1
|
Bruch A, Lazarova V, Berg M, Krüger T, Schäuble S, Kelani A, Mertens B, Lehenberger P, Kniemeyer O, Kaiser S, Panagiotou G, Gsaller F, Blango M. tRNA hypomodification facilitates 5-fluorocytosine resistance via cross-pathway control system activation in Aspergillus fumigatus. Nucleic Acids Res 2025; 53:gkae1205. [PMID: 39711467 PMCID: PMC11797069 DOI: 10.1093/nar/gkae1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Increasing antifungal drug resistance is a major concern associated with human fungal pathogens like Aspergillus fumigatus. Genetic mutation and epimutation mechanisms clearly drive resistance, yet the epitranscriptome remains relatively untested. Here, deletion of the A. fumigatus transfer RNA (tRNA)-modifying isopentenyl transferase ortholog, Mod5, led to altered stress response and unexpected resistance against the antifungal drug 5-fluorocytosine (5-FC). After confirming the canonical isopentenylation activity of Mod5 by liquid chromatography-tandem mass spectrometry and Nano-tRNAseq, we performed simultaneous profiling of transcriptomes and proteomes to reveal a comparable overall response to 5-FC stress; however, a premature activation of cross-pathway control (CPC) genes in the knockout was further increased after antifungal treatment. We identified several orthologues of the Aspergillus nidulans Major Facilitator Superfamily transporter nmeA as specific CPC-client genes in A. fumigatus. Overexpression of Mod5-target tRNATyrGΨA in the Δmod5 strain rescued select phenotypes but failed to reverse 5-FC resistance, whereas deletion of nmeA largely, but incompletely, reverted the resistance phenotype, implying additional relevant exporters. In conclusion, 5-FC resistance in the absence of Mod5 and i6A likely originates from multifaceted transcriptional and translational changes that skew the fungus towards premature CPC-dependent activation of antifungal toxic-intermediate exporter nmeA, offering a potential mechanism reliant on RNA modification to facilitate transient antifungal resistance.
Collapse
Affiliation(s)
- Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Valentina Lazarova
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Abdulrahman A Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Birte Mertens
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria
| | - Pamela Lehenberger
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
- Friedrich-Schiller-University, Faculty of Biological Sciences, Fürstengraben 1, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Fürstengraben 1, 07743 Jena, Germany
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
2
|
Lin XN, Gai BX, Liu L, Cheng L. Advances in the investigation of N 6-isopentenyl adenosine i 6A RNA modification. Bioorg Med Chem 2024; 110:117838. [PMID: 39018794 DOI: 10.1016/j.bmc.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Prenylation (isopentenylation), a key post-transcriptional modification with a hydrophobic prenyl group onto the biomacromolecules such as RNA and proteins, influences their localization and function. Prenyltransferases mediate this process, while cytokinin oxidases degrade the prenylated adenosine in plants. This review summarizes current progress in detecting prenylation modifications in RNA across species and their effects on protein synthesis. Advanced methods have been developed to label and study these modifications in vitro and in vivo, despite challenges posed by the inert chemical properties of prenyl groups. Continued advancements in bioorthogonal chemistry promise new tools for understanding the precise biological functions of prenylated RNA modifications and other related proteins.
Collapse
Affiliation(s)
- Xiu-Na Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Xu Gai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Codon optimality has minimal effect on determining translation efficiency in mycobacterium tuberculosis. Sci Rep 2023; 13:415. [PMID: 36624167 PMCID: PMC9829911 DOI: 10.1038/s41598-022-27164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a slow-growing, intracellular pathogen that exhibits a high GC-rich genome. Several factors, including the GC content of the genome, influence the evolution of specific codon usage biases in genomes. As a result, the Mtb genome exhibits strong biases for amino acid usage and codon usage. Codon usage of mRNAs affects several aspects of translation, including accuracy, efficiency, and protein folding. Here we address the effect of codon usage biases in determining the translation efficiency of mRNAs in Mtb. Unlike most commonly studied organisms, Mtb carries a single copy of each tRNA gene. However, we show that the relative levels of tRNAs in the Mtb tRNA pool vary by an order of magnitude. Our results show that the codons decoded by the abundant tRNAs indeed show higher adaptability. Moreover, there is a general positive correlation between genomic codon usage and the tRNA adaptability of codons (TAc). We further estimated the optimality of the codon and mRNAs by considering both the TAc and the tRNA demand. These measures did not show any correlation with mRNA abundance and translation efficiency. There was no correlation between tRNA adaptability and ribosome pausing as well. Taken together, we conclude that the translation machinery, and the tRNA pool of an organism, co-evolve with the codon usage to optimize the translation efficiency of an organism. Thus the deleterious effect of maladapted codons is not pronounced.
Collapse
|
4
|
Lin Q, Huang J, Liu Z, Chen Q, Wang X, Yu G, Cheng P, Zhang LH, Xu Z. tRNA modification enzyme MiaB connects environmental cues to activation of Pseudomonas aeruginosa type III secretion system. PLoS Pathog 2022; 18:e1011027. [PMID: 36469533 PMCID: PMC9754610 DOI: 10.1371/journal.ppat.1011027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa, a major inhabitant of numerous environmental reservoirs, is a momentous opportunistic human pathogen associated with severe infections even death in the patients suffering from immune deficiencies or metabolic diseases. Type III secretion system (T3SS) employed by P. aeruginosa to inject effector proteins into host cells is one of the pivotal virulence factors pertaining to acute infections caused by this pathogen. Previous studies showed that P. aeruginosa T3SS is regulated by various environmental cues such as calcium concentration and the host signal spermidine. However, how T3SS is regulated and expressed particularly under the ever-changing environmental conditions remains largely elusive. In this study, we reported that a tRNA modification enzyme PA3980, designated as MiaB, positively regulated T3SS gene expression in P. aeruginosa and was essential for the induced cytotoxicity of human lung epithelial cells. Further genetic assays revealed that MiaB promoted T3SS gene expression by repressing the LadS-Gac/Rsm signaling pathway and through the T3SS master regulator ExsA. Interestingly, ladS, gacA, rsmY and rsmZ in the LadS-Gac/Rsm signaling pathway seemed potential targets under the independent regulation of MiaB. Moreover, expression of MiaB was found to be induced by the cAMP-dependent global regulator Vfr as well as the spermidine transporter-dependent signaling pathway and thereafter functioned to mediate their regulation on the T3SS gene expression. Together, these results revealed a novel regulatory mechanism for MiaB, with which it integrates different environmental cues to modulate T3SS gene expression in this important bacterial pathogen.
Collapse
Affiliation(s)
- Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- School of Food Pharmaceutical Engineering, Zhao Qing University, Zhaoqing, China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qunyi Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinbo Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guohui Yu
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ping Cheng
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail: (L-HZ); (ZX)
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail: (L-HZ); (ZX)
| |
Collapse
|
5
|
Xerri NL, Payne SM. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. mBio 2022; 13:e0236022. [PMID: 36102517 PMCID: PMC9600379 DOI: 10.1128/mbio.02360-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.
Collapse
Affiliation(s)
- Nicholas L. Xerri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Skovajsová E, Colonna B, Prosseda G, Sellin ME, Di Martino ML. The VirF21:VirF30 protein ratio is affected by temperature and impacts Shigella flexneri host cell invasion. FEMS Microbiol Lett 2022; 369:fnac043. [PMID: 35521699 PMCID: PMC9217107 DOI: 10.1093/femsle/fnac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure fine-tuned expression of virulence genes in response to environmental stimuli. A key component in this regulation is VirF, an AraC-like transcription factor, which at the host temperature (37°C) triggers, directly or indirectly, the expression of > 30 virulence genes important for invasion of the intestinal epithelium. Previous work identified two different forms of VirF with distinct functions: VirF30 activates virulence gene expression, while VirF21 appears to negatively regulate virF itself. Moreover, VirF21 originates from either differential translation of the virF mRNA or from a shorter leaderless mRNA (llmRNA). Here we report that both expression of the virF21 llmRNA and the VirF21:VirF30 protein ratio are higher at 30°C than at 37°C, suggesting a possible involvement of VirF21 in minimizing virulence gene expression outside the host (30°C). Ectopic elevation of VirF21 levels at 37°C indeed suppresses Shigella´s ability to infect epithelial cells. Finally, we find that the VirF21 C-terminal portion, predicted to contain a Helix-Turn-Helix motif (HTH2), is required for the functionality of this negative virulence regulator.
Collapse
Affiliation(s)
- Eva Skovajsová
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Bianca Colonna
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| |
Collapse
|
8
|
Soman S, Ram S. MiaA (Rv2727c) mediated tRNA isopentenylation of Mycobacterium tuberculosis H37Rv. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:97-104. [PMID: 36059932 PMCID: PMC9336784 DOI: 10.22099/mbrc.2022.43197.1726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
tRNA modifications play a significant role in the structural stability as well as translational fidelity in all organisms from bacteria to humans. They also play a major role in bacterial physiology by regulating translation in response to various environmental stresses. Modifications coming at the anticodon-stem loop (ASL) are particularly important as they stabilize codon-anticodon interactions, ensuring accuracy and speed in decoding mRNAs Addition of isopentenyl group (i6A) at A37 position by tRNA isopentenyltransferase (MiaA) is a well conserved modification from bacteria to human. We studied M. tuberculosis MiaA from strain H37Rv and identified the target tRNAs for this modification based on the A36A37A38 motif. i6A modification of target tRNAs tRNALeuCAA, tRNAPheGAA, tRNATrpCCA and tRNASerCGA were further confirmed by isopentenyltransferase assay providing the substrate DMAPP and recombinant MiaA enzyme.
Collapse
Affiliation(s)
- Smitha Soman
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, India
| | - Siya Ram
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, India
- School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India
| |
Collapse
|
9
|
Abatedaga I, Perez Mora B, Tuttobene M, Müller G, Biancotti D, Borsarelli CD, Valle L, Mussi MA. Characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis. PLoS One 2022; 17:e0254291. [PMID: 35442978 PMCID: PMC9020721 DOI: 10.1371/journal.pone.0254291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter nosocomialis is a Gram-negative opportunistic pathogen, whose ability to cause disease in humans is well recognized. Blue light has been shown to modulate important physiological traits related to persistence and virulence in this microorganism. In this work, we characterized the three Blue Light sensing Using FAD (BLUF) domain-containing proteins encoded in the A. nosocomialis genome, which account for the only canonical light sensors present in this microorganism. By focusing on a light-modulated bacterial process such as motility, the temperature dependence of light regulation was studied, as well as the expression pattern and spectroscopic characteristics of the different A. nosocomialis BLUFs. Our results show that the BLUF-containing proteins AnBLUF65 and AnBLUF46 encode active photoreceptors in the light-regulatory temperature range when expressed recombinantly. In fact, AnBLUF65 is an active photoreceptor in the temperature range from 15°C to 37°C, while AnBLUF46 between 15°C to 32°C, in vitro. In vivo, only the Acinetobacter baumannii BlsA’s ortholog AnBLUF65 was expressed in A. nosocomialis cells recovered from motility plates. Moreover, complementation assays showed that AnBLUF65 is able to mediate light regulation of motility in A. baumannii ΔblsA strain at 30°C, confirming its role as photoreceptor and in modulation of motility by light. Intra-protein interactions analyzed using 3D models built based on A. baumannii´s BlsA photoreceptor, show that hydrophobic/aromatic intra-protein interactions may contribute to the stability of dark/light- adapted states of the studied proteins, reinforcing the previous notion on the importance of these interactions in BLUF photoreceptors. Overall, the results presented here reveal the presence of BLUF photoreceptors in A. nosocomialis with idiosyncratic characteristics respect to the previously characterized A. baumannii’s BlsA, both regarding the photoactivity temperature-dependency as well as expression patterns, contributing thus to broaden our knowledge on the BLUF family.
Collapse
Affiliation(s)
- Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Daiana Biancotti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
| | - Lorena Valle
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
- * E-mail: (MAM); (LV)
| | - Maria A. Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (MAM); (LV)
| |
Collapse
|
10
|
Kouvela A, Zaravinos A, Stamatopoulou V. Adaptor Molecules Epitranscriptome Reprograms Bacterial Pathogenicity. Int J Mol Sci 2021; 22:8409. [PMID: 34445114 PMCID: PMC8395126 DOI: 10.3390/ijms22168409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The strong decoration of tRNAs with post-transcriptional modifications provides an unprecedented adaptability of this class of non-coding RNAs leading to the regulation of bacterial growth and pathogenicity. Accumulating data indicate that tRNA post-transcriptional modifications possess a central role in both the formation of bacterial cell wall and the modulation of transcription and translation fidelity, but also in the expression of virulence factors. Evolutionary conserved modifications in tRNA nucleosides ensure the proper folding and stability redounding to a totally functional molecule. However, environmental factors including stress conditions can cause various alterations in tRNA modifications, disturbing the pathogen homeostasis. Post-transcriptional modifications adjacent to the anticodon stem-loop, for instance, have been tightly linked to bacterial infectivity. Currently, advances in high throughput methodologies have facilitated the identification and functional investigation of such tRNA modifications offering a broader pool of putative alternative molecular targets and therapeutic avenues against bacterial infections. Herein, we focus on tRNA epitranscriptome shaping regarding modifications with a key role in bacterial infectivity including opportunistic pathogens of the human microbiome.
Collapse
Affiliation(s)
- Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | | |
Collapse
|
11
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Kimura S. Distinct evolutionary pathways for the synthesis and function of tRNA modifications. Brief Funct Genomics 2021; 20:125-134. [PMID: 33454776 DOI: 10.1093/bfgp/elaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Transfer ribonucleicacids (RNAs) (tRNAs) are essential adaptor molecules for translation. The functions and stability of tRNAs are modulated by their post-transcriptional modifications (tRNA modifications). Each domain of life has a specific set of modifications that include ones shared in multiple domains and ones specific to a domain. In some cases, different tRNA modifications across domains have similar functions to each other. Recent studies uncovered that distinct enzymes synthesize the same modification in different organisms, suggesting that such modifications are acquired through independent evolution. In this short review, I outline the mechanisms by which various modifications contribute to tRNA function, including modulation of decoding and tRNA stability, using recent findings. I also focus on modifications that are synthesized by distinct biosynthetic pathways.
Collapse
Affiliation(s)
- Satoshi Kimura
- Dr Matthew Waldor's lab at the Brigham and Women's Hospital. He completed his PhD and early postdoc work in Dr Tsutomu Suzuki's lab at the University of Tokyo
| |
Collapse
|
13
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
14
|
Edwards AM, Addo MA, Dos Santos PC. Extracurricular Functions of tRNA Modifications in Microorganisms. Genes (Basel) 2020; 11:genes11080907. [PMID: 32784710 PMCID: PMC7466049 DOI: 10.3390/genes11080907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands.
Collapse
|
15
|
Zhang B, Arcinas AJ, Radle MI, Silakov A, Booker SJ, Krebs C. First Step in Catalysis of the Radical S-Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S] 0-Like Auxiliary Cluster. J Am Chem Soc 2020; 142:1911-1924. [PMID: 31899624 PMCID: PMC7008301 DOI: 10.1021/jacs.9b11093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enzyme MiaB catalyzes the attachment of a methylthio (-SCH3) group at the C2 position of N6-(isopentenyl)adenosine (i6A) in the final step of the biosynthesis of the hypermodified tRNA nucleotide 2-methythio-N6-(isopentenyl)adenosine (ms2i6A). MiaB belongs to the expanding subgroup of enzymes of the radical S-adenosylmethionine (SAM) superfamily that harbor one or more auxiliary [4Fe-4S] clusters in addition to the [4Fe-4S] cluster that all family members require for the reductive cleavage of SAM to afford the common 5'-deoxyadenosyl 5'-radical (5'-dA•) intermediate. While the role of the radical SAM cluster in generating the 5'-dA• is well understood, the detailed role of the auxiliary cluster, which is essential for MiaB catalysis, remains unclear. It has been proposed that the auxiliary cluster may serve as a coordination site for exogenously derived sulfur destined for attachment to the substrate or that the cluster itself provides the sulfur atom and is sacrificed during turnover. In this work, we report spectroscopic and biochemical evidence that the auxiliary [4Fe-4S]2+ cluster in Bacteroides thetaiotaomicron (Bt) MiaB is converted to a [3Fe-4S]0-like cluster during the methylation step of catalysis. Mössbauer characterization of the MiaB [3Fe-4S]0-like cluster revealed unusual spectroscopic properties compared to those of other well-characterized cuboidal [3Fe-4S]0 clusters. Specifically, the Fe sites of the mixed-valent moiety do not have identical Mössbauer parameters. Our results support a mechanism where the auxiliary [4Fe-4S] cluster is the direct sulfur source during catalysis.
Collapse
|
16
|
Movsisyan LD, Schäfer E, Nguyen A, Ehrmann FR, Schwab A, Rossolini T, Zimmerli D, Wagner B, Daff H, Heine A, Klebe G, Diederich F. Sugar Acetonides are a Superior Motif for Addressing the Large, Solvent-Exposed Ribose-33 Pocket of tRNA-Guanine Transglycosylase. Chemistry 2018; 24:9957-9967. [PMID: 29939431 DOI: 10.1002/chem.201801756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/10/2018] [Indexed: 11/09/2022]
Abstract
The intestinal disease shigellosis caused by Shigella bacteria affects over 120 million people annually. There is an urgent demand for new drugs as resistance against common antibiotics emerges. Bacterial tRNA-guanine transglycosylase (TGT) is a druggable target and controls the pathogenicity of Shigella flexneri. We report the synthesis of sugar-functionalized lin-benzoguanines addressing the ribose-33 pocket of TGT from Zymomonas mobilis. Ligand binding was analyzed by isothermal titration calorimetry and X-ray crystallography. Pocket occupancy was optimized by variation of size and protective groups of the sugars. The participation of a polycyclic water-cluster in the recognition of the sugar moiety was revealed. Acetonide-protected ribo- and psicofuranosyl derivatives are highly potent, benefiting from structural rigidity, good solubility, and metabolic stability. We conclude that sugar acetonides have a significant but not yet broadly recognized value in drug development.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Elisabeth Schäfer
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Andreas Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Frederik R Ehrmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Anatol Schwab
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Thomas Rossolini
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Daniel Zimmerli
- F. Hoffmann-La Roche Ltd, Discovery Technologies, Bldg 92, 4070, Basel, Switzerland
| | - Björn Wagner
- F. Hoffmann-La Roche Ltd, Discovery Technologies, Bldg 92, 4070, Basel, Switzerland
| | - Hamina Daff
- F. Hoffmann-La Roche Ltd, Discovery Technologies, Bldg 92, 4070, Basel, Switzerland
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| |
Collapse
|
17
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
18
|
Ehrmann FR, Stojko J, Metz A, Debaene F, Barandun LJ, Heine A, Diederich F, Cianférani S, Reuter K, Klebe G. Soaking suggests "alternative facts": Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition. PLoS One 2017; 12:e0175723. [PMID: 28419165 PMCID: PMC5395182 DOI: 10.1371/journal.pone.0175723] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023] Open
Abstract
For the efficient pathogenesis of Shigella, the causative agent of bacillary dysentery, full functionality of tRNA-guanine transglycosylase (TGT) is mandatory. TGT performs post-transcriptional modifications of tRNAs in the anticodon loop taking impact on virulence development. This suggests TGT as a putative target for selective anti-shigellosis drug therapy. Since bacterial TGT is only functional as homodimer, its activity can be inhibited either by blocking its active site or by preventing dimerization. Recently, we discovered that in some crystal structures obtained by soaking the full conformational adaptation most likely induced in solution upon ligand binding is not displayed. Thus, soaked structures may be misleading and suggest irrelevant binding modes. Accordingly, we re-investigated these complexes by co-crystallization. The obtained structures revealed large conformational rearrangements not visible in the soaked complexes. They result from spatial perturbations in the ribose-34/phosphate-35 recognition pocket and, consequently, an extended loop-helix motif required to prevent access of water molecules into the dimer interface loses its geometric integrity. Thermodynamic profiles of ligand binding in solution indicate favorable entropic contributions to complex formation when large conformational adaptations in the dimer interface are involved. Native MS titration experiments reveal the extent to which the homodimer is destabilized in the presence of each inhibitor. Unexpectedly, one ligand causes a complete rearrangement of subunit packing within the homodimer, never observed in any other TGT crystal structure before. Likely, this novel twisted dimer is catalytically inactive and, therefore, suggests that stabilizing this non-productive subunit arrangement may be used as a further strategy for TGT inhibition.
Collapse
Affiliation(s)
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - François Debaene
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Zheng C, Black KA, Dos Santos PC. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions. Biomolecules 2017; 7:biom7010033. [PMID: 28327539 PMCID: PMC5372745 DOI: 10.3390/biom7010033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27101, USA.
| | | | | |
Collapse
|
20
|
Schweizer U, Bohleber S, Fradejas-Villar N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 2017; 14:1197-1208. [PMID: 28277934 PMCID: PMC5699536 DOI: 10.1080/15476286.2017.1294309] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Base 37 in tRNA, 3′-adjacent to the anticodon, is occupied by a purine base that is thought to stabilize codon recognition by stacking interactions on the first Watson-Crick base pair. If the first codon position forms an A.U or U.A base pair, the purine is likely further modified in all domains of life. One of the first base modifications found in tRNA is N6-isopentenyl adenosine (i6A) present in a fraction of tRNAs in bacteria and eukaryotes, which can be further modified to 2-methyl-thio-N6-isopentenyladenosine (ms2i6A) in a subset of tRNAs. Homologous tRNA isopentenyl transferase enzymes have been identified in bacteria (MiaA), yeast (Mod5, Tit1), roundworm (GRO-1), and mammals (TRIT1). In eukaryotes, isopentenylation of cytoplasmic and mitochondrial tRNAs is mediated by products of the same gene. Accordingly, a patient with homozygous mutations in TRIT1 has mitochondrial disease. The role of i6A in a subset of tRNAs in gene expression has been linked with translational fidelity, speed of translation, skewed gene expression, and non-sense suppression. This review will not cover the action of i6A as a cytokinin in plants or the potential function of Mod5 as a prion in yeast.
Collapse
Affiliation(s)
- Ulrich Schweizer
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Simon Bohleber
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Noelia Fradejas-Villar
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|
21
|
Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle. Front Mol Biosci 2016; 3:61. [PMID: 27747215 PMCID: PMC5041530 DOI: 10.3389/fmolb.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino Camerino, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consilglio Nazionale Delle Richerche Roma, Italy
| | - Bianca Colonna
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| |
Collapse
|
22
|
Aubee JI, Olu M, Thompson KM. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation. RNA (NEW YORK, N.Y.) 2016; 22:729-742. [PMID: 26979278 PMCID: PMC4836647 DOI: 10.1261/rna.053165.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The translation of rpoS(σ(S)), the general stress/stationary phase sigma factor, is tightly regulated at the post-transcriptional level by several factors via mechanisms that are not clearly defined. One of these factors is MiaA, the enzyme necessary for the first step in theN(6)-isopentyl-2-thiomethyl adenosinemethyl adenosine 37 (ms(2)i(6)A37) tRNA modification. We tested the hypothesis that an elevated UUX-Leucine/total leucine codon ratio can be used to identify transcripts whose translation would be sensitive to loss of the MiaA-dependent modification. We identified iraPas another candidate MiaA-sensitive gene, based on the UUX-Leucine/total leucine codon ratio. AniraP-lacZ fusion was significantly decreased in the abse nce of MiaA, consistent with our predictive model. To determine the role of MiaA in UUX-Leucine decoding in rpoS and iraP, we measured β-galactosidase-specific activity of miaA(-)rpo Sandira P translational fusions upon overexpression of leucine tRNAs. We observed suppression of the MiaA effect on rpoS, and notira P, via overexpression of tRNA(LeuX)but not tRNA(LeuZ) We also tested the hypothesis that the MiaA requirement for rpoS and iraP translation is due to decoding of UUX-Leucine codons within the rpoS and iraP transcripts, respectively. We observed a partial suppression of the MiaA requirement for rpoS and iraP translational fusions containing one or both UUX-Leucine codons removed. Taken together, this suggests that MiaA is necessary for rpoS and iraP translation through proper decoding of UUX-Leucine codons and that rpoS and iraP mRNAs are both modification tunable transcripts (MoTTs) via the presence of the modification.
Collapse
Affiliation(s)
- Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Morenike Olu
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA Department of Biology, Howard University, Washington, DC 20059, USA
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
23
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
24
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
25
|
Sheibani-Tezerji R, Naveed M, Jehl MA, Sessitsch A, Rattei T, Mitter B. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 2015; 6:440. [PMID: 26029184 PMCID: PMC4428218 DOI: 10.3389/fmicb.2015.00440] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/23/2015] [Indexed: 11/13/2022] Open
Abstract
The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7, and S8), which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7), commensal (S8), to a beneficial, growth-promoting effect (S6) in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.
Collapse
Affiliation(s)
- Raheleh Sheibani-Tezerji
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Muhammad Naveed
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
| | - Marc-André Jehl
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Angela Sessitsch
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Birgit Mitter
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
| |
Collapse
|
26
|
Subedi BP, Corder AL, Zhang S, Foss FW, Pierce BS. Steady-state kinetics and spectroscopic characterization of enzyme-tRNA interactions for the non-heme diiron tRNA-monooxygenase, MiaE. Biochemistry 2014; 54:363-76. [PMID: 25453905 DOI: 10.1021/bi5012207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MiaE [2-methylthio-N(6)-isopentenyl-adenosine(37)-tRNA monooxygenase] isolated from Salmonella typhimurium is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide (ms(2)i(6)A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N(6)-(4-hydroxyisopentenyl)-adenosine(37). In this work, isopentenylated tRNA substrates for MiaE were produced from small RNA oligomers corresponding to the anticodon stem loop (ACSL) region of tRNA(Trp) using recombinant MiaA and dimethylallyl pyrophosphate. Steady-state rates for MiaE-catalyzed substrate hydroxylation were determined using recombinant ferredoxin (Fd) and ferredoxin reductase (FdR) to provide a catalytic electron transport chain (ETC) using NADPH as the sole electron source. As with previously reported peroxide-shunt assays, steady-state product formation retains nearly stoichiometric (>98%) E stereoselectivity. MiaE-catalyzed i(6)A-ACSL(Trp) hydroxylation follows Michaelis-Menten saturation kinetics with kcat, KM, and V/K determined to be 0.10 ± 0.01 s(-1), 9.1 ± 1.5 μM, and ∼11000 M(-1) s(-1), respectively. While vastly slower, MiaE-catalyzed hydroxylation of free i(6)A nucleoside could also be observed using the (Fd/FdR)-ETC assay. By comparison to the V/K determined for i(6)A-ACSL substrates, an ∼6000-fold increase in enzymatic efficiency is imparted by ACSL(Trp)-MiaE interactions. The impact of substrate tRNA-MiaE interactions on protein secondary structure and active site electronic configuration was investigated using circular dichroism, dual-mode X-band electron paramagnetic resonance, and Mössbauer spectroscopies. These studies demonstrate that binding of tRNA to MiaE induces a protein conformational change that influences the electronic structure of the diiron site analogous to what has been observed for various bacterial multicomponent diiron monooxygenases upon titration with their corresponding effector proteins. These observations suggest that substrate-enzyme interactions may play a pivotal role in modulating the reactivity of the MiaE diiron active site. Moreover, the simplified monomeric (α) protein configuration exhibited by MiaE provide an unparalleled opportunity to study the impact of protein-effector interactions on non-heme diiron site geometry and reactivity.
Collapse
Affiliation(s)
- Bishnu P Subedi
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | | | | | | |
Collapse
|
27
|
tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Int J Mol Sci 2014; 15:18267-80. [PMID: 25310651 PMCID: PMC4227215 DOI: 10.3390/ijms151018267] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 01/02/2023] Open
Abstract
Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modification of bacterial tRNAs, and these enzymes may complex with one another or interact individually with the tRNA. Approximately, 100 tRNA modification enzymes have been identified with glucose-inhibited division (GidA) protein and MnmE being two of the enzymes studied. In Escherichia coli and Salmonella, GidA and MnmE bind together to form a functional complex responsible for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U34) of tRNAs. Studies have implicated this pathway in a major pathogenic regulatory mechanism as deletion of gidA and/or mnmE has attenuated several bacterial pathogens like Salmonella enterica serovar Typhimurium, Pseudomonas syringae, Aeromonas hydrophila, and many others. In this review, we summarize the potential role of the GidA/MnmE tRNA modification pathway in bacterial virulence, interactions with the host, and potential therapeutic strategies resulting from a greater understanding of this regulatory mechanism.
Collapse
|
28
|
Neeb M, Czodrowski P, Heine A, Barandun LJ, Hohn C, Diederich F, Klebe G. Chasing protons: how isothermal titration calorimetry, mutagenesis, and pKa calculations trace the locus of charge in ligand binding to a tRNA-binding enzyme. J Med Chem 2014; 57:5554-65. [PMID: 24955548 DOI: 10.1021/jm500401x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Drug molecules should remain uncharged while traveling through the body and crossing membranes and should only adopt charged state upon protein binding, particularly if charge-assisted interactions can be established in deeply buried binding pockets. Such strategy requires careful pKa design and methods to elucidate whether and where protonation-state changes occur. We investigated the protonation inventory in a series of lin-benzoguanines binding to tRNA-guanine transglycosylase, showing pronounced buffer dependency during ITC measurements. Chemical modifications of the parent scaffold along with ITC measurements, pKa calculations, and site-directed mutagenesis allow elucidating the protonation site. The parent scaffold exhibits two guanidine-type portions, both likely candidates for proton uptake. Even mutually compensating effects resulting from proton release of the protein and simultaneous uptake by the ligand can be excluded. Two adjacent aspartates induce a strong pKa shift at the ligand site, resulting in protonation-state transition. Furthermore, an array of two parallel H-bonds avoiding secondary repulsive effects contributes to the high-affinity binding of the lin-benzoguanines.
Collapse
Affiliation(s)
- Manuel Neeb
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
30
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
31
|
The MiaA tRNA modification enzyme is necessary for robust RpoS expression in Escherichia coli. J Bacteriol 2013; 196:754-61. [PMID: 24296670 DOI: 10.1128/jb.01013-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The stationary phase/general stress response sigma factor RpoS (σ(S)) is necessary for adaptation and restoration of homeostasis in stationary phase. As a physiological consequence, its levels are tightly regulated at least at two levels. Multiple small regulatory RNA molecules modulate its translation, in a manner that is dependent on the RNA chaperone Hfq and the rpoS 5' untranslated region. ClpXP and the RssB adaptor protein degrade RpoS, unless it is protected by an anti-adaptor. We here find that, in addition to these posttranscriptional levels of regulation, tRNA modification also affects the steady-state levels of RpoS. We screened mutants of several RNA modification enzymes for an effect on RpoS expression and identified the miaA gene, encoding a tRNA isopentenyltransferase, as necessary for full expression of both an rpoS750-lacZ translational fusion and the RpoS protein. This effect is independent of rpoS, the regulatory RNAs, and RpoS degradation. RpoD steady-state levels were not significantly different in the absence of MiaA, suggesting that this is an RpoS-specific effect. The rpoS coding sequence is significantly enriched for leu codons that use MiaA-modified tRNAs, compared to rpoD and many other genes. Dependence on MiaA may therefore provide yet another way for RpoS levels to respond to growth conditions.
Collapse
|
32
|
Hong S, Cha I, Kim NO, Kim SH, Jung KT, Lee JH, Kim DW, Park MS, Kang YH. Enhanced Type III Secretion System Expression of Atypical Shigella flexneri II:(3)4,7(8). Osong Public Health Res Perspect 2013; 3:222-8. [PMID: 24159518 PMCID: PMC3747661 DOI: 10.1016/j.phrp.2012.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/26/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES We aimed at evaluating the virulence of atypical Shigella flexneri II:(3)4,7(8) by DNA microarray and invasion assay. METHODS We used a customized S. flexneri DNA microarray to analyze an atypical S. flexneri II:(3)4,7(8) gene expression profile and compared it with that of the S. flexneri 2b strain. RESULTS Approximately one-quarter of the atypical S. flexneri II:(3)4,7(8) strain genes showed significantly altered expression profiles; 344 genes were more than two-fold upregulated, and 442 genes were more than 0.5-fold downregulated. The upregulated genes were divided into the category of 21 clusters of orthologous groups (COGs), and the "not in COGs" category included 170 genes. This category had virulence plasmid genes, including the ipa-mxi-spa genes required for invasion of colorectal epithelium (type III secretion system). Quantitative reverse-transcription polymerase chain reaction results also showed the same pattern in two more atypical S. flexneri II:(3)4,7(8) strains. Atypical S. flexneri II:(3)4,7(8) showed four times increased invasion activity in Caco-2 cells than that of typical strains. CONCLUSION Our results provide the intracellularly regulated genes that may be important for adaptation and growth strategies of this atypical S. flexneri.
Collapse
Affiliation(s)
- Sahyun Hong
- Division of Enteric Bacterial Infections, Korea National Institute of Health, Osong, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Corder AL, Subedi BP, Zhang S, Dark AM, Foss FW, Pierce BS. Peroxide-shunt substrate-specificity for the Salmonella typhimurium O2-dependent tRNA modifying monooxygenase (MiaE). Biochemistry 2013; 52:6182-96. [PMID: 23906247 DOI: 10.1021/bi4000832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Post-transcriptional modifications of tRNA are made to structurally diversify tRNA. These modifications alter noncovalent interactions within the ribosomal machinery, resulting in phenotypic changes related to cell metabolism, growth, and virulence. MiaE is a carboxylate bridged, nonheme diiron monooxygenase, which catalyzes the O2-dependent hydroxylation of a hypermodified-tRNA nucleoside at position 37 (2-methylthio-N(6)-isopentenyl-adenosine(37)-tRNA) [designated ms(2)i(6)A37]. In this work, recombinant MiaE was cloned from Salmonella typhimurium , purified to homogeneity, and characterized by UV-visible and dual-mode X-band EPR spectroscopy for comparison to other nonheme diiron enzymes. Additionally, three nucleoside substrate-surrogates (i(6)A, Cl(2)i(6)A, and ms(2)i(6)A) and their corresponding hydroxylated products (io(6)A, Cl(2)io(6)A, and ms(2)io(6)A) were synthesized to investigate the chemo- and stereospecificity of this enzyme. In the absence of the native electron transport chain, the peroxide-shunt was utilized to monitor the rate of substrate hydroxylation. Remarkably, regardless of the substrate (i(6)A, Cl(2)i(6)A, and ms(2)i(6)A) used in peroxide-shunt assays, hydroxylation of the terminal isopentenyl-C4-position was observed with >97% E-stereoselectivity. No other nonspecific hydroxylation products were observed in enzymatic assays. Steady-state kinetic experiments also demonstrate that the initial rate of MiaE hydroxylation is highly influenced by the substituent at the C2-position of the nucleoside base (v0/[E] for ms(2)i(6)A > i(6)A > Cl(2)i(6)A). Indeed, the >3-fold rate enhancement exhibited by MiaE for the hydroxylation of the free ms(2)i(6)A nucleoside relative to i(6)A is consistent with previous whole cell assays reporting the ms(2)io(6)A and io(6)A product distribution within native tRNA-substrates. This observation suggests that the nucleoside C2-substituent is a key point of interaction regulating MiaE substrate specificity.
Collapse
Affiliation(s)
- Andra L Corder
- Biophysical/Bioinorganic Group and ‡Synthetic Organic Group, Department of Chemistry and Biochemistry, College of Science, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | | | | | | | | |
Collapse
|
34
|
Immekus F, Barandun LJ, Betz M, Debaene F, Petiot S, Sanglier-Cianferani S, Reuter K, Diederich F, Klebe G. Launching spiking ligands into a protein-protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme. ACS Chem Biol 2013; 8:1163-78. [PMID: 23534552 DOI: 10.1021/cb400020b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apart from competitive active-site inhibition of protein function, perturbance of protein-protein interactions by small molecules in oligodomain enzymes opens new perspectives for innovative therapeutics. tRNA-guanine transglycosylase (TGT), a potential target to treat shigellosis, is active only as the homodimer. Consequently, disruption of the dimer interface by small molecules provides a novel inhibition mode. A special feature of this enzyme is the short distance between active site and rim of the dimer interface. This suggests design of expanded active-site inhibitors decorated with rigid, needle-type substituents to spike into potential hot spots of the interaction interface. Ligands with attached ethinyl-type substituents have been synthesized and characterized by Kd measurements, crystallography, noncovalent mass spectrometry, and computer simulations. In contrast to previously determined crystal structures with nonextended active-site inhibitors, a well-defined loop-helix motif, involved in several contacts across the dimer interface, falls apart and suggests enhanced flexibility once the spiking ligands are bound. Mass spectrometry indicates significant destabilization but not full disruption of the complexed TGT homodimer in solution. As directed interactions of the loop-helix motif obviously do not determine dimer stability, a structurally conserved hydrophobic patch composed of several aromatic amino acids is suggested as interaction hot spot. The residues of this patch reside on a structurally highly conserved helix-turn-helix motif, which remains unaffected by the bound spiking ligands. Nevertheless, it is shielded from solvent access by the loop-helix motif that becomes perturbed upon binding of the spiking ligands, which serves as a possible explanation for reduced interface stability.
Collapse
Affiliation(s)
- Florian Immekus
- Institut für Pharmazeutische
Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Luzi Jakob Barandun
- Laboratorium für Organische
Chemie, ETH Zurich Hönggerberg, HCI, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Michael Betz
- Institut für Pharmazeutische
Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - François Debaene
- Laboratoire de Spectrométrie de Masse Bio-Organique de Strasbourg, 25, rue Becquerel,
67087 Strasbourg Cedex 2, France
| | - Stéphanie Petiot
- Laboratoire de Spectrométrie de Masse Bio-Organique de Strasbourg, 25, rue Becquerel,
67087 Strasbourg Cedex 2, France
| | - Sarah Sanglier-Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique de Strasbourg, 25, rue Becquerel,
67087 Strasbourg Cedex 2, France
| | - Klaus Reuter
- Institut für Pharmazeutische
Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - François Diederich
- Laboratorium für Organische
Chemie, ETH Zurich Hönggerberg, HCI, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Gerhard Klebe
- Institut für Pharmazeutische
Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
35
|
Caballero VC, Toledo VP, Maturana C, Fisher CR, Payne SM, Salazar JC. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator. BMC Microbiol 2012; 12:226. [PMID: 23035718 PMCID: PMC3542578 DOI: 10.1186/1471-2180-12-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/11/2012] [Indexed: 12/01/2022] Open
Abstract
Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.
Collapse
Affiliation(s)
- Valeria C Caballero
- Program of Microbiology and Mycology, Institute of Biomedical Science-ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
36
|
Brückl T, Globisch D, Wagner M, Müller M, Carell T. Parallel isotope-based quantification of modified tRNA nucleosides. Angew Chem Int Ed Engl 2009; 48:7932-4. [PMID: 19746495 DOI: 10.1002/anie.200902740] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tobias Brückl
- Center for Integrated Protein Science (CiPSM), Department of Chemistry and Biochemistry, LMU Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
37
|
Brückl T, Globisch D, Wagner M, Müller M, Carell T. Parallele isotopenbasierte Quantifizierung modifizierter tRNA-Nucleoside. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Deng X, Xiao Y, Lan L, Zhou JM, Tang X. Pseudomonas syringae pv. phaseolicola Mutants Compromised for type III secretion system gene induction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:964-976. [PMID: 19589072 DOI: 10.1094/mpmi-22-8-0964] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pseudomonas syringae bacteria utilize the type III secretion system (T3SS) to deliver effector proteins into host cells. The T3SS and T3 effector genes (together called the T3 genes hereafter) are repressed in nutrient-rich medium but rapidly induced after the bacteria are transferred into minimal medium or infiltrated into plants. The induction of the T3 genes is mediated by HrpL, an alternative sigma factor that recognizes the conserved hrp box motif in the T3 gene promoters. The induction of hrpL is mediated by HrpR and HrpS, two homologous proteins that bind the hrpL promoter. To identify additional genes involved in regulation of the T3 genes, we screened for the P. syringae pv. phaseolicola NPS3121 transposon-tagged mutants with reduced induction of avrPto-luc and hrpL-luc, reporter genes for promoters of effector gene avrPto and hrpL, respectively. Determination of the transposon-insertion sites revealed genes with putative functions in signal transduction and transcriptional regulation, protein synthesis, and basic metabolism. A transcriptional regulator (AefR(NPS3121)) was identified in our screen that is homologous to AefR of P. syringae pv. syringae strain B728a, a regulator of the quorum-sensing signal and epiphytic traits, but was not known to regulate the T3 genes. AefR(NPS3121) in P. syringae pv. phaseolicola NPS3121 and AefR in P. syringae pv. syringae B728a behave similarly in regulating the quorum-sensing signal in liquid medium but differ in regulating the epiphytic traits, including swarming motility, leaf entry, and epiphytic survival.
Collapse
Affiliation(s)
- Xin Deng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | |
Collapse
|
39
|
Durand JMB, Björk GR. Metabolic control through ornithine and uracil of epithelial cell invasion by Shigella flexneri. Microbiology (Reading) 2009; 155:2498-2508. [DOI: 10.1099/mic.0.028191-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This paper shows that compounds in defined growth media strongly influence the expression of the effectors of virulence in the human invasive pathogen Shigella flexneri. Ornithine in conjunction with uracil reduces the haemolytic ability of wild-type cultures more than 20-fold and the expression of the type III secretion system more than 8-fold, as monitored by an mxiC : : lacZ transcriptional reporter. mxiC gene expression is further decreased by the presence of methionine or branched-chain amino acids (15-fold or 25-fold at least, respectively). Lysine and a few other aminated metabolites (cadaverine, homoserine and diaminopimelate) counteract the ornithine-mediated inhibition of haemolytic activity and of the expression of a transcriptional activator virF reporter. The complete abolition of invasion of HeLa cells by wild-type bacteria by ornithine, uracil, methionine or branched-chain amino acids establishes that these metabolites are powerful effectors of virulence. These findings provide a direct connection between metabolism and virulence in S. flexneri. The inhibitory potential exhibited by the nutritional environment is stronger than temperature, the classical environmental effector of virulence. The implications and practical application of this finding in prophylaxis and treatment of shigellosis are discussed.
Collapse
Affiliation(s)
| | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, S-90 187 Umeå, Sweden
| |
Collapse
|
40
|
Broco M, Marques A, Oliveira S, Rodrigues-Pousada C. Characterisation of the 11 Kb DNA region adjacent to the gene encodingDesulfovibrio gigasflavoredoxin. ACTA ACUST UNITED AC 2009; 16:207-16. [PMID: 16147877 DOI: 10.1080/10425170500088296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Flavoredoxin is an FMN binding protein that functions as an electron carrier in the sulphate metabolism of Desulfovibrio gigas. The neighbouring DNA regions of the gene encoding flavoredoxin were sequenced and characterised. Transcript analysis of the flavoredoxin gene resulted in a positive band corresponding to the size of the coding region, suggesting that flavoredoxin is encoded by a monocystronic unit, as previously suggested by sequence analysis. Analysis of the adjacent DNA regions revealed several interesting genes. The sequenced DNA regions contain nine open reading frames (ORFs) organised in two polycystronic and two monocystronic units. These genes encode proteins involved in different metabolic pathways, namely in DNA methylation, tRNA and rRNA modification, mRNA metabolism, cell division, CoA synthesis and lipoprotein transport across the membrane.
Collapse
Affiliation(s)
- Manuela Broco
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida República (EAN), Oeiras, Portugal
| | | | | | | |
Collapse
|
41
|
The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J 2008; 27:2194-203. [PMID: 18668122 PMCID: PMC2500205 DOI: 10.1038/emboj.2008.154] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/08/2022] Open
Abstract
The wobble base of Escherichia coli elongator tRNA(Met) is modified to N(4)-acetylcytidine (ac(4)C), which is thought to ensure the precise recognition of the AUG codon by preventing misreading of near-cognate AUA codon. By employing genome-wide screen of uncharacterized genes in Escherichia coli ('ribonucleome analysis'), we found the ypfI gene, which we named tmcA (tRNA(Met) cytidine acetyltransferase), to be responsible for ac(4)C formation. TmcA is an enzyme that contains a Walker-type ATPase domain in its N-terminal region and an N-acetyltransferase domain in its C-terminal region. Recombinant TmcA specifically acetylated the wobble base of E. coli elongator tRNA(Met) by utilizing acetyl-coenzyme A (CoA) and ATP (or GTP). ATP/GTP hydrolysis by TmcA is stimulated in the presence of acetyl-CoA and tRNA(Met). A mutation study revealed that E. coli TmcA strictly discriminates elongator tRNA(Met) from the structurally similar tRNA(Ile) by mainly recognizing the C27-G43 pair in the anticodon stem. Our findings reveal an elaborate mechanism embedded in tRNA(Met) and tRNA(Ile) for the accurate decoding of AUA/AUG codons on the basis of the recognition of wobble bases by the respective RNA-modifying enzymes.
Collapse
|
42
|
Kaminska KH, Baraniak U, Boniecki M, Nowaczyk K, Czerwoniec A, Bujnicki JM. Structural bioinformatics analysis of enzymes involved in the biosynthesis pathway of the hypermodified nucleoside ms(2)io(6)A37 in tRNA. Proteins 2008; 70:1-18. [PMID: 17910062 DOI: 10.1002/prot.21640] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TRNAs from all organisms contain posttranscriptionally modified nucleosides, which are derived from the four canonical nucleosides. In most tRNAs that read codons beginning with U, adenosine in the position 37 adjacent to the 3' position of the anticodon is modified to N(6)-(Delta(2)-isopentenyl) adenosine (i(6)A). In many bacteria, such as Escherichia coli, this residue is typically hypermodified to N(6)-isopentenyl-2-thiomethyladenosine (ms(2)i(6)A). In a few bacteria, such as Salmonella typhimurium, ms(2)i(6)A can be further hydroxylated to N(6)-(cis-4-hydroxyisopentenyl)-2-thiomethyladenosine (ms(2)io(6)A). Although the enzymes that introduce the respective modifications (prenyltransferase MiaA, methylthiotransferase MiaB, and hydroxylase MiaE) have been identified, their structures remain unknown and sequence-function relationships remain obscure. We carried out sequence analysis and structure prediction of MiaA, MiaB, and MiaE, using the protein fold-recognition approach. Three-dimensional models of all three proteins were then built using a new modeling protocol designed to overcome uncertainties in the alignments and divergence between the templates. For MiaA and MiaB, the catalytic core was built based on the templates from the P-loop NTPase and Radical-SAM superfamilies, respectively. For MiaB, we have also modeled the C-terminal TRAM domain and the newly predicted N-terminal flavodoxin-fold domain. For MiaE, we confidently predict that it shares the three-dimensional fold with the ferritin-like four-helix bundle proteins and that it has a similar active site and mechanism of action to diiron carboxylate enzymes, in particular, methane monooxygenase (E.C.1.14.13.25) that catalyses the biological hydroxylation of alkanes. Our models provide the first structural platform for enzymes involved in the biosynthesis of i(6)A, ms(2)i(6)A, and ms(2)io(6)A, explain the data available from the literature and will help to design further experiments and interpret their results.
Collapse
Affiliation(s)
- Katarzyna H Kaminska
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, PL-61-614 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Zenk SF, Stabat D, Hodgkinson JL, Veenendaal AKJ, Johnson S, Blocker AJ. Identification of minor inner-membrane components of the Shigella type III secretion system 'needle complex'. MICROBIOLOGY-SGM 2007; 153:2405-2415. [PMID: 17660405 DOI: 10.1099/mic.0.2007/007781-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type III secretion systems (T3SSs or secretons) are central virulence factors of many Gram-negative bacteria, used to inject protein effectors of virulence into eukaryotic host cells. Their overall morphology, consisting of a cytoplasmic region, an inner- and outer-membrane section and an extracellular needle, is conserved in various species. A portion of the secreton, containing the transmembrane regions and needle, has been isolated biochemically and termed the 'needle complex' (NC). However, there are still unsolved questions concerning the nature and relative arrangement of the proteins assembling the NC. Until these are resolved, the mode of function of the NC cannot be clarified. This paper describes an affinity purification method that enables highly efficient purification of Shigella NCs under near-physiological conditions. Using this method, three new minor components of the NC were identified by mass spectrometry: IpaD, a known component of the needle tip complex, and two predicted components of its central inner-membrane export apparatus, Spa40 and Spa24. A further minor component of the NC, MxiM, is only detected by immunoblotting. MxiM is a 'pilotin'-type protein for the outer-membrane 'secretin' ring formed of MxiD. As expected, it localized to the outer rim of the upper ring of NCs, validating the other findings.
Collapse
Affiliation(s)
- Sebastian F Zenk
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - David Stabat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Julie L Hodgkinson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Andreas K J Veenendaal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ariel J Blocker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
44
|
Signature-tagged mutagenesis of Edwardsiella ictaluri identifies virulence-related genes, including a salmonella pathogenicity island 2 class of type III secretion systems. Appl Environ Microbiol 2007; 73:7934-46. [PMID: 17965213 DOI: 10.1128/aem.01115-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Edwardsiella ictaluri is the leading cause of mortality in channel catfish culture, but little is known about its pathogenesis. The use of signature-tagged mutagenesis in a waterborne infection model resulted in the identification of 50 mutants that were unable to infect/survive in catfish. Nineteen had minitransposon insertions in miscellaneous genes in the chromosome, 10 were in genes that matched to hypothetical proteins, and 13 were in genes that had no significant matches in the NCBI databases. Eight insertions were in genes encoding proteins associated with virulence in other pathogens, including three in genes involved in lipopolysaccharide biosynthesis, three in genes involved in type III secretion systems (TTSS), and two in genes involved in urease activity. With the use of a sequence from a lambda clone carrying several TTSS genes, Blastn analysis of the partially completed E. ictaluri genome identified a 26,135-bp pathogenicity island containing 33 genes of a TTSS with similarity to the Salmonella pathogenicity island 2 class of TTSS. The characterization of a TTSS apparatus mutant indicated that it retained its ability to invade catfish cell lines and macrophages but was defective in intracellular replication. The mutant also invaded catfish tissues in numbers equal to those of invading wild-type E. ictaluri bacteria but replicated poorly and was slowly cleared from the tissues, while the wild type increased in number.
Collapse
|
45
|
Esberg A, Huang B, Johansson MJO, Byström AS. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 2006; 24:139-48. [PMID: 17018299 DOI: 10.1016/j.molcel.2006.07.031] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 06/20/2006] [Accepted: 07/28/2006] [Indexed: 12/18/2022]
Abstract
The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis, and formation of modified wobble uridines in tRNA. Therefore it was important to clarify whether Elongator has three distinct functions or whether it regulates one key process that leads to multiple downstream effects. Here, we show that the phenotypes of Elongator-deficient cells linking the complex to transcription and exocytosis are suppressed by increased expression of two tRNA species. Elongator is required for formation of the mcm(5) group of the modified wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) in these tRNAs. Hence, in cells with normal levels of these tRNAs, presence of mcm(5)s(2)U is crucial for posttranscriptional expression of gene products important in transcription and exocytosis. Our results indicate that the physiologically relevant function of the evolutionary-conserved Elongator complex is in formation of modified nucleosides in tRNAs.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
46
|
Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R. tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Mol Microbiol 2006; 59:677-88. [PMID: 16390459 DOI: 10.1111/j.1365-2958.2005.04972.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zymocin-induced cell death in Saccharomyces cerevisiae requires the toxin-target (TOT) effector Elongator, a protein complex with functions in transcription, exocytosis and tRNA modification. In line with the latter, trm9Delta cells lacking a tRNA methylase specific for wobble uridine (U(34)) residues survive zymocin and in excess, the Trm9 substrate tRNA(Glu) copies zymocin protection of Elongator mutants. Phenotypes typical of a tot3/elp3Delta Elongator mutant are absent from trm9Delta cells but copied in a tot3Deltatrm9Delta double mutant suggesting that Elongator acts upstream of Trm9. Consistent with Elongator-dependent tRNA modification being more important to mRNA decoding than Trm9, SUP4 and SOE1TRNA suppressors are highly sensitive to loss of Elongator and tRNA U(34) hypomodification. As Trm9 overexpression counteracts the effect of high-copy tRNA(Glu), zymocin suppression by high-copy tRNA(Glu) may reflect tRNA hypomethylation of trm9Delta cells. Thus, Trm9 methylation may enable recognition of tRNA by zymocin, a notion supported by a dramatic reduction of tRNA(Glu) levels in zymocin-treated cells and by cytotoxic zymocin residues conserved between bacterial nucleases and a tRNA modifying GTPase. In sum, Trm9 is a bona fideTOT pathway component whose methylation may be hijacked by zymocin to target tRNA function and eventually, mRNA translation.
Collapse
Affiliation(s)
- Daniel Jablonowski
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Saale, Germany
| | | | | | | | | |
Collapse
|
47
|
Huang B, Johansson MJO, Byström AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA (NEW YORK, N.Y.) 2005; 11:424-36. [PMID: 15769872 PMCID: PMC1370732 DOI: 10.1261/rna.7247705] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/06/2005] [Indexed: 05/17/2023]
Abstract
Elongator has been reported to be a histone acetyltransferase complex involved in elongation of RNA polymerase II transcription. In Saccharomyces cerevisiae, mutations in any of the six Elongator protein subunit (ELP1-ELP6) genes or the three killer toxin insensitivity (KTI11-KTI13) genes cause similar pleiotropic phenotypes. By analyzing modified nucleosides in individual tRNA species, we show that the ELP1-ELP6 and KTI11-KTI13 genes are all required for an early step in synthesis of 5-methoxycarbonylmethyl (mcm5) and 5-carbamoylmethyl (ncm5) groups present on uridines at the wobble position in tRNA. Transfer RNA immunoprecipitation experiments showed that the Elp1 and Elp3 proteins specifically coprecipitate a tRNA susceptible to formation of an mcm5 side chain, indicating a direct role of Elongator in tRNA modification. The presence of mcm5U, ncm5U, or derivatives thereof at the wobble position is required for accurate and efficient translation, suggesting that the phenotypes of elp1-elp6 and kti11-kti13 mutants could be caused by a translational defect. Accordingly, a deletion of any ELP1-ELP6 or KTI11-KTI13 gene prevents an ochre suppressor tRNA that normally contains mcm5U from reading ochre stop codons.
Collapse
Affiliation(s)
- Bo Huang
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
48
|
Ahn KS, Ha U, Jia J, Wu D, Jin S. The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. MICROBIOLOGY-SGM 2004; 150:539-547. [PMID: 14993303 DOI: 10.1099/mic.0.26652-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invasive strains of Pseudomonas aeruginosa can cause rapid host cell apoptosis by injecting the type III effector molecule ExoS. A transposon insertional mutant bank of P. aeruginosa was screened to identify P. aeruginosa genes that contribute to the ability of the bacteria to trigger host cell apoptosis. Several isolated mutants had disruptions in the fimV gene. A fimV mutant was unable to induce the expression of exoS, exoT and exsA genes under type III inducing conditions, thus exhibiting a defect in type III protein secretion. Furthermore, this mutant was defective in twitching motility, although type IV pili were present on the bacterial surface. Complementation by a fimV-containing cosmid clone restored both phenotypes to the wild-type levels. However, expression of the type III genes in the fimV mutant was not restored by the introduction of a fimV gene alone, although it restored the twitching motility. A gene downstream of fimV, encoding a tRNA pseudouridine synthase (truA) homologue, was able to complement the type III gene expression defect of the fimV mutant. Thus fimV and truA form an operon and fimV mutation has a polar effect on truA. Indeed, a truA mutant is defective in type III gene expression while its twitching motility is unaffected, and a truA clone is able to complement the type III secretion defect. Pseudouridination of tRNAs is important for tRNA structure, thereby improving the fidelity of protein synthesis and helping to maintain the proper reading frame; thus the results imply that truA controls tRNAs that are critical for the translation of type III genes or their regulators.
Collapse
Affiliation(s)
- Kyung-Seop Ahn
- Immunomodulator Laboratory, Korea Institute of Bioscience and Biotechnology, Taejon 305-600, Republic of Korea
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Unhwan Ha
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Jinghua Jia
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Donghai Wu
- Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
49
|
Kittendorf JD, Sgraja T, Reuter K, Klebe G, Garcia GA. An essential role for aspartate 264 in catalysis by tRNA-guanine transglycosylase from Escherichia coli. J Biol Chem 2003; 278:42369-76. [PMID: 12909636 DOI: 10.1074/jbc.m304323200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNA-guanine transglycosylase (TGT) catalyzes a post-transcriptional base-exchange reaction involved in the incorporation of the modified base queuine (Q) into the wobble position of certain tRNAs. Catalysis by TGT occurs through a double-displacement mechanism that involves the formation of a covalent enzyme-RNA intermediate (Kittendorf, J. D., Barcomb, L. M., Nonekowski, S. T., and Garcia, G. A. (2001) Biochemistry 40, 14123-14133). The TGT chemical mechanism requires the protonation of the displaced guanine and the deprotonation of the incoming heterocyclic base. Based on its position in the active site, it is likely that aspartate 264 is involved in these proton transfer events. To investigate this possibility, site-directed mutagenesis was employed to convert aspartate 264 to alanine, asparagine, glutamate, glutamine, lysine, and histidine. Biochemical characterization of these TGT mutants revealed that only the conservative glutamate mutant retained catalytic activity, with Km values for both tRNA and guanine 3-fold greater than those for wild-type, whereas the kcat was depressed by an order of magnitude. Furthermore, of these six TGT mutants, only the TGT(D264E) was capable of forming a TGT.RNA covalent intermediate; however, unlike wild-type TGT, only hydroxylamine is capable of cleaving the TGT(D264E).RNA covalent complex. In an effort to better understand the unique biochemical properties of the D264E TGT mutant, we solved the crystal structure of the Zymomonas mobilis TGT with the analogous mutation (D280E). The results of these studies support two roles for aspartate 264 in catalysis by TGT, protonation of the leaving guanine and deprotonation of the incoming preQ1.
Collapse
Affiliation(s)
- Jeffrey D Kittendorf
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Chuirch Street, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | |
Collapse
|
50
|
Björk GR, Nilsson K. 1-methylguanosine-deficient tRNA of Salmonella enterica serovar Typhimurium affects thiamine metabolism. J Bacteriol 2003; 185:750-9. [PMID: 12533450 PMCID: PMC142801 DOI: 10.1128/jb.185.3.750-759.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium a mutation in the purF gene encoding the first enzyme in the purine pathway blocks, besides the synthesis of purine, the synthesis of thiamine when glucose is used as the carbon source. On carbon sources other than glucose, a purF mutant does not require thiamine, since the alternative pyrimidine biosynthetic (APB) pathway is activated. This pathway feeds into the purine pathway just after the PurF biosynthetic step and upstream of the intermediate 4-aminoimidazolribotide, which is the common intermediate in purine and thiamine synthesis. The activity of this pathway is also influenced by externally added pantothenate. tRNAs from S. enterica specific for leucine, proline, and arginine contain 1-methylguanosine (m(1)G37) adjacent to and 3' of the anticodon (position 37). The formation of m(1)G37 is catalyzed by the enzyme tRNA(m(1)G37)methyltransferase, which is encoded by the trmD gene. Mutations in this gene, which result in an m(1)G37 deficiency in the tRNA, in a purF mutant mediate PurF-independent thiamine synthesis. This phenotype is specifically dependent on the m(1)G37 deficiency, since several other mutations which also affect translation fidelity and induce slow growth did not cause PurF-independent thiamine synthesis. Some antibiotics that are known to reduce the efficiency of translation also induce PurF-independent thiamine synthesis. We suggest that a slow decoding event at a codon(s) read by a tRNA(s) normally containing m(1)G37 is responsible for the PurF-independent thiamine synthesis and that this event causes a changed flux in the APB pathway.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90 187 Umeå, Sweden.
| | | |
Collapse
|