easy to perform and can be carried out in robotic high-throughput colorimetric devices normally used in directed evolution experiments. The assay allowed us to detect improvements in activity at a minimum of twofold with a very low coefficient of variance in 96-well plates. This method is significantly faster and more convenient to use than are known HPLC and pH-stat procedures.
Collapse
Affiliation(s)
- Irene Martínez-Martínez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Murcia, E-30071 Murcia, Spain
| | | | | | | | | |
Collapse
|
29
|
Immobilization and characterization of a thermostable β-xylosidase to generate a reusable biocatalyst. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, Reymond JL, Jaeger KE, Streit WR. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 2006; 72:3637-45. [PMID: 16672512 PMCID: PMC1472341 DOI: 10.1128/aem.72.5.3637-3645.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The metagenomes of uncultured microbial communities are rich sources for novel biocatalysts. In this study, esterase EstA3 was derived from a drinking water metagenome, and esterase EstCE1 was derived from a soil metagenome. Both esterases are approximately 380 amino acids in size and show similarity to beta-lactamases, indicating that they belong to family VIII of the lipases/esterases. EstA3 had a temperature optimum at 50 degrees C and a pH optimum at pH 9.0. It was remarkably active and very stable in the presence of solvents and over a wide temperature and pH range. It is active in a multimeric form and displayed a high level of activity against a wide range of substrates including one secondary ester, 7-[3-octylcarboxy-(3-hydroxy-3-methyl-butyloxy)]-coumarin, which is normally unreactive. EstCE1 was active in the monomeric form and had a temperature optimum at 47 degrees C and a pH optimum at pH 10. It exhibited the same level of stability as EstA3 over wide temperature and pH ranges and in the presence of dimethyl sulfoxide, isopropanol, and methanol. EstCE1 was highly enantioselective for (+)-menthylacetate. These enzymes display remarkable characteristics that cannot be related to the original environment from which they were derived. The high level of stability of these enzymes together with their unique substrate specificities make them highly useful for biotechnological applications.
Collapse
Affiliation(s)
- C Elend
- Molekulare Enzymtechnologie, Universität Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koseki T, Miwa Y, Akao T, Akita O, Hashizume K. An Aspergillus oryzae acetyl xylan esterase: Molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris. J Biotechnol 2006; 121:381-9. [PMID: 16129506 DOI: 10.1016/j.jbiotec.2005.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 07/12/2005] [Indexed: 11/19/2022]
Abstract
We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.
Collapse
Affiliation(s)
- Takuya Koseki
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan.
| | | | | | | | | |
Collapse
|
32
|
13 Gene Transfer Systems for Obligately Anaerobic Thermophilic Bacteria. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
33
|
Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DWS. Enzyme-coupled assay for beta-xylosidase hydrolysis of natural substrates. Appl Environ Microbiol 2005; 71:5318-23. [PMID: 16151120 PMCID: PMC1214693 DOI: 10.1128/aem.71.9.5318-5323.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here a new enzyme-coupled assay for the quantitation of d-xylose using readily available enzymes that allows kinetic evaluation of hemicellulolytic enzymes using natural xylooligosaccharide substrates. Hydrogen peroxide is generated as an intermediary analyte, which allows flexibility in the choice of the chromophore or fluorophore used as the final reporter. Thus, we present d-xylose quantitation results for solution-phase assays performed with both the fluorescent reporter resorufin, generated from N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), whose corresponding radical cation has an absorbance maximum at approximately 400 nm. We also describe a useful solid-phase variation of the assay performed with the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride, which produces an insoluble brown precipitate. In addition, kinetic parameters for hydrolysis of the natural substrates xylobiose and xylotriose were obtained using this assay for a glycosyl hydrolase family 39 beta-xylosidase from Thermoanaerobacterium sp. strain JW/SL YS485 (Swiss-Prot accession no. O30360). At higher xylobiose substrate concentrations the enzyme showed an increase in the rate indicative of transglycosylation, while for xylotriose marked substrate inhibition was observed. At lower xylobiose concentrations k(cat) was 2.7 +/- 0.4 s(-1), K(m) was 3.3 +/- 0.7 mM, and k(cat)/K(m) was 0.82 +/- 0.21 mM(-1) . s(-1). Nonlinear curve fitting to a substrate inhibition model showed that for xylotriose K(i) was 1.7 +/- 0.1 mM, k(cat) was 2.0 +/- 0.1 s(-1), K(m) was 0.144 +/- 0.011 mM, and k(cat)/K(m) was 14 +/- 1.3 mM(-1) . s(-1).
Collapse
Affiliation(s)
- Kurt Wagschal
- Agricultural Research Service, U.S. Dept. of Agriculture, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
| | | | | | | | | |
Collapse
|
34
|
Krastanova I, Guarnaccia C, Zahariev S, Degrassi G, Lamba D. Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1748:222-30. [PMID: 15769599 DOI: 10.1016/j.bbapap.2005.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/14/2005] [Accepted: 01/19/2005] [Indexed: 11/17/2022]
Abstract
Bacillus pumilus PS213 acetyl xylan esterase (AXE) acts as an accessory enzyme in the plant cell wall hemicellulose biodegradation pathway. It belongs to the carbohydrate esterase family 7 and hydrolyses the ester linkages of the acetyl groups in position 2 and/or 3 of the xylose moieties of the acetylated xylan fragments from hardwood. The enzyme displays activity towards a broad range of acetylated compounds including the antibiotic cephalosporin-C. In this study we report the heterologous expression, purification, physicochemical characterization and crystallization of the recombinant B. pumilus AXE. Remarkable improvement of the crystal quality was achieved by setting up crystallization conditions, at first established using the hanging drop vapor diffusion method, in a micro-batch experiment. Rod-like diffraction quality crystals were obtained using 10% PEG 6000, 0.1 M MES pH 6.0 and a wide range of LiCl concentrations (0.2-1.0 M) as precipitant agent. Two different crystal forms, both belonging to space group P2(1), were characterized, diffracting X-rays to 2.5 and 1.9 angstrom resolution. Successful molecular replacement showed 12 molecules in the asymmetric unit of either crystal forms that are arranged as two doughnut-like hexamers, each one encompassing a local 32 symmetry. A catalytic inactive mutant Ser181Ala of B. pumilus AXE was also engineered, expressed, purified and crystallized for functional and structural studies.
Collapse
Affiliation(s)
- Ivet Krastanova
- International School for Advanced Studies, Via Beirut 2/4, I-34014 Trieste, Italy.
| | | | | | | | | |
Collapse
|
35
|
Vincent F, Charnock SJ, Verschueren KHG, Turkenburg JP, Scott DJ, Offen WA, Roberts S, Pell G, Gilbert HJ, Davies GJ, Brannigan JA. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9A resolution. J Mol Biol 2003; 330:593-606. [PMID: 12842474 DOI: 10.1016/s0022-2836(03)00632-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Esterases and deacetylases active on carbohydrate ligands have been classified into 14 families based upon amino acid sequence similarities. Enzymes from carbohydrate esterase family seven (CE-7) are unusual in that they display activity towards both acetylated xylooligosaccharides and the antibiotic, cephalosporin C. The 1.9A structure of the multifunctional CE-7 esterase (hereinafter CAH) from Bacillus subtilis 168 reveals a classical alpha/beta hydrolase fold encased within a 32 hexamer. This is the first example of a hexameric alpha/beta hydrolase and is further evidence of the versatility of this particular fold, which is used in a wide variety of biological contexts. A narrow entrance tunnel leads to the centre of the molecule, where the six active-centre catalytic triads point towards the tunnel interior and thus are sequestered away from cytoplasmic contents. By analogy to self-compartmentalising proteases, the tunnel entrance may function to hinder access of large substrates to the poly-specific active centre. This would explain the observation that the enzyme is active on a variety of small, acetylated molecules. The structure of an active site mutant in complex with the reaction product, acetate, reveals details of the putative oxyanion binding site, and suggests that substrates bind predominantly through non-specific contacts with protein hydrophobic residues. Protein residues involved in catalysis are tethered by interactions with protein excursions from the canonical alpha/beta hydrolase fold. These excursions also mediate quaternary structure maintenance, so it would appear that catalytic competence is only achieved on protein multimerisation. We suggest that the acetyl xylan esterase (EC 3.1.1.72) and cephalosporin C deacetylase (EC 3.1.1.41) enzymes of the CE-7 family represent a single class of proteins with a multifunctional deacetylase activity against a range of small substrates.
Collapse
Affiliation(s)
- Florence Vincent
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chung HJ, Park SM, Kim HR, Yang MS, Kim DH. Cloning the gene encoding acetyl xylan esterase from Aspergillus ficuum and its expression in Pichia pastoris. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00122-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Bornscheuer UT. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 2002; 26:73-81. [PMID: 12007643 DOI: 10.1111/j.1574-6976.2002.tb00599.x] [Citation(s) in RCA: 638] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Esterases (EC 3.1.1.x) represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds and are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number of microbial carboxyl esterases have also been discovered and overexpressed. This review summarizes their properties and classification. Special emphasis is given on their application in organic synthesis for the resolution of racemates and prostereogenic compounds. In addition, recent results for altering their properties by directed evolution are presented.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Institute for Chemistry and Biochemistry, Department of Technical Chemistry and Biotechnology, Greifswald University, Soldmannstr. 16, Greifswald, Germany.
| |
Collapse
|
38
|
Petersen EI, Valinger G, Sölkner B, Stubenrauch G, Schwab H. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol 2001; 89:11-25. [PMID: 11472796 DOI: 10.1016/s0168-1656(01)00284-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The gene (estB) encoding for a novel esterase (EstB) from Burkholderia gladioli (formerly Pseudomonas marginata) NCPPB 1891 was cloned in Escherichia coli. Sequence analysis showed an open reading frame encoding a polypeptide of 392 amino acid residues, with a molecular mass of about 42 kDa. Comparison of the amino acid sequence with those of other homologous enzymes indicated homologies to beta-lactamases, penicillin binding proteins and DD-peptidases. The serine residue (Ser(75)) which is located within a present class A beta-lactamase motif ([F,Y]-X-[L,I,V,M,F,Y]-X-S-[T,V]-X-K-X-X-X-X-[A,G,L]-X-X-[L,C]) was identified by site-directed mutagenesis to represent the active nucleophile. A second serine residue (Ser(149)) which is located within a G-x-S-x-G motif which is typically found in esterases and lipases was demonstrated not to play a significant role in enzyme function. The estB gene was overexpressed in E. coli using a tac promoter-based expression system. Investigation of EstB protein with respect to the ability to hydrolyse beta-lactam substrates clearly demonstrated that this protein has no beta-lactamase activity. The recombinant enzyme is active on triglycerides and on nitrophenyl esters with acyl chain lengths up to C6. The preference for short chain length substrates indicated that EstB is a typical carboxylesterase. As a special feature EstB esterase was found to have high deacetylation activity on cephalosporin derivatives.
Collapse
Affiliation(s)
- E I Petersen
- Institut für Biotechnologie, AG Genetik, SFB Biokatalyse, Technische Universität Graz, Petersgasse 12, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
39
|
Mai V, Wiegel J. Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl Environ Microbiol 2000; 66:4817-21. [PMID: 11055929 PMCID: PMC92385 DOI: 10.1128/aem.66.11.4817-4821.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite recent success in transforming various thermophilic gram-type-positive anaerobes with plasmid DNA, use of shuttle vectors for the expression of genes other than antibiotic resistance markers has not previously been described. We constructed new vectors in order to express heterologous hydrolytic enzymes in our model system, Thermoanaerobacterium saccharolyticum JW/SL-YS485. Transformed Thermoanaerobacterium expressed active enzyme, indicating that this system may function as an alternate expression host, especially for genes with a thermophilic origin. To develop further the genetic system for T. saccharolyticum JW/SL-YS485, two improved Escherichia coli-Thermoanaerobacterium shuttle vectors, pRKM1 and pRUKM, were constructed. Furthermore, the kanamycin resistance cassette alone and the kanamycin resistance cassette plus the cellobiohydrolase gene (cbhA) from Clostridium thermocellum JW20 were integrated into the xylanase gene (xynA) region of the Thermoanaerobacterium chromosome via homologous recombination using pUC-based suicide vectors pUXK and pUXKC.
Collapse
Affiliation(s)
- V Mai
- Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
40
|
Degrassi G, Kojic M, Ljubijankic G, Venturi V. The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1585-1591. [PMID: 10878123 DOI: 10.1099/00221287-146-7-1585] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus pumilus gene encoding acetyl xylan esterase (axe) was identified and characterized. The axe gene was expressed and the recombinant enzyme produced in Escherichia coli was purified and characterized. The recombinant enzyme displayed similar properties to the acetyl xylan esterase (AXE) purified from B. pumilus. The AXE primary structure was 76% identical to the cephalosporin C deacetylase of B. subtilis, and 40% to two recently identified AXEs from Thermoanaerobacterium and Thermotoga maritima. These four proteins are of similar size and represent a new family of esterases having a broad substrate specificity. The recombinant AXE was demonstrated to have activity on several acetylated substrates, including on cephalosporin C.
Collapse
Affiliation(s)
- Giuliano Degrassi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, I-34012 Trieste, Italy1
| | - Milan Kojic
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, I-34012 Trieste, Italy1
| | - Goran Ljubijankic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Yugoslavia2
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, I-34012 Trieste, Italy1
| |
Collapse
|
41
|
Mai V, Wiegel J, Lorenz WW. Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile thermoanaerobacter ethanolicus. Gene 2000; 247:137-43. [PMID: 10773453 DOI: 10.1016/s0378-1119(00)00106-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gene for the bifunctional xylosidase-arabinosidase (xarB) from the thermophilic anaerobe Thermoanaerobacter ethanolicus JW200 was cloned, sequenced, and expressed in Escherichia coli (Genebank Accession No. AF135015). Analysis of the recombinant enzyme revealed activity against multiple substrates with the highest affinity towards p-nitrophenyl beta-D-xylopyranoside (pNPX) and highest activity against p-nitrophenyl alpha-L-arabinopyranoside (pNPAP), respectively. Thus, we classify this enzyme as a bifunctional xylosidase-arabinosidase. Even though both sequences are 96% identical on the amino acid level, excluding the amino-terminal end, a frame-shift mutation in the 5' region of the gene in T. brockii ATCC 33075 and a deletion in a downstream open reading frame in T. ethanolicus seem to have occurred through evolutionary divergence of these two species. This represents an interesting phenomenon of molecular evolution of bacterial species, as PCR analysis of the region around the deletion indicates that the deletion is not present in T. brockii ssp. finnii and T. brockii ssp. brockii type strain HTD4.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteria, Anaerobic/enzymology
- Bacteria, Anaerobic/genetics
- Bacterial Proteins
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Recombinant/genetics
- DNA, Recombinant/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial/genetics
- Glycoside Hydrolases/genetics
- Gram-Positive Asporogenous Rods, Irregular/enzymology
- Gram-Positive Asporogenous Rods, Irregular/genetics
- Molecular Sequence Data
- Open Reading Frames
- Plasmids
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Xylosidases/genetics
Collapse
Affiliation(s)
- V Mai
- Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
42
|
Abstract
The free-living spirochete Spirochaeta aurantia was nearly as susceptible to diacetyl chloramphenicol, the product of chloramphenicol acetyltransferase, as it was to chloramphenicol itself. This unexpected susceptibility to diacetyl chloramphenicol was wholly or partly the consequence of intrinsic carboxylesterase activity, as indicated by high-performance liquid chromatography, thin-layer chromatography, and microbiological assays. The esterase converted the diacetate to chloramphenicol, thus inhibiting spirochete growth. The esterase activity was cell associated, reduced by proteinase K, eliminated by boiling, and independent of the presence of either chloramphenicol or diacetyl chloramphenicol. S. aurantia extracts also hydrolyzed other esterase substrates, and two of these, alpha-napthyl acetate and 4-methylumbelliferyl acetate, identified an esterase of approximately 75 kDa in a nondenaturing gel. Carboxylesterases occur in Streptomyces species, but in this study their activity was weaker than that of S. aurantia. The S. aurantia esterase could reduce the effectiveness of cat as either a selectable marker or a reporter gene in this species.
Collapse
Affiliation(s)
- C D Sohaskey
- Departments of Microbiology and Molecular Genetics and Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
43
|
Blum DL, Li XL, Chen H, Ljungdahl LG. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 1999; 65:3990-5. [PMID: 10473406 PMCID: PMC99731 DOI: 10.1128/aem.65.9.3990-3995.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K(m) of 0.9 mM and a V(max) of 785 micromol min(-1) mg(-1). It had temperature and pH optima of 30 degrees C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.
Collapse
Affiliation(s)
- D L Blum
- Department of Biochemistry and Molecular Biology and the Center for Biological Resource Recovery, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
44
|
Williamson G, Kroon PA, Faulds CRB. Hairy plant polysaccharides: a close shave with microbial esterases. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2011-2023. [PMID: 9720023 DOI: 10.1099/00221287-144-8-2011] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gary Williamson
- Biochemistry Department, Institute of Food ResearchNorwich Research Park, Colney, Norwich NR4 7UAUK
| | - Paul A Kroon
- Biochemistry Department, Institute of Food ResearchNorwich Research Park, Colney, Norwich NR4 7UAUK
| | - CRaig B Faulds
- Biochemistry Department, Institute of Food ResearchNorwich Research Park, Colney, Norwich NR4 7UAUK
| |
Collapse
|