1
|
Azarkina NV. Requirement of Bacillus subtilis succinate: Menaquinone oxidoreductase activity for membrane energization depends on the direction of catalysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149522. [PMID: 39521199 DOI: 10.1016/j.bbabio.2024.149522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Succinate:quinone oxidoreductases (SQR) from Bacilli catalyze reduction of menaquinone by succinate, as well as the reverse reaction. The direct activity is energetically unfavorable and lost upon ΔμН+ dissipation, thus suggesting ΔμН+ to be consumed during catalysis. Paradoxically, the generation of ΔμН+ upon fumarate reduction was never confirmed. Thus, the exact role of ΔμН+ in the operation of bacillary-type SQRs remained questionable. The purpose of this work was to clarify this issue. We have described the different operating modes of the membrane-bound SQR from Bacillus subtilis. Tightly coupled membrane vesicles from both wild-type cells and the mutant containing cytochrome bd as the only terminal oxidase were studied. This made it possible to compare the respiratory chains with 2 versus 1H+/e- stoichiometry of ΔμН+ generation. Direct and reverse activities of SQR were determined under either energized or deenergized conditions. The wild-type membranes demonstrated high succinate oxidase activity very sensitive to uncoupling. On the contrary, the mutant showed extremely low succinate oxidase activity resistant to uncoupling. ΔμН+ generation at the cost of ATP hydrolysis restored the uncoupling sensitive succinate respiration in the mutant. Membranes of the both types effectively reduced fumarate by menaquinol. This activity was not affected by energization or uncoupling, neither it was followed by ΔμН+ generation. Thus, B. subtilis SQR demonstrates two regimes: ΔμН+-coupled and not coupled. This behavior can be explained by assuming the presence of two menaquinone binding sites which drastically differ in affinity for the oxidized and reduced substrate.
Collapse
Affiliation(s)
- Natalia V Azarkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobjovy Gory, Moscow 119992, Russia.
| |
Collapse
|
2
|
Jung J, Jo D, Kim SJ. Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment. J Microbiol Biotechnol 2024; 34:538-546. [PMID: 38146216 PMCID: PMC11016793 DOI: 10.4014/jmb.2311.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, indepth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 μg/ml, 125 μg/ml, and 125 μg/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 μg/ml, 250 μg/ml, and 500 μg/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 μg/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.
Collapse
Affiliation(s)
- Jihye Jung
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dawon Jo
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Soo-Jin Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
3
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
4
|
Karavaeva V, Sousa FL. Modular structure of complex II: An evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148916. [PMID: 36084748 DOI: 10.1016/j.bbabio.2022.148916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.
Collapse
Affiliation(s)
- Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| |
Collapse
|
5
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
6
|
Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis. mBio 2022; 13:e0167222. [PMID: 35856639 PMCID: PMC9426501 DOI: 10.1128/mbio.01672-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Succinate is a major focal point in mycobacterial metabolism and respiration, serving as both an intermediate of the tricarboxylic acid (TCA) cycle and a direct electron donor for the respiratory chain. Mycobacterium tuberculosis encodes multiple enzymes predicted to be capable of catalyzing the oxidation of succinate to fumarate, including two different succinate dehydrogenases (Sdh1 and Sdh2) and a separate fumarate reductase (Frd) with possible bidirectional behavior. Previous attempts to investigate the essentiality of succinate oxidation in M. tuberculosis have relied on the use of single-gene deletion mutants, raising the possibility that the remaining enzymes could catalyze succinate oxidation in the absence of the other. To address this, we report on the use of mycobacterial CRISPR interference (CRISPRi) to construct single, double, and triple transcriptional knockdowns of sdhA1, sdhA2, and frdA in M. tuberculosis. We show that the simultaneous knockdown of sdhA1 and sdhA2 is required to prevent succinate oxidation and overcome the functional redundancy within these enzymes. Succinate oxidation was demonstrated to be essential for the optimal growth of M. tuberculosis, with the combined knockdown of sdhA1 and sdhA2 significantly impairing the activity of the respiratory chain and preventing growth on a range of carbon sources. Moreover, impaired succinate oxidation was shown to influence the activity of cell wall-targeting antibiotics and bioenergetic inhibitors against M. tuberculosis. Together, these data provide fundamental insights into mycobacterial physiology, energy metabolism, and antimicrobial susceptibility. IMPORTANCE New drugs are urgently required to combat the tuberculosis epidemic that claims 1.5 million lives annually. Inhibitors of mycobacterial energy metabolism have shown significant promise clinically; however, further advancing this nascent target space requires a more fundamental understanding of the respiratory enzymes and pathways used by Mycobacterium tuberculosis. Succinate is a major focal point in mycobacterial metabolism and respiration; yet, the essentiality of succinate oxidation and the consequences of inhibiting this process are poorly defined. In this study, we demonstrate that impaired succinate oxidation prevents the optimal growth of M. tuberculosis on a range of carbon sources and significantly reduces the activity of the electron transport chain. Moreover, we show that impaired succinate oxidation both positively and negatively influences the activity of a variety of antituberculosis drugs. Combined, these findings provide fundamental insights into mycobacterial physiology and drug susceptibility that will be useful in the continued development of bioenergetic inhibitors.
Collapse
|
7
|
Mouli MSSV, Mishra AK. Synthesis, characterization and photophysical studies of the flavopeptide conjugates as model for the covalently linked flavoenzymes. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gas regulation of complex II reversal via electron shunting to fumarate in the mammalian ETC. Trends Biochem Sci 2022; 47:689-698. [PMID: 35397924 PMCID: PMC9288524 DOI: 10.1016/j.tibs.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
The electron transport chain (ETC) is a major currency converter that exchanges the chemical energy of fuel oxidation to proton motive force and, subsequently, ATP generation, using O2 as a terminal electron acceptor. Discussed herein, two new studies reveal that the mammalian ETC is forked. Hypoxia or H2S exposure promotes the use of fumarate as an alternate terminal electron acceptor. The fumarate/succinate and CoQH2/CoQ redox couples are nearly iso-potential, revealing that complex II is poised for facile reverse electron transfer, which is sensitive to CoQH2 and fumarate concentrations. The gas regulators, H2S and •NO, modulate O2 affinity and/or inhibit the electron transfer rate at complex IV. Their induction under hypoxia suggests a mechanism for how traffic at the ETC fork can be regulated.
Collapse
|
9
|
Abstract
High levels of H2S produced by gut microbiota can block oxygen utilization by inhibiting mitochondrial complex IV. Kumar et al. have shown how cells respond to this inhibition by using the mitochondrial sulfide oxidation pathway and reverse electron transport. The reverse activity of mitochondrial complex II (succinate-quinone oxidoreductase, i.e., fumarate reduction) generates oxidized coenzyme Q, which is then reduced by the mitochondrial sulfide quinone oxidoreductase to oxidize H2S. This newly identified redox circuitry points to the importance of complex II reversal in mitochondria during periods of hypoxia and cellular stress.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
10
|
Skorokhodova AY, Gulevich AY, Debabov VG. Evaluation of Anaerobic Glucose Utilization by Escherichia coli Strains with Impaired Fermentation Ability during Respiration with External and Internal Electron Acceptors. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821070073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, Prokopchuk G, Butenko A, Lukáčová V, Kohútová L, Bučková B, Horák A, Faktorová D, Horváth A, Šimek P, Lukeš J. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol 2021; 19:251. [PMID: 34819072 PMCID: PMC8611851 DOI: 10.1186/s12915-021-01186-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, β-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Valéria Juricová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Medirex Group Academy n.o., Trnava, Slovakia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Lenka Kohútová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Bučková
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
12
|
A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H 2S oxidation. J Biol Chem 2021; 298:101435. [PMID: 34808207 PMCID: PMC8683732 DOI: 10.1016/j.jbc.2021.101435] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The dual roles of H2S as an endogenously synthesized respiratory substrate and as a toxin raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in the mitochondrial H2S oxidation pathway, using CoQ as an electron acceptor, and connects to the electron transport chain at the level of complex III. We have discovered that at high H2S concentrations, which are known to inhibit complex IV, a new redox cycle is established between SQOR and complex II, operating in reverse. Under these conditions, the purine nucleotide cycle and the malate aspartate shuttle furnish fumarate, which supports complex II reversal and leads to succinate accumulation. Complex II knockdown in colonocytes decreases the efficiency of H2S clearance while targeted knockout of complex II in intestinal epithelial cells significantly decreases the levels of thiosulfate, a biomarker of H2S oxidation, to approximately one-third of the values seen in serum and urine samples from control mice. These data establish the physiological relevance of this newly discovered redox circuitry between SQOR and complex II for prioritizing H2S oxidation and reveal the quantitatively significant contribution of intestinal epithelial cells to systemic H2S metabolism.
Collapse
|
13
|
Huang LS, Lümmen P, Berry EA. Crystallographic investigation of the ubiquinone binding site of respiratory Complex II and its inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140679. [PMID: 34089891 PMCID: PMC8516616 DOI: 10.1016/j.bbapap.2021.140679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023]
Abstract
The quinone binding site (Q-site) of Mitochondrial Complex II (succinate-ubiquinone oxidoreductase) is the target for a number of inhibitors useful for elucidating the mechanism of the enzyme. Some of these have been developed as fungicides or pesticides, and species-specific Q-site inhibitors may be useful against human pathogens. We report structures of chicken Complex II with six different Q-site inhibitors bound, at resolutions 2.0-2.4 Å. These structures show the common interactions between the inhibitors and their binding site. In every case a carbonyl or hydroxyl oxygen of the inhibitor is H-bonded to Tyr58 in subunit SdhD and Trp173 in subunit SdhB. Two of the inhibitors H-bond Ser39 in subunit SdhC directly, while two others do so via a water molecule. There is a distinct cavity that accepts the 2-substituent of the carboxylate ring in flutolanil and related inhibitors. A hydrophobic "tail pocket" opens to receive a side-chain of intermediate-length inhibitors. Shorter inhibitors fit entirely within the main binding cleft, while the long hydrophobic side chains of ferulenol and atpenin A5 protrude out of the cleft into the bulk lipid region, as presumably does that of ubiquinone. Comparison of mitochondrial and Escherichia coli Complex II shows a rotation of the membrane-anchor subunits by 7° relative to the iron‑sulfur protein. This rotation alters the geometry of the Q-site and the H-bonding pattern of SdhB:His216 and SdhD:Asp57. This conformational difference, rather than any active-site mutation, may be responsible for the different inhibitor sensitivity of the bacterial enzyme.
Collapse
Affiliation(s)
- Li-Shar Huang
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, N.Y 13210, USA
| | - Peter Lümmen
- Bayer AG, Crop Science Division, Industrial Park Höchst, Frankfurt/Main, Germany
| | - Edward A Berry
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, N.Y 13210, USA.
| |
Collapse
|
14
|
Skorokhodova AY, Gulevich AY, Debabov VG. Optimization of the Anaerobic Production of Pyruvic Acid from Glucose by Recombinant Escherichia coli strains with Impaired Fermentation Ability via Enforced ATP Hydrolysis. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Abstract
Carbon redox chemistry plays a fundamental role in biology. However, the thermodynamic and physicochemical principles underlying the rise of metabolites involved in redox biochemistry remain poorly understood. Our work introduces the theory and techniques that allow us to quantify and understand the global energy landscape of carbon redox biochemistry. We analyze the space of all possible oxidation states of linear-chain molecules with two to five carbon atoms and generate a detailed atlas of the thermodynamic stability of metabolites in comparison to nonbiological molecules. Although the emergence of life required the underlying chemistry to bootstrap itself out of equilibrium, a quantitative understanding of the environment-dependent thermodynamic landscape of prebiotic molecules will be extremely valuable for future origins of life models. Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.
Collapse
|
17
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
18
|
Effects of Mercury II on Cupriavidus metallidurans Strain MSR33 during Mercury Bioremediation under Aerobic and Anaerobic Conditions. Processes (Basel) 2020. [DOI: 10.3390/pr8080893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mercury is a toxic element that harms organisms and disturbs biogeochemical cycles. Mercury bioremediation is based on the reduction of Hg (II) to Hg (0) by mercury-resistant bacteria. Cupriavidus metallidurans MSR33 possesses a broad-spectrum mercury resistance. This study aims to establish the effects of mercury on growth, oxygen uptake, and mercury removal parameters by C. metallidurans MSR33 in aqueous solution during aerobic and anaerobic mercury bioremediation. A new culture medium (GBC) was designed. The effects of mercury (II) (20 ppm) on growth parameters, oxygen uptake, and mercury removal were evaluated in GBC medium in a bioreactor (3 L) under aerobiosis. The anaerobic kinetics of mercury removal was evaluated by nitrogen replacement during mercury bioremediation in a bioreactor. Strain MSR33 reached a growth rate of µ = 0.43 h−1 in the bioreactor. Mercury inhibited oxygen uptake and bacterial growth; however, this inhibition was reversed after 5 h. Strain MSR33 was able to reduce Hg (II) under aerobic and anaerobic conditions, reaching, at 24 h, a metal removal of 97% and 71%, respectively. Therefore, oxygen was crucial for efficient mercury removal by this bacterium. Strain MSR33 was capable of tolerating the toxic effects of mercury (II) during aerobic bioremediation and recovered its metabolic activity.
Collapse
|
19
|
McKinlay JB, Cook GM, Hards K. Microbial energy management-A product of three broad tradeoffs. Adv Microb Physiol 2020; 77:139-185. [PMID: 34756210 DOI: 10.1016/bs.ampbs.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wherever thermodynamics allows, microbial life has evolved to transform and harness energy. Microbial life thus abounds in the most unexpected places, enabled by profound metabolic diversity. Within this diversity, energy is transformed primarily through variations on a few core mechanisms. Energy is further managed by the physiological processes of cell growth and maintenance that use energy. Some aspects of microbial physiology are streamlined for energetic efficiency while other aspects seem suboptimal or even wasteful. We propose that the energy that a microbe harnesses and devotes to growth and maintenance is a product of three broad tradeoffs: (i) economic, trading enzyme synthesis or operational cost for functional benefit, (ii) environmental, trading optimization for a single environment for adaptability to multiple environments, and (iii) thermodynamic, trading energetic yield for forward metabolic flux. Consideration of these tradeoffs allows one to reconcile features of microbial physiology that seem to opposingly promote either energetic efficiency or waste.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN, United States.
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Skorokhodova AY, Sukhozhenko AV, Gulevich AY, Debabov VG. Activation of Alternative Respiration with Internal Electron Acceptor during Anaerobic Glucose Utilization in Escherichia coli Strains with Impaired Fermentation Ability. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ojima Y, Kawaguchi T, Fukui S, Kikuchi R, Terao K, Koma D, Ohmoto T, Azuma M. Promoted performance of microbial fuel cells using Escherichia coli cells with multiple-knockout of central metabolism genes. Bioprocess Biosyst Eng 2019; 43:323-332. [DOI: 10.1007/s00449-019-02229-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022]
|
22
|
Koganitsky A, Tworowski D, Dadosh T, Cecchini G, Eisenbach M. A Mechanism of Modulating the Direction of Flagellar Rotation in Bacteria by Fumarate and Fumarate Reductase. J Mol Biol 2019; 431:3662-3676. [PMID: 31412261 DOI: 10.1016/j.jmb.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023]
Abstract
Fumarate, an electron acceptor in anaerobic respiration of Escherichia coli, has an additional function of assisting the flagellar motor to shift from counterclockwise to clockwise rotation, with a consequent modulation of the bacterial swimming behavior. Fumarate transmits its effect to the motor via the fumarate reductase complex (FrdABCD), shown to bind to FliG-one of the motor's switch proteins. How binding of the FrdABCD respiratory enzyme to FliG enhances clockwise rotation and how fumarate is involved in this activity have remained puzzling. Here we show that the FrdA subunit in the presence of fumarate is sufficient for binding to FliG and for clockwise enhancement. We further demonstrate by in vitro binding assays and super-resolution microscopy in vivo that the mechanism by which fumarate-occupied FrdA enhances clockwise rotation involves its preferential binding to the clockwise state of FliG (FliGcw). Continuum electrostatics combined with docking analysis and conformational sampling endorsed the experimental conclusions and suggested that the FrdA-FliGcw interaction is driven by the positive electrostatic potential generated by FrdA and the negatively charged areas of FliG. They further demonstrated that fumarate changes FrdA's conformation to one that can bind to FliGcw. These findings also show that the reason for the failure of the succinate dehydrogenase flavoprotein SdhA (an almost-identical analog of FrdA shown to bind to FliG equally well) to enhance clockwise rotation is that it has no binding preference for FliGcw. We suggest that this mechanism is physiologically important as it can modulate the magnitude of ΔG0 between the clockwise and counterclockwise states of the motor to tune the motor to the growth conditions of the bacteria.
Collapse
Affiliation(s)
- Anna Koganitsky
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dmitry Tworowski
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA 94121, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Michael Eisenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
23
|
Campbell ARM, Titus BR, Kuenzi MR, Rodriguez-Perez F, Brunsch ADL, Schroll MM, Owen MC, Cronk JD, Anders KR, Shepherd JN. Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum. PLoS One 2019; 14:e0217281. [PMID: 31112563 PMCID: PMC6529003 DOI: 10.1371/journal.pone.0217281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022] Open
Abstract
The lipophilic electron-transport cofactor rhodoquinone (RQ) facilitates anaerobic metabolism in a variety of bacteria and selected eukaryotic organisms in hypoxic environments. We have shown that an intact rquA gene in Rhodospirillum rubrum is required for RQ production and efficient growth of the bacterium under anoxic conditions. While the explicit details of RQ biosynthesis have yet to be fully delineated, ubiquinone (Q) is a required precursor to RQ in R. rubrum, and the RquA gene product is homologous to a class I methyltransferase. In order to identify any additional requirements for RQ biosynthesis or factors influencing RQ production in R. rubrum, we performed transcriptome analysis to identify differentially expressed genes in anoxic, illuminated R. rubrum cultures, compared with those aerobically grown in the dark. To further select target genes, we employed a bioinformatics approach to assess the likelihood that a given differentially expressed gene under anoxic conditions may also have a direct role in RQ production or regulation of its levels in vivo. Having thus compiled a list of candidate genes, nine were chosen for further study by generation of knockout strains. RQ and Q levels were quantified using liquid chromatography-mass spectrometry, and rquA gene expression was measured using the real-time quantitative polymerase chain reaction. In one case, Q and RQ levels were decreased relative to wild type; in another case, the opposite effect was observed. These results comport with the crucial roles of rquA and Q in RQ biosynthesis, and reveal the existence of potential modulators of RQ levels in R. rubrum.
Collapse
Affiliation(s)
- Amanda R. M. Campbell
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Benjamin R. Titus
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Madeline R. Kuenzi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Fernando Rodriguez-Perez
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Alysha D. L. Brunsch
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Monica M. Schroll
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Matthew C. Owen
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Jeff D. Cronk
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
| | - Kirk R. Anders
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Jennifer N. Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, United States of America
- * E-mail:
| |
Collapse
|
24
|
Skorokhodova AY, Gulevich AY, Debabov VG. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions. J Biotechnol 2019; 293:47-55. [DOI: 10.1016/j.jbiotec.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 11/30/2022]
|
25
|
Hards K, Rodriguez SM, Cairns C, Cook GM. Alternate quinone coupling in a new class of succinate dehydrogenase may potentiate mycobacterial respiratory control. FEBS Lett 2019; 593:475-486. [DOI: 10.1002/1873-3468.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 01/16/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kiel Hards
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland New Zealand
| | | | - Charlotte Cairns
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland New Zealand
| |
Collapse
|
26
|
Ghosh R, Roth E, Abou-Aisha K, Saegesser R, Autenrieth C. The monofunctional cobalamin biosynthesis enzyme precorrin-3B synthase (CobZRR) is essential for anaerobic photosynthesis in Rhodospirillum rubrum but not for aerobic dark metabolism. MICROBIOLOGY-SGM 2018; 164:1416-1431. [PMID: 30222098 DOI: 10.1099/mic.0.000718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo physiological role of the gene cobZ, which encodes precorrin-3B synthase, which catalyzes the initial porphyrin ring contraction step of cobalamin biosynthesis via the cob pathway, has been demonstrated here for the first time. Cobalamin is known to be essential for an early step of bacteriochlorophyll biosynthesis in anoxygenic purple bacteria. The cobZ (cobZRR) gene of the purple bacterium Rhodospirillum rubrum was localized to a 23.5 kb insert of chromosomal DNA contained on the cosmid pSC4. pSC4 complemented several mutants of bacteriochlorophyll and carotenoid biosynthesis, due to the presence of the bchCX and crtCDEF genes at one end of the cosmid insert, flanking cobZRR. A second gene, citB/tcuB, immediately downstream of cobZRR, shows homologies to both a tricarballylate oxidoreductase (tcuB) and a gene (citB) involved in signal transduction during citrate uptake. CobZRR shows extensive homology to the N-terminal domain of the bifunctional CobZ from Rhodobacter capsulatus, and the R. rubrum citB/tcuB gene is homologous to the CobZ C-terminal domain. A mutant, SERGK25, containing a terminatorless kanamycin interposon inserted into cobZRR, could not grow by anaerobic photosynthesis, but grew normally under dark, aerobic and microaerophilic conditions with succinate and fructose as carbon sources. The anaerobic in vivo activity of CobZ indicates that it does not require oxygen as a substrate. The mutant excreted large amounts of protoporphyrin IX-monomethylester, a brown precursor of bacteriochlorophyll biosynthesis. The mutant was complemented either by the cobZRR gene in trans, or when exogenous cobalamin was added to the medium. A deletion mutant of tcuB/citB did not exhibit the cob phenotype. Thus, a role for tcuB/citB in cobalamin biosynthesis could not be confirmed.
Collapse
Affiliation(s)
- Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Erik Roth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Khaled Abou-Aisha
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- †Present address: Department of Microbiology and Biotechnology, German University in Cairo, Egypt
| | - Rudolf Saegesser
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Caroline Autenrieth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
27
|
Zhang J, Wang YT, Miller JH, Day MM, Munger JC, Brookes PS. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 2018; 23:2617-2628. [PMID: 29847793 PMCID: PMC6002783 DOI: 10.1016/j.celrep.2018.04.104] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023] Open
Abstract
Succinate accumulates during ischemia, and its oxidation at reperfusion drives injury. The mechanism of ischemic succinate accumulation is controversial and is proposed to involve reversal of mitochondrial complex II. Herein, using stable-isotope-resolved metabolomics, we demonstrate that complex II reversal is possible in hypoxic mitochondria but is not the primary succinate source in hypoxic cardiomyocytes or ischemic hearts. Rather, in these intact systems succinate primarily originates from canonical Krebs cycle activity, partly supported by aminotransferase anaplerosis and glycolysis from glycogen. Augmentation of canonical Krebs cycle activity with dimethyl-α-ketoglutarate both increases ischemic succinate accumulation and drives substrate-level phosphorylation by succinyl-CoA synthetase, improving ischemic energetics. Although two-thirds of ischemic succinate accumulation is extracellular, the remaining one-third is metabolized during early reperfusion, wherein acute complex II inhibition is protective. These results highlight a bifunctional role for succinate: its complex-II-independent accumulation being beneficial in ischemia and its complex-II-dependent oxidation being detrimental at reperfusion.
Collapse
Affiliation(s)
- Jimmy Zhang
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yves T Wang
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - James H Miller
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mary M Day
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua C Munger
- Department of Biochemistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul S Brookes
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA; Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
28
|
Huang B, Yang H, Fang G, Zhang X, Wu H, Li Z, Ye Q. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli. Biotechnol Bioeng 2018; 115:943-954. [PMID: 29278414 DOI: 10.1002/bit.26528] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/20/2023]
Abstract
Acetate, a non-food based substrate obtained from multiple biological and chemical ways, is now being paid great attention in bio-manufacturing and have a strong potential to compete with sugar-based carbon source. In this study, acetate can be efficiently converted to succinate by engineered Escherichia coli strains via the combination of several metabolic engineering strategies, including reducing OAA decarboxylation, engineering TCA cycle, enhancement of acetate assimilation pathway and increasing aerobic ATP supply through cofactor engineering. The engineered strain HB03(pTrc99a-gltA, pBAD33-Trc-fdh) accumulated 30.9 mM of succinate in 72 hr and the yield reached the maximum theoretical yield (∼0.50 mol/mol). In the resting-cell experiments, the yield of succinate in HB03(pTrc99a-gltA) and HB03(pTrc99a-gltA, pBAD33-Trc-fdh) dropped dramatically, although the productivity of succinate increased due to the high cell density. Further deletion of icdA, formed HB04(pTrc99a-gltA) and HB04(pTrc99a-gltA, pBAD33-Trc-fdh), increased the yield of succinate in the resting-cell experiments. The highest concentration of succinate achieved 194 mM and the yield reached 0.44 mol/mol in 16 hr by HB04(pTrc99a-gltA, pBAD33-Trc-fdh). The results showed the metabolically engineered E. coli strains have great potential to produce succinate from acetate.
Collapse
Affiliation(s)
- Bing Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guochen Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China.,Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, Shanghai, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Hards K, Cook GM. Targeting bacterial energetics to produce new antimicrobials. Drug Resist Updat 2018; 36:1-12. [DOI: 10.1016/j.drup.2017.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
|
30
|
Dourado DFAR, Swart M, Carvalho ATP. Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH 2 into FAD. Chemistry 2017; 24:5246-5252. [PMID: 29124817 PMCID: PMC5969107 DOI: 10.1002/chem.201704622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Indexed: 11/10/2022]
Abstract
A covalently bound flavin cofactor is predominant in the succinate‐ubiquinone oxidoreductase (SQR; Complex II), an essential component of aerobic electron transport, and in the menaquinol‐fumarate oxidoreductase (QFR), the anaerobic counterpart, although it is only present in approximately 10 % of the known flavoenzymes. This work investigates the role of this 8α‐N3‐histidyl linkage between the flavin adenine dinucleotide (FAD) cofactor and the respiratory Complex II. After parameterization with DFT calculations, classical molecular‐dynamics simulations and quantum‐mechanics calculations for Complex II:FAD and Complex II:FADH2, with and without the covalent bond, were performed. It was observed that the covalent bond is essential for the active‐center arrangement of the FADH2/FAD cofactor. Removal of this bond causes a displacement of the isoalloxazine group, which influences interactions with the protein, flavin solvation, and possible proton‐transfer pathways. Specifically, for the noncovalently bound FADH2 cofactor, the N1 atom moves away from the His‐A365 and His‐A254 residues and the N5 atom moves away from the glutamine‐62A residue. Both of the histidine and glutamine residues interact with a chain of water molecules that cross the enzyme, which is most likely involved in proton transfer. Breaking this chain of water molecules could thereby compromise proton transfer across the two active sites of Complex II.
Collapse
Affiliation(s)
- Daniel F A R Dourado
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.,Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, Northern Ireland, UK
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003, Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Alexandra T P Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
31
|
Nho SW, Abdelhamed H, Karsi A, Lawrence ML. Improving safety of a live attenuated Edwardsiella ictaluri vaccine against enteric septicemia of catfish and evaluation of efficacy. Vet Microbiol 2017; 210:83-90. [DOI: 10.1016/j.vetmic.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/26/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
|
32
|
Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J, Wanner G, Geimer S, Samson RY, Bell SD, Huber H, Wirth R, Wurch L, Podar M, Rachel R. A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans. Front Microbiol 2017; 8:1072. [PMID: 28659892 PMCID: PMC5468417 DOI: 10.3389/fmicb.2017.01072] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Based on serial sectioning, focused ion beam scanning electron microscopy (FIB/SEM), and electron tomography, we depict in detail the highly unusual anatomy of the marine hyperthermophilic crenarchaeon, Ignicoccus hospitalis. Our data support a complex and dynamic endomembrane system consisting of cytoplasmic protrusions, and with secretory function. Moreover, we reveal that the cytoplasm of the putative archaeal ectoparasite Nanoarchaeum equitans can get in direct contact with this endomembrane system, complementing and explaining recent proteomic, transcriptomic and metabolomic data on this inter-archaeal relationship. In addition, we identified a matrix of filamentous structures and/or tethers in the voluminous inter-membrane compartment (IMC) of I. hospitalis, which might be responsible for membrane dynamics. Overall, this unusual cellular compartmentalization, ultrastructure and dynamics in an archaeon that belongs to the recently proposed TACK superphylum prompts speculation that the eukaryotic endomembrane system might originate from Archaea.
Collapse
Affiliation(s)
- Thomas Heimerl
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Philipps University of MarburgMarburg, Germany
| | | | - Carolin Pickl
- Plant Development and Electron Microscopy, Biocenter LMUMunich, Germany
| | - Veronika Heinz
- Center for Electron Microscopy, University of RegensburgRegensburg, Germany
| | - Benjamin Salecker
- Center for Electron Microscopy, University of RegensburgRegensburg, Germany
| | - Josef Zweck
- Institute of Experimental and Applied Physics, University of RegensburgRegensburg, Germany
| | - Gerhard Wanner
- Plant Development and Electron Microscopy, Biocenter LMUMunich, Germany
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of BayreuthBayreuth, Germany
| | - Rachel Y. Samson
- Molecular and Cellular Biochemistry Department, Indiana UniversityBloomington, IN, United States
| | - Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana UniversityBloomington, IN, United States
| | - Harald Huber
- Microbiology Department, University of RegensburgRegensburg, Germany
| | - Reinhard Wirth
- Microbiology Department, University of RegensburgRegensburg, Germany
| | - Louie Wurch
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, United States
- Microbiology Department, University of TennesseeKnoxville, TN, United States
| | - Mircea Podar
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, United States
- Microbiology Department, University of TennesseeKnoxville, TN, United States
| | - Reinhard Rachel
- Center for Electron Microscopy, University of RegensburgRegensburg, Germany
| |
Collapse
|
33
|
Skorokhodova AY, Gulevich AY, Debabov VG. Effect of extra- and intracellular sources of CO2 on anaerobic utilization of glucose by Escherichia coli strains deficient in carboxylation-independent fermentation pathways. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817030140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Skorokhodova AY, Gulevich AY, Debabov VG. Anaerobic biosynthesis of intermediates of reductive branch of tricarboxylic acids cycle by Escherichia coli strains with inactivated frdAB and sdhAB genes. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816070061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion. Metab Eng 2016; 39:220-227. [PMID: 27986597 DOI: 10.1016/j.ymben.2016.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
The metabolic byproducts secreted by growing cells can be easily measured and provide a window into the state of a cell; they have been essential to the development of microbiology, cancer biology, and biotechnology. Progress in computational modeling of cells has made it possible to predict metabolic byproduct secretion with bottom-up reconstructions of metabolic networks. However, owing to a lack of data, it has not been possible to validate these predictions across a wide range of strains and conditions. Through literature mining, we were able to generate a database of Escherichia coli strains and their experimentally measured byproduct secretions. We simulated these strains in six historical genome-scale models of E. coli, and we report that the predictive power of the models has increased as they have expanded in size and scope. The latest genome-scale model of metabolism correctly predicts byproduct secretion for 35/89 (39%) of designs. The next-generation genome-scale model of metabolism and gene expression (ME-model) correctly predicts byproduct secretion for 40/89 (45%) of designs, and we show that ME-model predictions could be further improved through kinetic parameterization. We analyze the failure modes of these simulations and discuss opportunities to improve prediction of byproduct secretion.
Collapse
|
36
|
Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH. Gamma-aminobutyric acid production through GABA shunt by synthetic scaffolds introduction in recombinant Escherichia coli. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0783-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Tata M, Wolfinger MT, Amman F, Roschanski N, Dötsch A, Sonnleitner E, Häussler S, Bläsi U. RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. PLoS One 2016; 11:e0147811. [PMID: 26821182 PMCID: PMC4731081 DOI: 10.1371/journal.pone.0147811] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can thrive under microaerophilic to anaerobic conditions in the lungs of cystic fibrosis patients. RNASeq based comparative RNA profiling of the clinical isolate PA14 cultured in synthetic cystic fibrosis medium was performed after planktonic growth (OD600 = 2.0; P), 30 min after shift to anaerobiosis (A-30) and after anaerobic biofilm growth for 96h (B-96) with the aim to reveal differentially regulated functions impacting on sustained anoxic biofilm formation as well as on tolerance towards different antibiotics. Most notably, functions involved in sulfur metabolism were found to be up-regulated in B-96 cells when compared to A-30 cells. Based on the transcriptome studies a set of transposon mutants were screened, which revealed novel functions involved in anoxic biofilm growth.In addition, these studies revealed a decreased and an increased abundance of the oprD and the mexCD-oprJ operon transcripts, respectively, in B-96 cells, which may explain their increased tolerance towards meropenem and to antibiotics that are expelled by the MexCD-OprD efflux pump. The OprI protein has been implicated as a target for cationic antimicrobial peptides, such as SMAP-29. The transcriptome and subsequent Northern-blot analyses showed that the abundance of the oprI transcript encoding the OprI protein is strongly decreased in B-96 cells. However, follow up studies revealed that the susceptibility of a constructed PA14ΔoprI mutant towards SMAP-29 was indistinguishable from the parental wild-type strain, which questions OprI as a target for this antimicrobial peptide in strain PA14.
Collapse
Affiliation(s)
- Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Michael T. Wolfinger
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Fabian Amman
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Nicole Roschanski
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7–13, 14163 Berlin, Germany
| | - Andreas Dötsch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Molecular Bacteriology, Twincore, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- * E-mail:
| |
Collapse
|
38
|
Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH. Redirection of Metabolic Flux into Novel Gamma-Aminobutyric Acid Production Pathway by Introduction of Synthetic Scaffolds Strategy in Escherichia Coli. Appl Biochem Biotechnol 2015; 178:1315-24. [DOI: 10.1007/s12010-015-1948-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/03/2015] [Indexed: 11/28/2022]
|
39
|
Maklashina E, Rajagukguk S, Starbird CA, McDonald WH, Koganitsky A, Eisenbach M, Iverson TM, Cecchini G. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II. J Biol Chem 2015; 291:2904-16. [PMID: 26644464 DOI: 10.1074/jbc.m115.690396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Indexed: 01/23/2023] Open
Abstract
Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.
Collapse
Affiliation(s)
- Elena Maklashina
- From the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158
| | - Sany Rajagukguk
- From the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121
| | | | - W Hayes McDonald
- the Department of Biochemistry and Mass Spectrometry Research Center
| | - Anna Koganitsky
- the Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Eisenbach
- the Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tina M Iverson
- the Department of Biochemistry and Mass Spectrometry Research Center, the Department of Pharmacology, the Center for Structural Biology, and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Gary Cecchini
- From the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158,
| |
Collapse
|
40
|
Lin X, Handley KM, Gilbert JA, Kostka JE. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME JOURNAL 2015; 9:2740-4. [PMID: 26000553 DOI: 10.1038/ismej.2015.77] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/28/2015] [Accepted: 04/01/2015] [Indexed: 01/08/2023]
Abstract
To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.
Collapse
Affiliation(s)
- Xueju Lin
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kim M Handley
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, Biosciences Division,Argonne National Laboratory, Lemont, IL, USA
| | - Jack A Gilbert
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, Biosciences Division,Argonne National Laboratory, Lemont, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA.,College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Joel E Kostka
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
41
|
Cheng VWT, Piragasam RS, Rothery RA, Maklashina E, Cecchini G, Weiner JH. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase. Biochemistry 2015; 54:1043-52. [PMID: 25569225 DOI: 10.1021/bi501350j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Complex II family of enzymes, comprising respiratory succinate dehydrogenases and fumarate reductases, catalyzes reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, soluble fumarate reductases (e.g., those from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and FAD was examined. Variants SdhA-R286A/K/Y and -H242A/Y that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in the assembly of a noncovalent FAD cofactor, which led to a significant decrease (-87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The "free" and "occupied" states of the active site were linked to the reduced and oxidized states of FAD, respectively. Our data allow for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD.
Collapse
Affiliation(s)
- Victor W T Cheng
- Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
43
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
44
|
Anderson RF, Shinde SS, Hille R, Rothery RA, Weiner JH, Rajagukguk S, Maklashina E, Cecchini G. Electron-transfer pathways in the heme and quinone-binding domain of complex II (succinate dehydrogenase). Biochemistry 2014; 53:1637-46. [PMID: 24559074 PMCID: PMC3985935 DOI: 10.1021/bi401630m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Single electron transfers have been
examined in complex II (succinate:ubiquinone
oxidoreductase) by the method of pulse radiolysis. Electrons are introduced
into the enzyme initially at the [3Fe–4S] and ubiquinone sites
followed by intramolecular equilibration with the b heme of the enzyme. To define thermodynamic and other controlling
parameters for the pathways of electron transfer in complex II, site-directed
variants were constructed and analyzed. Variants at SdhB-His207 and
SdhB-Ile209 exhibit significantly perturbed electron transfer between
the [3Fe–4S] cluster and ubiquinone. Analysis of the data using
Marcus theory shows that the electronic coupling constants for wild-type
and variant enzyme are all small, indicating that electron transfer
occurs by diabatic tunneling. The presence of the ubiquinone is necessary
for efficient electron transfer to the heme, which only slowly equilibrates
with the [3Fe–4S] cluster in the absence of the quinone.
Collapse
Affiliation(s)
- Robert F Anderson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ziegler S, Dolch K, Geiger K, Krause S, Asskamp M, Eusterhues K, Kriews M, Wilhelms-Dick D, Goettlicher J, Majzlan J, Gescher J. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. THE ISME JOURNAL 2013; 7:1725-37. [PMID: 23619304 PMCID: PMC3749503 DOI: 10.1038/ismej.2013.64] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
Abstract
Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.
Collapse
Affiliation(s)
- Sibylle Ziegler
- Department of Microbiology, Albert-Ludwigs University, Freiburg, Germany
- Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kerstin Dolch
- Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katharina Geiger
- Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susanne Krause
- Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Maximilian Asskamp
- Department of Microbiology, Albert-Ludwigs University, Freiburg, Germany
| | - Karin Eusterhues
- Department of Mineralogy, Friedrich Schiller University, Jena, Germany
| | - Michael Kriews
- Department of Geosciences/Glaciology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | | | - Joerg Goettlicher
- Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Juraj Majzlan
- Department of Mineralogy, Friedrich Schiller University, Jena, Germany
| | - Johannes Gescher
- Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
46
|
Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML. Tricarboxylic acid cycle and one-carbon metabolism pathways are important in Edwardsiella ictaluri virulence. PLoS One 2013; 8:e65973. [PMID: 23762452 PMCID: PMC3676347 DOI: 10.1371/journal.pone.0065973] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of channel catfish (ESC). The disease causes considerable economic losses in the commercial catfish industry in the United States. Although antibiotics are used as feed additive, vaccination is a better alternative for prevention of the disease. Here we report the development and characterization of novel live attenuated E. ictaluri mutants. To accomplish this, several tricarboxylic acid cycle (sdhC, mdh, and frdA) and one-carbon metabolism genes (gcvP and glyA) were deleted in wild type E. ictaluri strain 93-146 by allelic exchange. Following bioluminescence tagging of the E. ictaluri ΔsdhC, Δmdh, ΔfrdA, ΔgcvP, and ΔglyA mutants, their dissemination, attenuation, and vaccine efficacy were determined in catfish fingerlings by in vivo imaging technology. Immunogenicity of each mutant was also determined in catfish fingerlings. Results indicated that all of the E. ictaluri mutants were attenuated significantly in catfish compared to the parent strain as evidenced by 2,265-fold average reduction in bioluminescence signal from all the mutants at 144 h post-infection. Catfish immunized with the E. ictaluri ΔsdhC, Δmdh, ΔfrdA, and ΔglyA mutants had 100% relative percent survival (RPS), while E. ictaluri ΔgcvP vaccinated catfish had 31.23% RPS after re-challenge with the wild type E. ictaluri.
Collapse
Affiliation(s)
- Neeti Dahal
- Department of Basic Sciences, College of Veterinary Medicine Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Hossam Abdelhamed
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Egypt
| | - Jingjun Lu
- Department of Basic Sciences, College of Veterinary Medicine Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail: (AK); (MLL)
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail: (AK); (MLL)
| |
Collapse
|
47
|
Cheng VWT, Tran QM, Boroumand N, Rothery RA, Maklashina E, Cecchini G, Weiner JH. A conserved lysine residue controls iron-sulfur cluster redox chemistry in Escherichia coli fumarate reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1141-7. [PMID: 23711795 DOI: 10.1016/j.bbabio.2013.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022]
Abstract
The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe-4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe-4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe-4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe-4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (>100mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh.
Collapse
Affiliation(s)
- Victor W T Cheng
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Dröse S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:578-87. [DOI: 10.1016/j.bbabio.2013.01.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
|
49
|
Lücker S, Nowka B, Rattei T, Spieck E, Daims H. The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer. Front Microbiol 2013; 4:27. [PMID: 23439773 PMCID: PMC3578206 DOI: 10.3389/fmicb.2013.00027] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/02/2013] [Indexed: 01/17/2023] Open
Abstract
In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.
Collapse
Affiliation(s)
- Sebastian Lücker
- Department of Microbial Ecology, Ecology Centre, University of Vienna Vienna, Austria
| | | | | | | | | |
Collapse
|
50
|
Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:668-78. [PMID: 23396003 DOI: 10.1016/j.bbabio.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|