1
|
Kim S, Wang YH, Hassan A, Kim S. Re-defining how mRNA degradation is coordinated with transcription and translation in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.588412. [PMID: 38659903 PMCID: PMC11042359 DOI: 10.1101/2024.04.18.588412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In eukaryotic cells, transcription, translation, and mRNA degradation occur in distinct subcellular regions. How these mRNA processes are organized in bacteria, without employing membrane-bound compartments, remains unclear. Here, we present generalizable principles underlying coordination between these processes in bacteria. In Escherichia coli, we found that co-transcriptional degradation is rare for mRNAs except for those encoding inner membrane proteins, due to membrane localization of the main ribonuclease, RNase E. We further found, by varying ribosome binding sequences, that translation affects mRNA stability not because ribosomes protect mRNA from degradation, but because low translation leads to premature transcription termination in the absence of transcription-translation coupling. Extending our analyses to Bacillus subtilis and Caulobacter crescentus, we established subcellular localization of RNase E (or its homolog) and premature transcription termination in the absence of transcription-translation coupling as key determinants that explain differences in transcriptional and translational coupling to mRNA degradation across genes and species.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Huan Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Albur Hassan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangjin Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
G C B, Zhou P, Naha A, Gu J, Wu C. Development of a xylose-inducible promoter and riboswitch combination system for manipulating gene expression in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0066723. [PMID: 37695289 PMCID: PMC10537658 DOI: 10.1128/aem.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 09/12/2023] Open
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducer concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum. LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum. IMPORTANCE Fusobacterium nucleatum, an anaerobic bacterium prevalent in the human oral cavity, is strongly linked to periodontitis and can colonize areas beyond the oral cavity, such as the placenta and gastrointestinal tract, causing adverse pregnancy outcomes and promoting colorectal cancer growth. Given F. nucleatum's clinical significance, research is underway to develop targeted therapies to inhibit its growth or eradicate the bacterium specifically. Essential genes, crucial for bacterial survival, growth, and reproduction, are promising drug targets. A leak-free-inducible gene expression system is needed for studying these genes, enabling conditional gene knockouts and elucidating the importance of those essential genes. Our study identified lepB as the essential gene by first generating a conditional gene mutation in F. nucleatum. Combining a xylose-inducible system with a riboswitch facilitated the analysis of essential genes in F. nucleatum, paving the way for potential drug development targeting this bacterium for various clinical applications.
Collapse
Affiliation(s)
- Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Arindam Naha
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jianhua Gu
- Houston Methodist Hospital Research Institute, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
3
|
Izquierdo-Martinez A, Billini M, Miguel-Ruano V, Hernández-Tamayo R, Richter P, Biboy J, Batuecas MT, Glatter T, Vollmer W, Graumann PL, Hermoso JA, Thanbichler M. DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus. Nat Commun 2023; 14:4095. [PMID: 37433794 DOI: 10.1038/s41467-023-39783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Proteins with a catalytically inactive LytM-type endopeptidase domain are important regulators of cell wall-degrading enzymes in bacteria. Here, we study their representative DipM, a factor promoting cell division in Caulobacter crescentus. We show that the LytM domain of DipM interacts with multiple autolysins, including the soluble lytic transglycosylases SdpA and SdpB, the amidase AmiC and the putative carboxypeptidase CrbA, and stimulates the activities of SdpA and AmiC. Its crystal structure reveals a conserved groove, which is predicted to represent the docking site for autolysins by modeling studies. Mutations in this groove indeed abolish the function of DipM in vivo and its interaction with AmiC and SdpA in vitro. Notably, DipM and its targets SdpA and SdpB stimulate each other's recruitment to midcell, establishing a self-reinforcing cycle that gradually increases autolytic activity as cytokinesis progresses. DipM thus coordinates different peptidoglycan-remodeling pathways to ensure proper cell constriction and daughter cell separation.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria Billini
- Department of Biology, University of Marburg, Marburg, Germany
| | - Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Pia Richter
- Department of Biology, University of Marburg, Marburg, Germany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Peter L Graumann
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
4
|
Bibek GC, Zhou P, Naha A, Gu J, Wu C. Development of a Xylose-Inducible Promoter and Riboswitch Combination System for Manipulating Gene Expression in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538132. [PMID: 37163003 PMCID: PMC10168284 DOI: 10.1101/2023.04.24.538132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducers concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum . LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum .
Collapse
|
5
|
Zik JJ, Yoon SH, Guan Z, Stankeviciute Skidmore G, Gudoor RR, Davies KM, Deutschbauer AM, Goodlett DR, Klein EA, Ryan KR. Caulobacter lipid A is conditionally dispensable in the absence of fur and in the presence of anionic sphingolipids. Cell Rep 2022; 39:110888. [PMID: 35649364 PMCID: PMC9393093 DOI: 10.1016/j.celrep.2022.110888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 01/12/2023] Open
Abstract
Lipid A, the membrane-anchored portion of lipopolysaccharide (LPS), is an essential component of the outer membrane (OM) of nearly all Gram-negative bacteria. Here we identify regulatory and structural factors that together render lipid A nonessential in Caulobacter crescentus. Mutations in the ferric uptake regulator fur allow Caulobacter to survive in the absence of either LpxC, which catalyzes an early step of lipid A synthesis, or CtpA, a tyrosine phosphatase homolog we find is needed for wild-type lipid A structure and abundance. Alterations in Fur-regulated processes, rather than iron status per se, underlie the ability to survive when lipid A synthesis is blocked. Fitness of lipid A-deficient Caulobacter requires an anionic sphingolipid, ceramide phosphoglycerate (CPG), which also mediates sensitivity to the antibiotic colistin. Our results demonstrate that, in an altered regulatory landscape, anionic sphingolipids can support the integrity of a lipid A-deficient OM. Lipid A, the membrane-anchoring segment of lipopolysaccharide, is generally considered to be an essential component of the Gram-negative bacterial outer membrane. Zik et al. show that deletion of the transcriptional regulator fur and synthesis of the anionic sphingolipid ceramide phosphoglycerate enable Caulobacter crescentus to survive without lipid A.
Collapse
Affiliation(s)
- Justin J Zik
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Gabriele Stankeviciute Skidmore
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ridhi R Gudoor
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen M Davies
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; University of Victoria-Genome BC Proteomics Centre, Victoria, BC V8Z 7X8, Canada
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Kathleen R Ryan
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Jeennor S, Anantayanon J, Chutrakul C, Panchanawaporn S, Laoteng K. Novel pentose-regulated promoter of Aspergillus oryzae with application in controlling heterologous gene expression. BIOTECHNOLOGY REPORTS 2022; 33:e00695. [PMID: 35004236 PMCID: PMC8718821 DOI: 10.1016/j.btre.2021.e00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
A novel pentose-regulated promoter (PxyrA) identified from Aspergillus oryzae Xylose reductase promoter displayed strong regulation in gene expression of A. oryzae Inducible regulation in heterologous gene expressions in filamentous fungi Simultaneous gene expression and product optimization under PxyrA control
The potent promoter and its transcriptional control make a significant contribution to strain optimization. Using transcriptome-based approach, a novel pentose-regulated promoter of the xylose reductase gene (PxyrA) of Aspergillus oryzae was identified. The promoter analysis showed that the PxyrA was tightly regulated by pentose sugars, which xylose and xylan were favorable inducers. The PxyrA function was highly efficient as compared with the maltose-inducible promoters of A. oryzae. It also exhibited the efficient transcription induction even though certain amounts of glucose and sucrose existed in the cultures. The expression control of PxyrA was dependent on xylose consumption capacity for fungal growth. The control mode of PxyrA offers a simple operation in simultaneous gene expression and cultivation optimization in Aspergilli. This study provides a prospective development of fungal production platform using cellulosic sugars by the xylose-utilizing strains for sustainable growing in circular economy.
Collapse
|
7
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
8
|
van Teeseling MCF. Elongation at Midcell in Preparation of Cell Division Requires FtsZ, but Not MreB nor PBP2 in Caulobacter crescentus. Front Microbiol 2021; 12:732031. [PMID: 34512611 PMCID: PMC8429850 DOI: 10.3389/fmicb.2021.732031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 02/04/2023] Open
Abstract
Controlled growth of the cell wall is a key prerequisite for bacterial cell division. The existing view of the canonical rod-shaped bacterial cell dictates that newborn cells first elongate throughout their side walls using the elongasome protein complex, and subsequently use the divisome to coordinate constriction of the dividing daughter cells. Interestingly, another growth phase has been observed in between elongasome-mediated elongation and constriction, during which the cell elongates from the midcell outward. This growth phase, that has been observed in Escherichia coli and Caulobacter crescentus, remains severely understudied and its mechanisms remain elusive. One pressing open question is which role the elongasome key-component MreB plays in this respect. This study quantitatively investigates this growth phase in C. crescentus and focuses on the role of both divisome and elongasome components. This growth phase is found to initiate well after MreB localizes at midcell, although it does not require its presence at this subcellular location nor the action of key elongasome components. Instead, the divisome component FtsZ seems to be required for elongation at midcell. This study thus shines more light on this growth phase in an important model organism and paves the road to more in-depth studies.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Junior Research Group Prokaryotic Cell Biology, Department Microbial Interactions, Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany.,Department of Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
9
|
A localized adaptor protein performs distinct functions at the Caulobacter cell poles. Proc Natl Acad Sci U S A 2021; 118:2024705118. [PMID: 33753507 PMCID: PMC8020655 DOI: 10.1073/pnas.2024705118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asymmetric cell division yields two distinct daughter cells by mechanisms that underlie stem cell behavior and cellular diversity in all organisms. The bacterium Caulobacter crescentus is able to orchestrate this complex process with less than 4,000 genes. This article describes a strategy deployed by Caulobacter where a regulatory protein, PopA, is programed to perform distinct roles based on its subcellular address. We demonstrate that, depending on the availability of a second messenger molecule, PopA adopts either a monomer or dimer form. The two oligomeric forms interact with different partners at the two cell poles, playing a critical role in the degradation of a master transcription factor at one pole and flagellar assembly at the other pole. Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.
Collapse
|
10
|
The Lon Protease Links Nucleotide Metabolism with Proteotoxic Stress. Mol Cell 2020; 79:758-767.e6. [PMID: 32755596 DOI: 10.1016/j.molcel.2020.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.
Collapse
|
11
|
Xylose-Inducible Promoter Tools for Pseudomonas Species and Their Use in Implicating a Role for the Type II Secretion System Protein XcpQ in the Inhibition of Corneal Epithelial Wound Closure. Appl Environ Microbiol 2020; 86:AEM.00250-20. [PMID: 32414795 DOI: 10.1128/aem.00250-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Tunable control of gene expression is an invaluable tool for biological experiments. In this study, we describe a new xylose-inducible promoter system and evaluate it in both Pseudomonas aeruginosa and Pseudomonas fluorescens The Pxut promoter, derived from the P. fluorescens xut operon, was incorporated into a broad-host-range pBBR1-based plasmid and was compared to the Escherichia coli-derived PBAD promoter using gfp as a reporter. Green fluorescent protein (GFP) fluorescence from the Pxut promoter was inducible in both Pseudomonas species, but not in E. coli, which may facilitate the cloning of genes toxic to E. coli to generate plasmids. The Pxut promoter was activated at a lower inducer concentration than PBAD in P. fluorescens, and higher gfp levels were achieved using Pxut Flow cytometry analysis indicated that Pxut was leakier than PBAD in the Pseudomonas species tested but was expressed in a higher proportion of cells when induced. d-Xylose as a sole carbon source did not support the growth of P. aeruginosa or P. fluorescens and is less expensive than many other commonly used inducers, which could facilitate large-scale applications. The efficacy of this system was demonstrated by its use to reveal a role for the P. aeruginosa type II secretion system gene xcpQ in bacterial inhibition of corneal epithelial cell wound closure. This study introduces a new inducible promoter system for gene expression for use in Pseudomonas species.IMPORTANCE Pseudomonas species are enormously important in human infections, in biotechnology, and as model systems for investigating basic science questions. In this study, we have developed a xylose-inducible promoter system, evaluated it in P. aeruginosa and P. fluorescens, and found it to be suitable for the strong induction of gene expression. Furthermore, we have demonstrated its efficacy in controlled gene expression to show that a type II secretion system protein from P. aeruginosa, XcpQ, is important for host-pathogen interactions in a corneal wound closure model.
Collapse
|
12
|
Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. PLoS Genet 2020; 16:e1008724. [PMID: 32324740 PMCID: PMC7200025 DOI: 10.1371/journal.pgen.1008724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/05/2020] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The Alphaproteobacteria show a remarkable diversity of cell cycle-dependent developmental patterns, which are governed by the conserved CtrA pathway. Its central component CtrA is a DNA-binding response regulator that is controlled by a complex two-component signaling network, mediating distinct transcriptional programs in the two offspring. The CtrA pathway has been studied intensively and was shown to consist of an upstream part that reads out the developmental state of the cell and a downstream part that integrates the upstream signals and mediates CtrA phosphorylation. However, the role of this circuitry in bacterial diversification remains incompletely understood. We have therefore investigated CtrA regulation in the morphologically complex stalked budding alphaproteobacterium Hyphomonas neptunium. Compared to relatives dividing by binary fission, H. neptunium shows distinct changes in the role and regulation of various pathway components. Most notably, the response regulator DivK, which normally links the upstream and downstream parts of the CtrA pathway, is dispensable, while downstream components such as the pseudokinase DivL, the histidine kinase CckA, the phosphotransferase ChpT and CtrA are essential. Moreover, CckA is compartmentalized to the nascent bud without forming distinct polar complexes and CtrA is not regulated at the level of protein abundance. We show that the downstream pathway controls critical functions such as replication initiation, cell division and motility. Quantification of the signal flow through different nodes of the regulatory cascade revealed that the CtrA pathway is a leaky pipeline and must involve thus-far unidentified factors. Collectively, the quantitative system-level analysis of CtrA regulation in H. neptunium points to a considerable evolutionary plasticity of cell cycle regulation in alphaproteobacteria and leads to hypotheses that may also hold in well-established model organisms such as Caulobacter crescentus. Bacteria show a variety of morphologies and life cycles. This is especially true for members of the Alphaproteobacteria, a bacterial class of considerable ecological, medical, and biotechnological importance. The alphaproteobacterial cell cycle is regulated by a conserved regulatory pathway mediated by CtrA, a DNA-binding response regulator that acts as a transcriptional regulator and repressor of replication initiation. CtrA controls the expression of many genes with critical roles in cell growth, division, and differentiation. The contribution of changes in the CtrA regulatory network to the diversification of alphaproteobacterial species is still incompletely understood. Therefore, we comprehensively studied CtrA regulation in the stalked budding bacterium Hyphomonas neptunium, a morphologically complex species that multiplies by forming buds at the end of a stalk-like cellular extension. Our results show that this distinct mode of growth is accompanied by marked differences in the importance and subcellular localization of several CtrA pathway components. Moreover, quantitative analysis of the signal flow through the pathway indicates that its different nodes are less tightly connected than previously thought, suggesting the existence of so-far unidentified factors. Our results indicate a considerable plasticity of the CtrA regulatory network and reveal novel features that may also apply to other alphaproteobacterial species.
Collapse
|
13
|
Valencia AO, Braz VS, Magalhães M, Galhardo RS. Role of error-prone DNA polymerases in spontaneous mutagenesis in Caulobacter crescentus. Genet Mol Biol 2020; 43:e20180283. [PMID: 31479094 PMCID: PMC7198004 DOI: 10.1590/1678-4685-gmb-2018-0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/04/2019] [Indexed: 11/22/2022] Open
Abstract
Spontaneous mutations are important players in evolution. Nevertheless, there is a paucity of information about the mutagenic processes operating in most bacterial species. In this work, we implemented two forward mutational markers for studies in Caulobacter crescentus. We confirmed previous results in which A:T → G:C transitions are the most prevalent type of spontaneous base substitutions in this organism, although there is considerable deviation from this trend in one of the loci analyzed. We also investigated the role of dinB and imuC, encoding error-prone DNA polymerases, in spontaneous mutagenesis in this GC-rich organism. Both dinB and imuC mutant strains show comparable mutation rates to the parental strain. Nevertheless, both strains show differences in the base substitution patterns, and the dinB mutant strain shows a striking reduction in the number of spontaneous -1 deletions and an increase in C:G → T:A transitions in both assays.
Collapse
Affiliation(s)
- Alexy O Valencia
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Vânia S Braz
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Magna Magalhães
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Zhao Z, Xian M, Liu M, Zhao G. Biochemical routes for uptake and conversion of xylose by microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:21. [PMID: 32021652 PMCID: PMC6995148 DOI: 10.1186/s13068-020-1662-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 05/23/2023]
Abstract
Xylose is a major component of lignocellulose and the second most abundant sugar present in nature. Efficient utilization of xylose is required for the development of economically viable processes to produce biofuels and chemicals from biomass. However, there are still some bottlenecks in the bioconversion of xylose, including the fact that some microorganisms cannot assimilate xylose naturally and that the uptake and metabolism of xylose are inhibited by glucose, which is usually present with xylose in lignocellulose hydrolysate. To overcome these issues, numerous efforts have been made to discover, characterize, and engineer the transporters and enzymes involved in xylose utilization to relieve glucose inhibition and to develop recombinant microorganisms to produce fuels and chemicals from xylose. Here we describe a recent advancement focusing on xylose-utilizing pathways, biosynthesis of chemicals from xylose, and engineering strategies used to improve the conversion efficiency of xylose.
Collapse
Affiliation(s)
- Zhe Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
15
|
Hartl J, Kiefer P, Kaczmarczyk A, Mittelviefhaus M, Meyer F, Vonderach T, Hattendorf B, Jenal U, Vorholt JA. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat Metab 2020; 2:153-166. [PMID: 32090198 PMCID: PMC7035108 DOI: 10.1038/s42255-019-0166-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Cell cycle progression requires the coordination of cell growth, chromosome replication, and division. Consequently, a functional cell cycle must be coupled with metabolism. However, direct measurements of metabolome dynamics remained scarce, in particular in bacteria. Here, we describe an untargeted metabolomics approach with synchronized Caulobacter crescentus cells to monitor the relative abundance changes of ~400 putative metabolites as a function of the cell cycle. While the majority of metabolite pools remains homeostatic, ~14% respond to cell cycle progression. In particular, sulfur metabolism is redirected during the G1-S transition, and glutathione levels periodically change over the cell cycle with a peak in late S phase. A lack of glutathione perturbs cell size by uncoupling cell growth and division through dysregulation of KefB, a K+/H+ antiporter. Overall, we here describe the impact of the C. crescentus cell cycle progression on metabolism, and in turn relate glutathione and potassium homeostasis to timely cell division.
Collapse
Affiliation(s)
- Johannes Hartl
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland.
| | - Patrick Kiefer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | | | | | - Fabian Meyer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Thomas Vonderach
- ETH Zurich, Laboratory of Inorganic Chemistry, Zurich, Switzerland
| | - Bodo Hattendorf
- ETH Zurich, Laboratory of Inorganic Chemistry, Zurich, Switzerland
| | - Urs Jenal
- Biozentrum of the University of Basel, Basel, Switzerland
| | | |
Collapse
|
16
|
Flagellar Mutants Have Reduced Pilus Synthesis in Caulobacter crescentus. J Bacteriol 2019; 201:JB.00031-19. [PMID: 30833355 DOI: 10.1128/jb.00031-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Surface appendages, such as flagella and type IV pili, mediate a broad range of bacterial behaviors, including motility, attachment, and surface sensing. While many species harbor both flagella and type IV pili, little is known about how or if their syntheses are coupled. Here, we show that deletions of genes encoding different flagellum machinery components result in a reduction of pilus synthesis in Caulobacter crescentus First, we show that different flagellar mutants exhibit different levels of sensitivity to a pilus-dependent phage and that fewer cells within populations of flagellar mutants make pili. Furthermore, we find that single cells within flagellar mutant populations produce fewer pili per cell. We demonstrate that these gene deletions result in reduced transcription of pilus-associated genes and have a slight but significant effect on general transcription profiles. Finally, we show that the decrease in pilus production is due to a reduction in the pool of pilin subunits that are polymerized into pilus fibers. These data demonstrate that mutations in flagellar gene components not only affect motility but also can have considerable and unexpected consequences for other aspects of cell biology.IMPORTANCE Most bacterial species synthesize surface-exposed appendages that are important for environmental interactions and survival under diverse conditions. It is often assumed that these appendages act independently of each other and that mutations in either system can be used to assess functionality in specific processes. However, we show that mutations in flagellar genes can impact the production of type IV pili, as well as alter general RNA transcriptional profiles compared to a wild-type strain. These data demonstrate that seemingly simple mutations can broadly affect cell-regulatory networks.
Collapse
|
17
|
A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile. J Bacteriol 2019; 201:JB.00711-18. [PMID: 30745377 DOI: 10.1128/jb.00711-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
Here we introduce plasmids for xylose-regulated expression and repression of genes in Clostridioides difficile The xylose-inducible expression vector allows for ∼100-fold induction of an mCherryOpt reporter gene. Induction is titratable and uniform from cell to cell. The gene repression plasmid is a CRISPR interference (CRISPRi) system based on a nuclease-defective, codon-optimized allele of the Streptococcus pyogenes Cas9 protein (dCas9) that is targeted to a gene of interest by a constitutively expressed single guide RNA (sgRNA). Expression of dCas9 is induced by xylose, allowing investigators to control the timing and extent of gene silencing, as demonstrated here by dose-dependent repression of a chromosomal gene for a red fluorescent protein (maximum repression, ∼100-fold). To validate the utility of CRISPRi for deciphering gene function in C. difficile, we knocked down the expression of three genes involved in the biogenesis of the cell envelope: the cell division gene ftsZ, the S-layer protein gene slpA, and the peptidoglycan synthase gene pbp-0712 CRISPRi confirmed known or expected phenotypes associated with the loss of FtsZ and SlpA and revealed that the previously uncharacterized peptidoglycan synthase PBP-0712 is needed for proper elongation, cell division, and protection against lysis.IMPORTANCE Clostridioides difficile has become the leading cause of hospital-acquired diarrhea in developed countries. A better understanding of the basic biology of this devastating pathogen might lead to novel approaches for preventing or treating C. difficile infections. Here we introduce new plasmid vectors that allow for titratable induction (P xyl ) or knockdown (CRISPRi) of gene expression. The CRISPRi plasmid allows for easy depletion of target proteins in C. difficile Besides bypassing the lengthy process of mutant construction, CRISPRi can be used to study the function of essential genes, which are particularly important targets for antibiotic development.
Collapse
|
18
|
Park DM, Taffet MJ. Combinatorial Sensor Design in Caulobacter crescentus for Selective Environmental Uranium Detection. ACS Synth Biol 2019; 8:807-817. [PMID: 30897331 DOI: 10.1021/acssynbio.8b00484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to detect uranium (U) through environmental monitoring is of critical importance for informing water resource protection and nonproliferation efforts. While technologies exist for environmental U detection, wide-area environmental monitoring, i.e. sampling coverage over large areas not known to possess U contamination, remains a challenging prospect that necessitates the development of novel detection approaches. Herein, we describe the development of a whole-cell U sensor by integrating two functionally independent, native U-responsive two-component signaling systems (TCS), UzcRS and UrpRS, within an AND gate circuit in the bacterium Caulobacter crescentus. Through leverage of the distinct but imperfect selectivity profiles of both TCS, this combinatorial approach enabled greater selectivity relative to a prior biosensor developed with UzcRS alone; no cross-reactivity was observed with most common environmental metals (e.g, Fe, As, Cu, Ca, Mg, Cd, Cr, Al) or the U decay-chain product Th, and the selectivity against Zn and Pb was significantly improved. In addition, integration of the UzcRS signal amplifier protein UzcY within the AND gate circuit further enhanced overall sensitivity and selectivity for U. The functionality of the sensor in an environmental context was confirmed by detection of U concentrations as low as 1 μM in groundwater samples. The results highlight the value of a combinatorial approach for constructing whole-cell sensors for the selective detection of analytes for which there are no known evolved regulators.
Collapse
Affiliation(s)
- Dan M. Park
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Michael J. Taffet
- Environmental Restoration Department (ERD), Operations and Business Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
19
|
Park DM, Overton KW, Jiao Y. The UzcRS two‐component system in
Caulobacter crescentus
integrates regulatory input from diverse auxiliary regulators. Mol Microbiol 2019; 111:678-699. [DOI: 10.1111/mmi.14180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Dan M. Park
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA USA
| | - K. Wesley Overton
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA USA
| |
Collapse
|
20
|
Mouammine A, Eich K, Frandi A, Collier J. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus. Sci Rep 2018; 8:14677. [PMID: 30279528 PMCID: PMC6168545 DOI: 10.1038/s41598-018-32660-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Cellular metabolism recently emerged as a central player modulating the bacterial cell cycle. The Alphaproteobacterium Caulobacter crescentus appears as one of the best models to study these connections, but its metabolism is still poorly characterized. Considering that it lives in oligotrophic environments, its capacity to use amino-acids is often critical for its growth. Here, we characterized the C. crescentus PutA bi-functional enzyme and showed that it is required for the utilization of proline as a carbon source. We also found that putA transcription and proline utilization by PutA are strictly dependent on the Lrp-like PutR activator. The activation of putA by PutR needs proline, which most likely acts as an effector molecule for PutR. Surprisingly, we also observed that an over-production of PutR leads to cell elongation in liquid medium containing proline, while it inhibits colony formation even in the absence of proline on solid medium. These cell division and growth defects were equally pronounced in a ΔputA mutant background, indicating that PutR can play other roles beyond the control of proline catabolism. Altogether, these findings suggest that PutR might connect central metabolism with cell cycle processes.
Collapse
Affiliation(s)
- Annabelle Mouammine
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Katharina Eich
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Antonio Frandi
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland.
| |
Collapse
|
21
|
SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus. J Microbiol 2018; 56:648-655. [DOI: 10.1007/s12275-018-8225-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
22
|
Valdehuesa KNG, Ramos KRM, Nisola GM, Bañares AB, Cabulong RB, Lee WK, Liu H, Chung WJ. Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms. Appl Microbiol Biotechnol 2018; 102:7703-7716. [PMID: 30003296 DOI: 10.1007/s00253-018-9186-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/25/2022]
Abstract
The D-xylose oxidative pathway (XOP) has recently been employed in several recombinant microorganisms for growth or for the production of several valuable compounds. The XOP is initiated by D-xylose oxidation to D-xylonolactone, which is then hydrolyzed into D-xylonic acid. D-Xylonic acid is then dehydrated to form 2-keto-3-deoxy-D-xylonic acid, which may be further dehydrated then oxidized into α-ketoglutarate or undergo aldol cleavage to form pyruvate and glycolaldehyde. This review introduces a brief discussion about XOP and its discovery in bacteria and archaea, such as Caulobacter crescentus and Haloferax volcanii. Furthermore, the current advances in the metabolic engineering of recombinant strains employing the XOP are discussed. This includes utilization of XOP for the production of diols, triols, and short-chain organic acids in Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum. Improving the D-xylose uptake, growth yields, and product titer through several metabolic engineering techniques bring some of these recombinant strains close to industrial viability. However, more developments are still needed to optimize the XOP pathway in the host strains, particularly in the minimization of by-product formation.
Collapse
Affiliation(s)
- Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Angelo B Bañares
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Rhudith B Cabulong
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
23
|
Ikawa Y, Ohnishi S, Shoji A, Furutani A, Tsuge S. Concomitant Regulation by a LacI-Type Transcriptional Repressor XylR on Genes Involved in Xylan and Xylose Metabolism and the Type III Secretion System in Rice Pathogen Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:605-613. [PMID: 29360015 DOI: 10.1094/mpmi-11-17-0277-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The hypersensitive response and pathogenicity (hrp) genes of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, encode components of the type III secretion system and are essential for virulence. Expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX; HrpG regulates hrpX and hrpA, and HrpX regulates the other hrp genes on hrpB-hrpF operons. We previously reported the sugar-dependent quantitative regulation of HrpX; the regulator highly accumulates in the presence of xylose, followed by high hrp gene expression. Here, we found that, in a mutant lacking the LacI-type transcriptional regulator XylR, HrpX accumulation and hrp gene expression were high even in the medium without xylose, reaching the similar levels present in the wild type incubated in the xylose-containing medium. XylR also negatively regulated one of two xylose isomerase genes (xylA2 but not xylA1) by binding to the motif sequence in the upstream region of the gene. Xylose isomerase is an essential enzyme in xylose metabolism and interconverts between xylose and xylulose. Our results suggest that, in the presence of xylose, inactivation of XylR leads to greater xylan and xylose utilization and, simultaneously, to higher accumulation of HrpX, followed by higher hrp gene expression in the bacterium.
Collapse
Affiliation(s)
- Yumi Ikawa
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Sayaka Ohnishi
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Akiko Shoji
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Ayako Furutani
- 2 Gene Research Center, Ibaraki University, Inashiki 300-0393, Japan
| | - Seiji Tsuge
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| |
Collapse
|
24
|
Liu M, Ding Y, Xian M, Zhao G. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli. Microb Cell Fact 2018; 17:51. [PMID: 29592804 PMCID: PMC5874992 DOI: 10.1186/s12934-018-0900-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycolate is a valuable chemical with extensive applications in many different fields. The traditional methods to synthesize glycolate are quite expensive and toxic. So, the biotechnological production of glycolate from sustainable feedstocks is of interest for its potential economic and environmental advantages. D-Xylose is the second most abundant sugar in nature and accounts for 18-30% of sugar in lignocellulose. New routes for the conversion of xylose to glycolate were explored. RESULTS Overexpression of aceA and ghrA and deletion of aceB in Escherichia coli were examined for glycolate production from xylose, but the conversion was initially ineffective. Then, a new route for glycolate production was established in E. coli by introducing NAD+-dependent xylose dehydrogenase (xdh) and xylonolactonase (xylC) from Caulobacter crescentus. The constructed engineered strain Q2562 produced 28.82 ± 0.56 g/L glycolate from xylose with 0.60 ± 0.01 g/L/h productivity and 0.38 ± 0.07 g/g xylose yield. However, 27.18 ± 2.13 g/L acetate was accumulated after fermentation. Deletions of iclR and ackA were used to overcome the acetate excretion. An ackA knockout resulted in about 66% decrease in acetate formation. The final engineered strain Q2742 produced 43.60 ± 1.22 g/L glycolate, with 0.91 ± 0.02 g/L/h productivity and 0.46 ± 0.03 g/g xylose yield. CONCLUSIONS A new route for glycolate production from xylose was established, and an engineered strain Q2742 was constructed from this new explored pathway. The engineering strain showed the highest reported productivity of glycolate to date. This research opened up a new prospect for bio-refinery of xylose and an alternative choice for industrial production of glycolate.
Collapse
Affiliation(s)
- Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Siences, Qingdao, 266101, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao, 266101, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Siences, Qingdao, 266101, China.
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Siences, Qingdao, 266101, China. .,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao, 266101, China.
| |
Collapse
|
25
|
Tien M, Fiebig A, Crosson S. Gene network analysis identifies a central post-transcriptional regulator of cellular stress survival. eLife 2018. [PMID: 29537368 PMCID: PMC5869019 DOI: 10.7554/elife.33684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells adapt to shifts in their environment by remodeling transcription. Measuring changes in transcription at the genome scale is now routine, but defining the functional significance of individual genes within large gene expression datasets remains a major challenge. We applied a network-based algorithm to interrogate publicly available gene expression data to predict genes that serve major functional roles in Caulobacter crescentus stress survival. This approach identified GsrN, a conserved small RNA that is directly activated by the general stress sigma factor, σT, and functions as a potent post-transcriptional regulator of survival across distinct conditions including osmotic and oxidative stress. Under hydrogen peroxide stress, GsrN protects cells by base pairing with the leader of katG mRNA and activating expression of KatG catalase/peroxidase protein. We conclude that GsrN convenes a post-transcriptional layer of gene expression that serves a central functional role in Caulobacter stress physiology.
Collapse
Affiliation(s)
- Matthew Tien
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
26
|
Mutations in Sugar-Nucleotide Synthesis Genes Restore Holdfast Polysaccharide Anchoring to Caulobacter crescentus Holdfast Anchor Mutants. J Bacteriol 2018; 200:JB.00597-17. [PMID: 29158242 DOI: 10.1128/jb.00597-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022] Open
Abstract
Attachment is essential for microorganisms to establish interactions with both biotic and abiotic surfaces. Stable attachment of Caulobacter crescentus to surfaces requires an adhesive polysaccharide holdfast, but the exact composition of the holdfast is unknown. The holdfast is anchored to the cell envelope by outer membrane proteins HfaA, HfaB, and HfaD. Holdfast anchor gene mutations result in holdfast shedding and reduced cell adherence. Translocation of HfaA and HfaD to the cell surface requires HfaB. The Wzx homolog HfsF is predicted to be a bacterial polysaccharide flippase. An hfsF deletion significantly reduced the amount of holdfast produced per cell and slightly reduced adherence. A ΔhfsF ΔhfaD double mutant was completely deficient in adherence. A suppressor screen that restored adhesion in the ΔhfsF ΔhfaD mutant identified mutations in three genes: wbqV, rfbB, and rmlA Both WbqV and RfbB belong to a family of nucleoside-diphosphate epimerases, and RmlA has similarity to nucleotidyltransferases. The loss of wbqV or rfbB in the ΔhfsF ΔhfaD mutant reduced holdfast shedding but did not restore holdfast synthesis to parental levels. Loss of wbqV or rfbB did not restore adherence to a ΔhfsF mutant but did restore adherence and holdfast anchoring to a ΔhfaD mutant, confirming that suppression occurs through restoration of holdfast anchoring. The adherence and holdfast anchoring of a ΔhfaA ΔhfaD mutant could be restored by wbqV or rfbB mutation, but such mutations could not suppress these phenotypes in the ΔhfaB mutant. We hypothesize that HfaB plays an additional role in holdfast anchoring or helps to translocate an unknown factor that is important for holdfast anchoring.IMPORTANCE Biofilm formation results in increased resistance to both environmental stresses and antibiotics. Caulobacter crescentus requires an adhesive holdfast for permanent attachment and biofilm formation, but the exact mechanism of polysaccharide anchoring to the cell and the holdfast composition are unknown. Here we identify novel polysaccharide genes that affect holdfast anchoring to the cell. We identify a new role for the holdfast anchor protein HfaB. This work increases our specific knowledge of the polysaccharide adhesin involved in Caulobacter attachment and the general knowledge regarding production and anchoring of polysaccharide adhesins by bacteria. This work also explores the interactions between different polysaccharide biosynthesis and secretion systems in bacteria.
Collapse
|
27
|
Zielińska A, Billini M, Möll A, Kremer K, Briegel A, Izquierdo Martinez A, Jensen GJ, Thanbichler M. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus. Mol Microbiol 2017; 106:419-438. [PMID: 28833791 DOI: 10.1111/mmi.13775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well-investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM-like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in-depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Maria Billini
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Andrea Möll
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Katharina Kremer
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany
| | - Ariane Briegel
- Divison of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Izquierdo Martinez
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Grant J Jensen
- Divison of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Thanbichler
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.,LOEWE Center for Synthetic Microbiology, Marburg 35043, Germany
| |
Collapse
|
28
|
The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA. J Bacteriol 2015; 197:3521-32. [PMID: 26324449 DOI: 10.1128/jb.00460-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It is not known how diverse bacteria regulate chromosome replication. Based on Escherichia coli studies, DnaA initiates replication and the homolog of DnaA (Hda) inactivates DnaA using the RIDA (regulatory inactivation of DnaA) mechanism that thereby prevents extra chromosome replication cycles. RIDA may be widespread, because the distantly related Caulobacter crescentus homolog HdaA also prevents extra chromosome replication (J. Collier and L. Shapiro, J Bacteriol 191:5706-5715, 2009, http://dx.doi.org/10.1128/JB.00525-09). To further study the HdaA/RIDA mechanism, we created a C. crescentus strain that shuts off hdaA transcription and rapidly clears HdaA protein. We confirm that HdaA prevents extra replication, since cells lacking HdaA accumulate extra chromosome DNA. DnaA binds nucleotides ATP and ADP, and our results are consistent with the established E. coli mechanism whereby Hda converts active DnaA-ATP to inactive DnaA-ADP. However, unlike E. coli DnaA, C. crescentus DnaA is also regulated by selective proteolysis. C. crescentus cells lacking HdaA reduce DnaA proteolysis in logarithmically growing cells, thereby implicating HdaA in this selective DnaA turnover mechanism. Also, wild-type C. crescentus cells remove all DnaA protein when they enter stationary phase. However, cells lacking HdaA retain stable DnaA protein even when they stop growing in nutrient-depleted medium that induces complete DnaA proteolysis in wild-type cells. Additional experiments argue for a distinct HdaA-dependent mechanism that selectively removes DnaA prior to stationary phase. Related freshwater Caulobacter species also remove DnaA during entry to stationary phase, implying a wider role for HdaA as a novel component of programed proteolysis. IMPORTANCE Bacteria must regulate chromosome replication, and yet the mechanisms are not completely understood and not fully exploited for antibiotic development. Based on Escherichia coli studies, DnaA initiates replication, and the homolog of DnaA (Hda) inactivates DnaA to prevent extra replication. The distantly related Caulobacter crescentus homolog HdaA also regulates chromosome replication. Here we unexpectedly discovered that unlike the E. coli Hda, the C. crescentus HdaA also regulates DnaA proteolysis. Furthermore, this HdaA proteolysis acts in logarithmically growing and in stationary-phase cells and therefore in two very different physiological states. We argue that HdaA acts to help time chromosome replications in logarithmically growing cells and that it is an unexpected component of the programed entry into stationary phase.
Collapse
|
29
|
β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proc Natl Acad Sci U S A 2014; 112:E127-36. [PMID: 25550503 DOI: 10.1073/pnas.1418450112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix.
Collapse
|
30
|
Mostafavi M, Lewis JC, Saini T, Bustamante JA, Gao IT, Tran TT, King SN, Huang Z, Chen JC. Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression. BMC Microbiol 2014; 14:295. [PMID: 25420869 PMCID: PMC4254191 DOI: 10.1186/s12866-014-0295-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
Background Genetic models have been developed in divergent branches of the class Alphaproteobacteria to help answer a wide spectrum of questions regarding bacterial physiology. For example, Sinorhizobium meliloti serves as a useful representative for investigating rhizobia-plant symbiosis and nitrogen fixation, Caulobacter crescentus for studying cell cycle regulation and organelle biogenesis, and Zymomonas mobilis for assessing the potentials of metabolic engineering and biofuel production. A tightly regulated promoter that enables titratable expression of a cloned gene in these different models is highly desirable, as it can facilitate observation of phenotypes that would otherwise be obfuscated by leaky expression. Results We compared the functionality of four promoter regions in S. meliloti (ParaA, PtauA, PrhaR, and PmelA) by constructing strains carrying fusions to the uidA reporter in their genomes and measuring beta-glucuronidase activities when they were induced by arabinose, taurine, rhamnose, or melibiose. PtauA was chosen for further study because it, and, to a lesser extent, PmelA, exhibited characteristics suitable for efficient modulation of gene expression. The levels of expression from PtauA depended on the concentrations of taurine, in both complex and defined media, in S. meliloti as well as C. crescentus and Z. mobilis. Moreover, our analysis indicated that TauR, TauC, and TauY are each necessary for taurine catabolism and substantiated their designated roles as a transcriptional activator, the permease component of an ABC transporter, and a major subunit of the taurine dehydrogenase, respectively. Finally, we demonstrated that PtauA can be used to deplete essential cellular factors in S. meliloti, such as the PleC histidine kinase and TatB, a component of the twin-arginine transport machinery. Conclusions The PtauA promoter of S. meliloti can control gene expression with a relatively inexpensive and permeable inducer, taurine, in diverse alpha-proteobacteria. Regulated expression of the same gene in different hosts can be achieved by placing both tauR and PtauA on appropriate vectors, thus facilitating inspection of conservation of gene function across species. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0295-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mina Mostafavi
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Jainee Christa Lewis
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Tanisha Saini
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | | | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Tuyet Thi Tran
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Sean Nicholas King
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Joseph C Chen
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| |
Collapse
|
31
|
Molecular toolbox for genetic manipulation of the stalked budding bacterium Hyphomonas neptunium. Appl Environ Microbiol 2014; 81:736-44. [PMID: 25398860 DOI: 10.1128/aem.03104-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species.
Collapse
|
32
|
Harris LK, Dye NA, Theriot JA. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio. Mol Microbiol 2014; 94:10.1111/mmi.12811. [PMID: 25266768 PMCID: PMC4379118 DOI: 10.1111/mmi.12811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 11/30/2022]
Abstract
Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells.
Collapse
Affiliation(s)
- Leigh K. Harris
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Natalie A. Dye
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julie A. Theriot
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Mazzon RR, Braz VS, da Silva Neto JF, do Valle Marques M. Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins. BMC Genomics 2014; 15:734. [PMID: 25168179 PMCID: PMC4176598 DOI: 10.1186/1471-2164-15-734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/21/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Intracellular zinc concentration needs to be maintained within strict limits due to its toxicity at high levels, and this is achieved by a finely regulated balance between uptake and efflux. Many bacteria use the Zinc Uptake Regulator Zur to orchestrate zinc homeostasis, but little is known regarding the transport of this metal across the bacterial outer membrane. RESULTS In this work we determined the Caulobacter crescentus Zur regulon by global transcriptional and in silico analyses. Among the genes directly repressed by Zur in response to zinc availability are those encoding a putative high affinity ABC uptake system (znuGHI), three TonB-dependent receptors (znuK, znuL and znuM) and one new putative transporter of a family not yet characterized (zrpW). Zur is also directly involved in the activation of a RND and a P-type ATPase efflux systems, as revealed by β-galactosidase and site-directed mutagenesis assays. Several genes belonging to the Fur regulon were also downregulated in the zur mutant, suggesting a putative cross-talk between Zur and Fur regulatory networks. Interestingly, a phenotypic analysis of the znuK and znuL mutants has shown that these genes are essential for growth under zinc starvation, suggesting that C. crescentus uses these TonB-dependent outer membrane transporters as key zinc scavenging systems. CONCLUSIONS The characterization of the C. crescentus Zur regulon showed that this regulator coordinates not only uptake, but also the extrusion of zinc. The uptake of zinc by C. crescentus in conditions of scarcity of this metal is highly dependent on TonB-dependent receptors, and the extrusion is mediated by an RND and P-type ATPase transport systems. The absence of Zur causes a disturbance in the dynamic equilibrium of zinc intracellular concentration, which in turn can interfere with other regulatory networks as seen for the Fur regulon.
Collapse
Affiliation(s)
| | | | | | - Marilis do Valle Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av, Prof, Lineu Prestes 1374, 05508-900 São Paulo, Brazil.
| |
Collapse
|
34
|
Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. J Bacteriol 2014; 196:2514-25. [PMID: 24794566 DOI: 10.1128/jb.01575-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.
Collapse
|
35
|
Characterization of galactose-dependent promoters from an oleaginous fungus Mortierella alpina 1S-4. Curr Genet 2014; 60:175-82. [DOI: 10.1007/s00294-014-0422-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/25/2022]
|
36
|
Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus. J Bacteriol 2014; 196:1627-39. [PMID: 24532768 DOI: 10.1128/jb.01194-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.
Collapse
|
37
|
Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol 2013; 79:6795-802. [PMID: 23995928 DOI: 10.1128/aem.02296-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tunable promoters represent a pivotal genetic tool for a wide range of applications. Here we present such a system for sphingomonads, a phylogenetically diverse group of bacteria that have gained much interest for their potential in bioremediation and their use in industry and for which no dedicated inducible gene expression system has been described so far. A strong, constitutive synthetic promoter was first identified through a genetic screen and subsequently combined with the repressor and the operator sites of the Pseudomonas putida F1 cym/cmt system. The resulting promoter, termed PQ5, responds rapidly to the inducer cumate and shows a maximal induction ratio of 2 to 3 orders of magnitude in the different sphingomonads tested. Moreover, it was also functional in other Alphaproteobacteria, such as the model organisms Caulobacter crescentus, Paracoccus denitrificans, and Methylobacterium extorquens. In the noninduced state, expression from PQ5 is low enough to allow gene depletion analysis, as demonstrated with the essential gene phyP of Sphingomonas sp. strain Fr1. A set of PQ5-based plasmids has been constructed allowing fusions to affinity tags or fluorescent proteins.
Collapse
|
38
|
Fernandez-Fernandez C, Grosse K, Sourjik V, Collier J. The β-sliding clamp directs the localization of HdaA to the replisome in Caulobacter crescentus. MICROBIOLOGY-SGM 2013; 159:2237-2248. [PMID: 23974073 PMCID: PMC3836487 DOI: 10.1099/mic.0.068577-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of chromosome replication is tightly regulated in bacteria to ensure that it takes place only once per cell cycle. In many proteobacteria, this process requires the ATP-bound form of the DnaA protein. The regulatory inactivation of DnaA (RIDA) facilitates the conversion of DnaA-ATP into replication-inactive DnaA-ADP, thereby preventing overinitiation. Homologues of the HdaA protein, together with the β-clamp of the DNA polymerase (DnaN), are required for this process. Here, we used fluorescence resonance energy transfer experiments to demonstrate that HdaA interacts with DnaN in live Caulobacter crescentus cells. We show that a QFKLPL motif in the N-terminal region of HdaA is required for this interaction and that this motif is also needed to recruit HdaA to the subcellular location occupied by the replisome during DNA replication. An HdaA mutant protein that cannot colocalize or interact with DnaN can also not support the essential function of HdaA. These results suggest that the recruitment of HdaA to the replisome is needed during RIDA in C. crescentus, probably as a means to sense whether chromosome replication has initiated before DnaA becomes inactivated. In addition, we show that a conserved R145 residue located in the AAA+ domain of HdaA is also needed for the function of HdaA, although it does not affect the interaction of HdaA with DnaN in vivo. The AAA+ domain of HdaA may therefore be required during RIDA after the initial recruitment of HdaA to the replisome by DnaN.
Collapse
Affiliation(s)
- Carmen Fernandez-Fernandez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| | - Karin Grosse
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| |
Collapse
|
39
|
Curtis PD, Klein D, Brun YV. Effect of a ctrA promoter mutation, causing a reduction in CtrA abundance, on the cell cycle and development of Caulobacter crescentus. BMC Microbiol 2013; 13:166. [PMID: 23865946 PMCID: PMC3751295 DOI: 10.1186/1471-2180-13-166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
Background Polar development during the alphaproteobacterium Caulobacter crescentus cell cycle is integrated to the point that individual mutations can have pleiotropic effects on the synthesis of polar organelles. Disruption of the genes encoding the histidine kinase PleC, or its localization factor PodJ, disrupts synthesis or functionality of pili, flagella and adhesive holdfast. However, the mechanism by which these mutations affect polar development is not well understood. The aim of this study was to identify new regulators that control multiple aspects of polar organelle development. Results To identify mutants with pleiotropic polar organelle synthesis defects, transposon mutagenesis was performed and mutants were selected based resistance to the pili-tropic bacteriophage ΦCbK. Mutants were then screened for defects in motility and holdfast production. Only a single podJ/pleC-independent mutant was isolated which had defects in all three phenotypes. Directed phage assays confirmed the phage resistance phenotype, while the strain demonstrated a similar dispersal radius as a podJ mutant in swarm agar, and treatment with a fluorescent lectin that labels the holdfast showed no staining for this mutant. The transposon had inserted into the promoter region of ctrA, a gene encoding a master transcriptional regulator of the cell cycle, disrupting native transcription but still allowing reduced transcriptional activity and protein production of this essential protein. Transcriptional fusions showed that essential genes controlled by CtrA exhibited minor to moderate changes in expression in the ctrA promoter mutant, while the pilA gene, encoding the subunit of the pilus filament, had a drastic decrease in gene expression. Introduction of a plasmid-born copy of ctrA under its native promoter complemented the phage resistance and holdfast defects, as well as a moderate cell morphology defect, but not the swarming defect. Conclusions A mutation was identified that caused pleiotropic defects in polar organelle synthesis, and revealed the surprising result that some CtrA-dependent promoters are more sensitive to changes in CtrA concentration than others. However, the fact that no pleiotropic mutations were found in new regulators suggests that downstream signaling of PleC/PodJ is either essential, redundant, or branching such that all three phenotypes were not simultaneously affected.
Collapse
Affiliation(s)
- Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker, University, MS 38677, USA.
| | | | | |
Collapse
|
40
|
Abstract
In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are also widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell-cycle-dependent manner. Their presence is critical for cellular fitness because they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins.
Collapse
|
41
|
Schredl AT, Perez Mora YG, Herrera A, Cuajungco MP, Murray SR. The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication. MICROBIOLOGY-SGM 2012; 158:2492-2503. [PMID: 22790399 DOI: 10.1099/mic.0.055285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The master regulator CtrA oscillates during the Caulobacter cell cycle due to temporally regulated proteolysis and transcription. It is proteolysed during the G1-S transition and reaccumulates in predivisional cells as a result of transcription from two sequentially activated promoters, P1 and P2. CtrA reinforces its own synthesis by directly mediating the activation of P2 concurrently with repression of P1. To explore the role of P1 in cell cycle control, we engineered a mutation into the native ctrA locus that prevents transcription from P1 but not P2. As expected, the ctrA P1 mutant exhibits striking growth, morphological and DNA replication defects. Unexpectedly, we found CtrA and its antagonist SciP, but not DnaA, GcrA or CcrM accumulation to be dramatically reduced in the ctrA P1 mutant. SciP levels closely paralleled CtrA accumulation, suggesting that CtrA acts as a rheostat to modulate SciP abundance. Furthermore, the reappearance of CtrA and CcrM in predivisional cells was delayed in the P1 mutant by 0.125 cell cycle unit in synchronized cultures. High levels of ccrM transcription despite low levels of CtrA and increased transcription of ctrA P2 in the ctrA P1 mutant are two examples of robustness in the cell cycle. Thus, Caulobacter can adjust regulatory pathways to partially compensate for reduced and delayed CtrA accumulation in the ctrA P1 mutant.
Collapse
Affiliation(s)
- Alexander T Schredl
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| | - Yannet G Perez Mora
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| | - Anabel Herrera
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| | - Math P Cuajungco
- Mental Health Research Institute, Melbourne Brain Centre, Parkville, Victoria 3052, Australia.,Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| | - Sean R Murray
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| |
Collapse
|
42
|
ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 2011; 194:28-35. [PMID: 22020649 DOI: 10.1128/jb.05932-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators.
Collapse
|
43
|
Fernandez-Fernandez C, Gonzalez D, Collier J. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. PLoS One 2011; 6:e26028. [PMID: 22022497 PMCID: PMC3193534 DOI: 10.1371/journal.pone.0026028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 12/05/2022] Open
Abstract
DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.
Collapse
Affiliation(s)
- Carmen Fernandez-Fernandez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Diego Gonzalez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
44
|
An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus. J Bacteriol 2011; 193:4361-70. [PMID: 21705597 DOI: 10.1128/jb.00185-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although reversible phosphorylation on tyrosine residues regulates the activity of many eukaryotic proteins, there are few examples of this type of regulation in bacteria. We have identified the first essential tyrosine phosphatase homolog in a bacterium, Caulobacter crescentus CtpA. ctpA mutants with altered active-site residues are nonviable, and depletion of CtpA yields chains of cells with blebbed outer membranes, linked by unresolved peptidoglycan. CtpA overexpression reduces cell curvature in a manner similar to deleting the intermediate filament protein crescentin, but it does not disrupt crescentin localization or membrane attachment. Although it has no obvious signal sequence or transmembrane-spanning domains, CtpA associates with the Caulobacter inner membrane. Immunolocalization experiments suggest that CtpA accumulates at the division site during the last quarter of the cell cycle. We propose that CtpA dephosphorylates one or more proteins involved in peptidoglycan biosynthesis or remodeling, which in turn affect cell separation, cell envelope integrity, and vibrioid morphology.
Collapse
|
45
|
Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J Bacteriol 2011; 193:1734-44. [PMID: 21257767 DOI: 10.1128/jb.01339-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5' untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.
Collapse
|
46
|
SpdR, a response regulator required for stationary-phase induction of Caulobacter crescentus cspD. J Bacteriol 2010; 192:5991-6000. [PMID: 20833806 DOI: 10.1128/jb.00440-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cold shock protein (CSP) family includes small polypeptides that are induced upon temperature downshift and stationary phase. The genome of the alphaproteobacterium Caulobacter crescentus encodes four CSPs, with two being induced by cold shock and two at the onset of stationary phase. In order to identify the environmental signals and cell factors that are involved in cspD expression at stationary phase, we have analyzed cspD transcription during growth under several nutrient conditions. The results showed that expression of cspD was affected by the medium composition and was inversely proportional to the growth rate. The maximum levels of expression were decreased in a spoT mutant, indicating that ppGpp may be involved in the signalization for carbon starvation induction of cspD. A Tn5 mutant library was screened for mutants with reduced cspD expression, and 10 clones that showed at least a 50% reduction in expression were identified. Among these, a strain with a transposon insertion into a response regulator of a two-component system showed no induction of cspD at stationary phase. This protein (SpdR) was able to acquire a phosphate group from its cognate histidine kinase, and gel mobility shift assay and DNase I footprinting experiments showed that it binds to an inverted repeat sequence of the cspD regulatory region. A mutated SpdR with a substitution of the conserved aspartyl residue that is the probable phosphorylation site is unable to bind to the cspD regulatory region and to complement the spdR mutant phenotype.
Collapse
|
47
|
CztR, a LysR-type transcriptional regulator involved in zinc homeostasis and oxidative stress defense in Caulobacter crescentus. J Bacteriol 2010; 192:5480-8. [PMID: 20709896 DOI: 10.1128/jb.00496-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. β-galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.
Collapse
|
48
|
Ingerson-Mahar M, Briegel A, Werner JN, Jensen GJ, Gitai Z. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat Cell Biol 2010; 12:739-46. [PMID: 20639870 PMCID: PMC3210567 DOI: 10.1038/ncb2087] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/21/2010] [Indexed: 01/17/2023]
Abstract
Filament-forming cytoskeletal proteins are key organizers of all cells. Bacterial homologs of the major eukaryotic cytoskeletal families have now been discovered, but studies suggest that yet more cytoskeletal proteins remain to be identified. Here we demonstrate that the metabolic enzyme CTP Synthase (CtpS) forms filaments in Caulobacter crescentus. These filaments are bifunctional and regulate Caulobacter curvature independently of CtpS catalytic activity. The morphogenic role of CtpS requires its functional interaction with the intermediate filament crescentin. Interestingly, the E. coli CtpS homolog also forms filaments both in vivo and in vitro, suggesting that CtpS polymerization may be widely conserved. E. coli CtpS can replace the enzymatic and morphogenic functions of Caulobacter CtpS, indicating that Caulobacter has adapted a conserved filament-forming protein for a secondary role. These results implicate CtpS as a novel bifunctional member of the bacterial cytoskeleton and suggest that localization and polymerization may be important properties of metabolic enzymes.
Collapse
Affiliation(s)
- Michael Ingerson-Mahar
- Department of Molecular Biology, Princeton University, Lewis Thomas Labs, Washington Road, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
49
|
CrfA, a small noncoding RNA regulator of adaptation to carbon starvation in Caulobacter crescentus. J Bacteriol 2010; 192:4763-75. [PMID: 20601471 DOI: 10.1128/jb.00343-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding regulatory RNAs (sRNAs) play a key role in the posttranscriptional regulation of many bacterial genes. The genome of Caulobacter crescentus encodes at least 31 sRNAs, and 27 of these sRNAs are of unknown function. An overexpression screen for sRNA-induced growth inhibition along with sequence conservation in a related Caulobacter species led to the identification of a novel sRNA, CrfA, that is specifically induced upon carbon starvation. Twenty-seven genes were found to be strongly activated by CrfA accumulation. One-third of these target genes encode putative TonB-dependent receptors, suggesting CrfA plays a role in the surface modification of C. crescentus, facilitating the uptake of nutrients during periods of carbon starvation. The mechanism of CrfA-mediated gene activation was investigated for one of the genes predicted to encode a TonB-dependent receptor, CC3461. CrfA functions to stabilize the CC3461 transcript. Complementarity between a region of CrfA and the terminal region of the CC3461 5'-untranslated region (5'-UTR) and also the behavior of a deletion of this region and a site-specific base substitution and a 3-base deletion in the CrfA complementary sequence suggest that CrfA binds to a stem-loop structure upstream of the CC3461 Shine-Dalgarno sequence and stabilizes the transcript.
Collapse
|
50
|
Polar remodeling and histidine kinase activation, which is essential for Caulobacter cell cycle progression, are dependent on DNA replication initiation. J Bacteriol 2010; 192:3893-902. [PMID: 20525830 DOI: 10.1128/jb.00468-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus initiates a single round of DNA replication during each cell cycle. Following the initiation of DNA replication, the essential CckA histidine kinase is activated by phosphorylation, which (via the ChpT phosphotransferase) enables the phosphorylation and activation of the CtrA global regulator. CtrA approximately P then blocks the reinitiation of replication while regulating the transcription of a large number of cell cycle-controlled genes. It has been shown that DNA replication serves as a checkpoint for flagellar biosynthesis and cell division and that this checkpoint is mediated by the availability of active CtrA. Because CckA approximately P promotes the activation of CtrA, we addressed the question of what controls the temporal activation of CckA. We found that the initiation of DNA replication is a prerequisite for remodeling the new cell pole, which includes the localization of the DivL protein kinase to that pole and, consequently, the localization, autophosphorylation, and activation of CckA at that pole. Thus, CckA activation is dependent on polar remodeling and a DNA replication initiation checkpoint that is tightly integrated with the polar phospho-signaling cascade governing cell cycle progression.
Collapse
|