1
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Debatisse K, Lopez P, Poli M, Rousseau P, Campos M, Coddeville M, Cocaign-Bousquet M, Le Bourgeois P. Redefining the bacteriophage mv4 site-specific recombination system and the sequence specificity of its attB and core-attP sites. Mol Microbiol 2024; 121:1200-1216. [PMID: 38705589 DOI: 10.1111/mmi.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.
Collapse
Affiliation(s)
- Kevin Debatisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Pierre Lopez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Maryse Poli
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Rousseau
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Manuel Campos
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michèle Coddeville
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | | | - Pascal Le Bourgeois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
3
|
Application of Lactobacillus gasseri 63 AM supernatant to Pseudomonas aeruginosa-infected wounds prevents sepsis in murine models of thermal injury and dorsal excision. J Med Microbiol 2019; 68:1560-1572. [DOI: 10.1099/jmm.0.001066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
4
|
van Pijkeren JP, Barrangou R. Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0013-2016. [PMID: 28959937 PMCID: PMC5958611 DOI: 10.1128/microbiolspec.bad-0013-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria have been used historically for food manufacturing mainly to ensure preservation via fermentation. More recently, lactic acid bacteria have been exploited to promote human health, and many strains serve as industrial workhorses. Recent advances in microbiology and molecular biology have contributed to understanding the genetic basis of many of their functional attributes. These include dissection of biochemical processes that drive food fermentation, and identification and characterization of health-promoting features that positively impact the composition and roles of microbiomes in human health. Recently, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies has revolutionized our ability to manipulate genomes, and we are on the cusp of a broad-scale genome editing revolution. Here, we discuss recent advances in genetic alteration of food-grade bacteria, with a focus on CRISPR-associated enzyme genome editing, single-stranded DNA recombineering, and the modification of bacteriophages. These tools open new avenues for the genesis of next-generation biotherapeutic agents with improved genotypes and enhanced health-promoting functional features.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
5
|
Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 2016; 37:296-308. [PMID: 26918754 DOI: 10.3109/07388551.2016.1144044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria (LAB) have a long history of use in fermented foods and as probiotics. Genetic manipulation of these microorganisms has great potential for new applications in food safety, as well as in the development of improved food products and in health. While genetic engineering of LAB could have a major positive impact on the food and pharmaceutical industries, progress could be prevented by legal issues related to the controversy surrounding this technology. The safe use of genetically modified LAB requires the development of food-grade cloning systems containing only the DNA from homologous hosts or generally considered as safe organisms, and not dependent antibiotic markers. The rationale for the development of cloning vectors derived from cryptic LAB plasmids is the need for new genetic engineering tools, therefore a vision from cryptic plasmids to applications in food-grade vectors for LAB plasmids is shown in this review. Replicative and integrative vectors for the construction of food-grade vectors, and the relationship between resistance mechanism and expression systems, will be treated in depth in this paper. Finally, we will discuss the limited use of these vectors, and the problems arising from their use.
Collapse
Affiliation(s)
- José Maria Landete
- a Departamento De Tecnología De Alimentos , Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
6
|
Bacteriophage mv4 Site-Specific Recombination: the Central Role of the P2
mv4
Int-Binding Site. J Virol 2014; 88:1839-42. [DOI: 10.1128/jvi.02735-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
The contributions of the five
mv4
Int- and two
mv4
Xis arm-binding sites to the spatial intasome organization of bacteriophage mv4 were found not to be equivalent. The 8-bp overlap region was mapped to the left extremity of the core region and is directly flanked by the P2 Int arm-binding site. These results and the absence of characteristic Int core-binding sites suggest that the P2 site is the determinant for integrase positioning and recognition of the core region.
Collapse
|
7
|
Stable integration and expression of heterologous genes in several lactobacilli using an integration vector constructed from the integrase and attP sequences of phage ΦAT3 isolated from Lactobacillus casei ATCC 393. Appl Microbiol Biotechnol 2012; 97:3499-507. [PMID: 23064454 DOI: 10.1007/s00253-012-4393-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/23/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
An integration vector capable of stably integrating and maintaining in the chromosomes of several lactobacilli over hundreds of generations has been constructed. The major integration machinery used is based on the ΦAT3 integrase (int) and attP sequences determined previously. A novel core sequence located at the 3' end of the tRNA(leu) gene is identified in Lactobacillus fermentum ATCC 14931 as the integration target by the integration vector though most of such sequences found in other lactobacilli are similar to that determined previously. Due to the lack of an appropriate attB site in Lactococcus lactis MG1363, the integration vector is found to be unable to integrate into the chromosome of the strain. However, such integration can be successfully restored by cotransforming the integration vector with a replicative one harboring both attB and erythromycin resistance sequences into the strain. Furthermore, the integration vector constructed carries a promoter region of placT from the chromosome of Lactobacillus rhamnosus TCELL-1 which is used to express green fluorescence and luminance protein genes in the lactobacilli studied.
Collapse
|
8
|
Control of directionality in bacteriophage mv4 site-specific recombination: functional analysis of the Xis factor. J Bacteriol 2009; 192:624-35. [PMID: 19948798 DOI: 10.1128/jb.00986-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the host attB site during Lactobacillus delbrueckii lysogenization. The mv4 prophage is excised during the induction of lytic growth. Excisive site-specific recombination between the attR and attL sites is also catalyzed by the phage-encoded recombinase, but the directionality of the recombination is determined by a second phage-encoded protein, the recombination directionality factor (RDF). We have identified and functionally characterized the RDF involved in site-specific excision of the prophage genome. The mv4 RDF, (mv4)Xis, is encoded by the second gene of the early lytic operon. It is a basic protein of 56 amino acids. Electrophoretic mobility shift assays demonstrated that (mv4)Xis binds specifically to the attP and attR sites via two DNA-binding sites, introducing a bend into the DNA. In vitro experiments and in vivo recombination assays with plasmids in Escherichia coli and Lactobacillus plantarum demonstrated that (mv4)Xis is absolutely required for inter- or intramolecular recombination between the attR and attL sites. In contrast to the well-known phage site-specific recombination systems, the integrative recombination between the attP and attB sites seems not to be inhibited by the presence of (mv4)Xis.
Collapse
|
9
|
Coddeville M, Auvray F, Mikkonen M, Ritzenthaler P. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4. Virology 2007; 364:256-68. [PMID: 17412387 DOI: 10.1016/j.virol.2007.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/31/2006] [Accepted: 02/09/2007] [Indexed: 11/21/2022]
Abstract
The lysogeny region of the Lactobacillus delbrueckii bacteriophage mv4 contains two divergently oriented ORFs coding for the Rep (221 aa) and Tec (64 aa) proteins. The transcription of these two genes was analysed by primer extension and Northern blot experiments on lysogenic strains. The location of the transcription initiation sites of rep and tec in the intergenic region allowed the identification of the divergently oriented non overlapping promoters P(rep) and P(tec). Transcriptional fusions analysis showed that Rep negatively regulates the P(tec) promoter and activates its own transcription, and that Tec is a negative regulator of the two promoters. As demonstrated by gel mobility shift assays, the repressor Rep binds to a single specific 17 bp site located between the P(tec) -10 and -35 regions whereas Tec binds to a single specific 40 bp long complex operator site located between the two promoters. The presence of a single specific operator site for each repressor in the intergenic region is an unusual feature.
Collapse
Affiliation(s)
- Michèle Coddeville
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, Bat IBCG, 118 route de Narbonne, Toulouse Cedex, France
| | | | | | | |
Collapse
|
10
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 488] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Renault P. Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 2002; 84:1073-87. [PMID: 12595135 DOI: 10.1016/s0300-9084(02)00029-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.
Collapse
Affiliation(s)
- Pierre Renault
- Génétique microbienne, Inra, domaine de Vilvert, 78352 Jouy-en-Josas, France.
| |
Collapse
|
12
|
Abstract
Bacteriophages of lactic acid bacteria are a threat to industrial milk fermentation. Owing to their economical importance, dairy phages became the most thoroughly sequenced phage group in the database. Comparative genomics identified related cos-site and pac-site phages, respectively, in lactococci, lactic streptococci and lactobacilli. Each group was represented with closely related temperate and virulent phages. Over the structural genes their gene maps resembled that of lambdoid coliphages, suggesting distant evolutionary relationships. Despite a lack of sequence similarity, a number of biochemical characteristics of these dairy phages are lambda-like (genetic switch, DNA packaging, head and tail morphogenesis, and integration, but not excision). These dairy phages thus provide interesting variations to the phage lambda paradigm. The structural gene cluster of Lactococcus phage r1t resembled that of phages from mycobacteria. Virulent lactococcal phages with prolate heads (c2-like genus of Siphoviridae), in contrast, have no known counterparts in other bacterial genera.
Collapse
Affiliation(s)
- H Brussow
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000 Switzerland.
| |
Collapse
|
13
|
Semsey S, Blaha B, Köles K, Orosz L, Papp PP. Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J Bacteriol 2002; 184:177-82. [PMID: 11741858 PMCID: PMC134759 DOI: 10.1128/jb.184.1.177-182.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Institute of Genetics, Agricultural Biotechnology Center, Gödöllö, Szent-Györgyi A. 4., H-2100, Hungary
| | | | | | | | | |
Collapse
|
14
|
Serror P, Sasaki T, Ehrlich SD, Maguin E. Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with various plasmids. Appl Environ Microbiol 2002; 68:46-52. [PMID: 11772607 PMCID: PMC126594 DOI: 10.1128/aem.68.1.46-52.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 10/01/2001] [Indexed: 11/20/2022] Open
Abstract
We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 10(4) transformants per microg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii.
Collapse
Affiliation(s)
- Pascale Serror
- Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | |
Collapse
|
15
|
Grath S, van Sinderen D, Fitzgerald G. Bacteriophage-derived genetic tools for use in lactic acid bacteria. Int Dairy J 2002. [DOI: 10.1016/s0958-6946(01)00150-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martínez G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 2000; 66:4822-8. [PMID: 11055930 PMCID: PMC92386 DOI: 10.1128/aem.66.11.4822-4828.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3' end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, beta-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.
Collapse
Affiliation(s)
- M J Gosalbes
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, 46100-Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
17
|
Kiewitz C, Larbig K, Klockgether J, Weinel C, Tümmler B. Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential Pseudomonas aeruginosa airway isolates. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2365-2373. [PMID: 11021913 DOI: 10.1099/00221287-146-10-2365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genome rearrangements in sequential Pseudomonas aeruginosa clone K isolates from the airways of a patient with cystic fibrosis were determined by an integrated approach of mapping, sequencing and bioinformatics. Restriction mapping uncovered an 8.9 kb deletion of PAO sequence between phnAB and oprL in clone K, and two 106 kb insertions either adjacent to this deletion or several hundred kilobases away, close to the pilA locus. These 106 kb blocks of extra DNA also co-existed as the circular plasmid pKLK106 in several clone K isolates and were found to be closely related to plasmid pKLC102 in P. aeruginosa clone C isolates. The breakpoints of the deletion in clone K and the attB-attP sequences for the reversible integration of the plasmid in clones C and K were located within the 3' end of the lysine tRNA structural genes (att site). pKLK106 sequentially recombined with either of the two tRNA(Lys) genes in clone K isolates. The att site of the pilA hypervariable region has been utilized by clone C to target its plasmid pKLC102 into the chromosome; the att site of the phnAB-oprL region has been employed by strain PAO to incorporate a DNA block encoding pyocin, transposases and IS elements. The use of typical phage attachment sites by conjugative genetic elements could be one of the major mechanisms used by P. aeruginosa to generate the mosaic genome structure of blocks of species-, clone- and strain-specific DNA. The example described here demonstrates the potential impact of systematic genome analysis of sequential isolates from the same habitat on our understanding of the evolution of microbial genomes.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern/methods
- Bronchi/microbiology
- Cystic Fibrosis/microbiology
- Electrophoresis, Gel, Pulsed-Field/methods
- Evolution, Molecular
- Genome, Bacterial
- Humans
- Molecular Sequence Data
- Plasmids/genetics
- Pseudomonas Infections/microbiology
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/isolation & purification
- RNA, Bacterial/genetics
- RNA, Transfer, Lys/genetics
- Recombination, Genetic/genetics
- Restriction Mapping/methods
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Claudia Kiewitz
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Karen Larbig
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Jens Klockgether
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Christian Weinel
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Burkhard Tümmler
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| |
Collapse
|
18
|
Shimizu-Kadota M, Kiwaki M, Sawaki S, Shirasawa Y, Shibahara-Sone H, Sako T. Insertion of bacteriophage phiFSW into the chromosome of Lactobacillus casei strain Shirota (S-1): characterization of the attachment sites and the integrase gene. Gene 2000; 249:127-34. [PMID: 10831846 DOI: 10.1016/s0378-1119(00)00154-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integrase gene (int) on the genome of φFSW, which is a temperate bacteriophage of Lactobacillus casei strain Shirota (formerly denoted as S-1), and the four attachment sites on the genomes of the phage and its host were characterized by sequencing. The φFSW integrase was found to belong to the integrase family of site-specific tyrosine recombinase. The attachment sites shared a 40bp common core within which an integrative site-specific recombination occurs. The common core was flanked on one side by an additional segment of high sequence similarity. An integration plasmid, consisting of int, the phage attachment site (attP), and a selectable marker, inserted stably into the bacterial attachment site (attB) within the common core, as did the complete prophage genome at a frequency of more than 10(3)/microg of plasmid DNA. This plasmid was used as a test system for a preliminary mutational analysis of int and attP. The attB common core was located within and near the end of an open reading frame that appears to encode a homolog to glucose 6-phosphate isomerase, an enzyme of the glycolytic pathway. It is unlikely that the prophage integration inactivates this protein, since a change of only the C-terminal amino acid is predicted because of the sequence similarity between attP and attB.
Collapse
Affiliation(s)
- M Shimizu-Kadota
- Yakult Central Institute for Microbiological Research 1796 Yaho, Kunitachi, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Aleshin VV, Semenova EV, Tarakanov BV, Livshits VA. A family of shuttle vectors for lactic acid bacteria and other gram-positive bacteria based on the plasmid pLF1311 replicon. Microbiology (Reading) 2000. [DOI: 10.1007/bf02757259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Auvray F, Coddeville M, Ordonez RC, Ritzenthaler P. Unusual structure of the attB site of the site-specific recombination system of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 1999; 181:7385-9. [PMID: 10572145 PMCID: PMC103704 DOI: 10.1128/jb.181.23.7385-7389.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.
Collapse
Affiliation(s)
- F Auvray
- Laboratoire de Microbiologie et de Génétique Moléculaire du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | |
Collapse
|
21
|
Brøndsted L, Hammer K. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl Environ Microbiol 1999; 65:752-8. [PMID: 9925612 PMCID: PMC91091 DOI: 10.1128/aem.65.2.752-758.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we showed that only one phage-expressed protein (Orf1), a 425-bp region upstream of the orf1 gene (presumably encoding a promoter), and the attP region are necessary and also sufficient for integration of the bacteriophage TP901-1 genome into the chromosome of Lactococcus lactis subsp. cremoris (B. Christiansen, L. Brondsted, F. K. Vogensen, and K. Hammer, J. Bacteriol. 178:5164-5173, 1996). In this work, a further analysis of the phage-encoded elements involved in integration was performed. Here we demonstrate that even when the orf1 gene is separated from the attP region, the Orf1 protein is able to promote site-specific integration of an attP-carrying plasmid into the attB site on the L. lactis subsp. cremoris chromosome. Furthermore, the first detailed deletion analysis of an attP region of a phage infecting lactic acid bacteria was carried out. We show that a fragment containing 56 bp of the attP region, including the core, is sufficient for the site-specific integration of a nonreplicating plasmid into the chromosome of L. lactis subsp. cremoris when the orf1 gene is donated in trans. The functional 56-bp attP region of TP901-1 is substantially smaller than minimal attP regions identified for other phages. Based on the deletion analysis, several repeats located within the attP region seem to be necessary for site-specific integration of the temperate bacteriophage TP901-1. By use of the integrative elements (attP and orf1) expressed by the temperate lactococcal bacteriophage TP901-1, a system for obtaining stable chromosomal single-copy transcriptional fusions in L. lactis was constructed. Two promoter-reporter integration vectors containing the reporter gene gusA or lacLM, encoding beta-glucuronidase or beta-galactosidase, respectively, were constructed. Immediately upstream of both genes are found translational stop codons in all three reading frames as well as multiple restriction enzyme sites suitable for cloning of the promoter of interest. By transformation of L. lactis subsp. cremoris MG1363 containing the integrase gene on a replicating plasmid, the promoter-reporter integration vectors integrated with a high frequency site specifically into the chromosomal attachment site attB used by bacteriophage TP901-1.
Collapse
Affiliation(s)
- L Brøndsted
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
22
|
Smith MCM, Rees CED. 3 Exploitation of Bacteriophages and their Components. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70114-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Alvarez MA, Herrero M, Suárez JE. The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in gram-positive and gram-negative bacteria. Virology 1998; 250:185-93. [PMID: 9770432 DOI: 10.1006/viro.1998.9353] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region of the bacteriophage A2 genome involved in site-specific recombination with the DNA of Lactobacillus spp. has been identified. Two orfs, transcribed from the same strand, have been found immediately upstream of the phage attachment site (attP). The orf adjacent to attP predicts a 385-amino-acid protein that presents significant similarity with site-specific recombinases of the integrase family. The other orf encodes a basic polypeptide of 76 amino acid residues. The junctions of the prophage with the genomes of its hosts have been determined, allowing the identification of the host attachment site (attB), which has a common 19-nucleotide core region with attP. The attB site is located at the 3' end of the transfer RNALeu gene (anticodon CAA). Nonreplicative plasmids containing the A2-specific recombination cassette integrate into different lactobacilli but also into unrelated Gram-positive bacteria such as Lactococcus lactis and even into Escherichia coli. In Lc. lactis, integration occurs in a previously unknown intergenic region, whereas in E. coli, it maps within the rrnD operon, 5' of rrsD gene. Comparison of the integration sites in the different hosts indicates that some flexibility is permitted in the attB sequence, since Lc. lactis and E. coli only share 13 and 11 nucleotides, respectively, with the 19-nucleotide core sequence of the lactobacilli.
Collapse
Affiliation(s)
- M A Alvarez
- Area de Microbiología, Universidad de Oviedo, Oviedo, E-33006, Spain
| | | | | |
Collapse
|
24
|
Bruttin A, Foley S, Brüssow H. The site-specific integration system of the temperate Streptococcus thermophilus bacteriophage phiSfi21. Virology 1997; 237:148-58. [PMID: 9344917 DOI: 10.1006/viro.1997.8769] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The temperate bacteriophage phiSfi21 integrates its DNA into the chromosome of Streptococcus thermophilus strains via site-specific recombination. Nucleotide sequencing of the attachment sites identified a 40-bp identity region which surprisingly overlaps both the 18-terminal bp of the phage integrase gene and the 11-terminal bp of a host tRNAArg gene. A 2.4-kb phage DNA segment, covering attP, the phage integrase, and a likely immunity gene contained all the genetic information for faithful integration of a nonreplicative plasmid into the attB site. A deletion within the int gene led to the loss of integration proficiency. A number of spontaneous deletions were observed in plasmids containing the 2.4-kb phage DNA segment. The deletion sites were localized to the tRNA side of the identity region and to phage or vector DNA with 3- to 6-bp-long repeats from the border region. A similar type of deletion was previously observed in a spontaneous phage mutant.
Collapse
Affiliation(s)
- A Bruttin
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|